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Abstract 
 
Quantitative relationships between molecular structure of forty eight aldehyde compounds with their known 
Cathepsin K inhibitory effects were discovered by partial least squares (PLS) method. Evaluation of a test set 
of 10 compounds with the developed PLS model revealed that this model is reliable with a good 
predictability. Since the QSAR study was performed on the basis of theoretical descriptors calculated 
completely from the molecular structures, the proposed model could potentially provide useful information 
about the activity of the studied compounds. Various tests and criteria such as leave-one-out cross validation, 
leave-many-out cross validation, and also criteria suggested by Tropsha were employed to examine the 
predictability and robustness of the developed model.  
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INTRODUCTION 

 
Design, development, and introduction of 

new drugs to the market are difficult, time 
consuming and cost-intensive procedures. 
Furthermore, during the procedure, limited 
number of candidates will be tested in the 
clinic and even smaller number will be 
introduced to the market. Any process or tool 
that can accelerate the effectiveness of any 
step in the drug discovery procedure seems to 
be very attractive. Quantitative structure 
activity relationship (QSAR) studies have been 
proved as a new possibility to facilitate drug 
discovery procedures (1-6). The key point is 
that in medicinal chemistry the activity of each 
ligand depends on its molecular structure. In 
QSAR models, mathematical equations are 
constructed and used to make a connection 
between the activity and the structure of the 
compounds. In a typical QSAR study, 
numerous descriptors are calculated. These 
descriptors have been classified into different 

categories, including constitutional, geome-
trical, topological, quantum chemical and so 
on. After calculation of the descriptors, one 
needs to find a set of molecular descriptors 
with the higher impact on the biological 
activity of the interest.  

Cathepsin K (catK), one of the most 
important members of the group of lysosomal 
cysteine proteases, is mainly expressed in 
ovary and in osteoclasts or osteoclastomas (7). 
Various studies have shown that catK is a 
cysteine protease with a predominant if not 
exclusive function in degradation of the bone 
matrix. This proposal was indeed supported by 
the identification of catK as the target gene in 
the human disorder Pycnodysostosis, where 
functional mutations in the catK gene cause 
severe bone malformation  (8). Further proof 
of the function of catK in osteoclast-mediated 
bone degradation came from catK-deficient 
mice that demonstrated an osteopetrotic 
phenotype (9). Since then, most of the inves-
tigations have concentrated on this intriguing 
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function of catK, because it represents an 
excellent target for the development of 
therapeutic strategies in the treatment of 
skeletal disorders such as Pycnodysostosis or 
osteoporosis.  

Therfore, catK is a key protease in 
osteoclast-mediated bone resorption and it 
highlights the attractiveness of this cysteine 
protease as a target for inhibition in diseases 
characterized by elevated level of bone 
turnover such as osteoporosis (10,11). 
Currently, many kinds of inhibitors against 
catK have been designed which include 
nonpeptidic biaryl compounds, aldehydes and 
their derivatives, acyclic and cyclic ketones, 
nonpeptidyl nitriles, epoxysuccinyl analogues, 
β-lactams, vinyl sulfones, and so on. Some of 
them inhibited bone resorption well in vivo 
(10,11). In this study, a QSAR model is 
developed from the calculated descriptors 
derived from semi-empirical (AM1) quantum 
chemical calculations for predicting the 
activity values of some of aldehyde com-
pounds as human catK. Main objective of this 
study is to develop an accurate, simple, 
reliable, and less expensive technique for 
calculation of bioactivity values. The PLS 
method was used in QSAR for modeling the 
relationship between activities of 48 aldehyde 
compounds and their structural descriptors.  

A training set (38 aldehydes) of compounds 
was employed to refine the generated model 
and a testing set (10 aldehydes) of appro-
priately selected chemicals was chosen to test 
the model.  

Multiple linear regression (MLR) is an 
approach commonly employed in QSAR 
studies. The multicolinearity problem of the 
MLR technique has been overcome by using 
the development of the partial least squares 
(PLS) approach, which plays a significant role 
in various QSAR studies. PLS is a helpful 
method for relating a set of activities to many 
explanatory variables such as theoretical 
descriptors. It can be regarded as a general 
dimension reduction method which takes into 
account the linear relationship between the 
dependent and independent variables.  

 
 
 

MATERIALS AND METHODS 
 

Preparation of data set and calculation of the 
descriptors  

The studied compounds and their biological 
activities were taken from the literature 
(12,13) which are listed in Table 1 The 
biological activity was expressed by IC50 (the 
molar concentration of aldehyde compounds 
required to inhibit 50% of catK). In our study, 
−log(IC50) values were employed as the 
dependent variables which are given in Table 1. 

All molecules were drawn by Hyperchem 
and preoptimized using the MM+ molecular 
mechanic force field and then a more precise 
optimization was performed with the 
semiempirical AM1 method (14). The mole-
cular structures were optimized using the 
Polak–Ribiere algorithm until the root mean 
square gradient reached 0.01. The Hyperchem 
output files (.hin files) were introduced to 
DRAGON program (15) to calculate four 
classes of the descriptors: constitutional 
(number of various types of atoms and bonds, 
number of rings, molecular weight, etc.), 
topological (Wiener index, Randic indices, 
Kier–Hall shape indices, etc.), geometrical 
(moments of inertia, molecular volume, 
molecular surface area, etc.), and functional 
group (number of total tertiary carbons (nCt), 
number of H-bond acceptor atoms (nHAcc), 
number of total hydroxyl groups (nOH), number 
of unsubstituted aromatic C (nCaH), number of 
ethers ( aromatic) (nRORPh), etc.) (15,16). 

 
Kennard and Stone algorithm 

After building new X matrix including 
latent variables for evaluation of performance 
of generated regression methods, about 20% of 
the molecules were selected as test set 
molecules. It is well known that for building of 
any QSAR model in general, the selection of 
the molecules is the important step in building 
or training of the model. In order to apply the 
standard QSAR modeling method, the studied 
data set should be split into the training 
(learning) and the testing sets. The best 
situation of this stage of model building is 
dividing data set to guarantee that both 
training and testing sets individually cover the 
total space occupied by original data set. Then 
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Table 1. Structural details of investigated compounds used in this study 

R1

R3R2 O

H
N

H

O

R4  

Compound R1 R2 R3 R4 pIC50 Predicted pIC50 
 1a Me Me Me H 2.24 3.80 
2 Me Me Me Me 3.7 3.75 
3 Me Me Me Et 4.24 3.94 
4 Me Me Me i-Pr 3.8 4.23 

  5 a Me Me Me Pr 4.42 4.25 
6 Me Me Me CH(Me)Et(S) 3.6 4.07 

  7 a Me Me Me CH(Me)Et(R) 3.89 4.13 
8 Me Me Me CH2C(CH3=CH2) 4.1 3.81 
9 Me Me Me CH2-i-Pr 4.51 4.19 

10 Me Me Me CH2tBu 3.6 3.67 
11 Me Me Me Bu 4.29 3.98 
12 Me Me Me  3.39 3.41 

  13 a Me Me Me n-Pentyl 3.96 4.27 
14 Me Me Me n-Hexyl 4.64 4.63 
15 Me Me Me CH2SEt 4.08 4.09 
16 Me Me Me (CH2)2OMe 3.17 3.62 

  17 a Me Me Me (CH2)2SMe 4.11 4.16 
18 Me Me Me Ph 4.29 4.14 
19 Me Me Me Benzyl 3.96 4.18 
20 Me Me Me (CH2)cyclohexyl 4.44 4.37 

  21 a Me Me Me (CH2)2cyclohexyl 4.59 4.69 
22 Me Me Me (CH2)3Ph 4.82 4.84 
23 Me Me Me (CH2)3cyclohexyl 4.8 4.92 
24 Me Me Me CH2SCH2 4.4 4.32 
25 Me Me Me CH2NHCOMe 3.43 3.37 
26 Me Me Me (CH2)4NHCO2Me 4.82 4.81 
27 Me Me Me (CH2)4N(H)COCF3 4.39 4.24 
28 Me Me Me (CH2)4N(Me)COCF3 4.3 4.44 
29 PhCH2 Me Me n-Bu 4.92 5.26 
30 PhCH2 (CH2)3  n-Bu 5.62 5.68 
31 PhCH2 Et Et n-Bu 5.68 5.62 
32 PhCH2 (CH2)4  n-Bu 6.46 6.68 
33 PhCH2 (CH2)5  n-Bu 5.7 5.62 
34 PhCH2 Me H n-Bu 5.74 5.76 

 35 a C6H11CH2 Me H n-Bu 5.57 5.89 
36 PhCH2 Et H n-Bu 6.89 5.83 

 37 a PhCH2 n-Pr H n-Bu 5.82 5.97 
 38 a PhCH2 i-Pr H n-Bu 6.3 5.85 
39 PhCH2 i-Bu H n-Bu 5.19 5.72 
40 H Et Et n-Bu 5.4 5.58 
41 H n-Pr n-Pr n-Bu 6.06 6.29 
42 H i-Pr i-Pr n-Bu 6.25 6.11 
43 H i-Bu i-Bu n-Bu 5.96 6.02 
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Table 1. (Continued) 

Compound R1 R2 R3 R4 pIC50 Predicted pIC50 
44 Me i-Pr i-Pr n-Bu 5.33 5.19 
45 3-MeO-Ph-CH2 Me Me n-Bu 5.27 5.12 

  46 a 2-Cl-Ph-CH2 Me Me n-Bu 5.51 5.26 
47 4-Cl-Ph-CH2 Me Me n-Bu 5.34 5.12 
48 3-Thiophenyl-CH2 Me Me n-Bu 5.12 5.09 

amolecules selected as the test set  
 

ideal splitting of data set is carried out such 
that each of objects in the testing set be close 
to at least one of the objects in the training 
set. Various methods were used as tools for 
splitting the whole original data set to the 
training and testing sets. According to 
Tropsha, the best models would be built when 
Kennard and Stone algorithm is used (17). 
This algorithm was applied in the current 
study (18). This method has some advantages: 
the training set molecules map the measured 
region of the input variable space completely 
with respect to the induced metric. The other 
advantage is that all of the testing molecules 
fall inside the measured region.  

 
Partial Least Squares (PLS) 

PLS is a regression approach which is used 
to build a predictive model between two 
matrices of variables: the X matrix of 
predictor variables and the Y matrix of 
dependent variables. In its simplest type of 
model building, a linear model indicates the 
relation-ship between dependent (bioactivity) 
varia-bles and independent (descriptors) 
variables by means of latent variables (LVs). 

In the PLS regression, it is assumed that X 
matrix (I × J) contains the descriptors that can 
be used for predicting the matrix of activities 
that is Y (I × M). Here the dependent 
variables are represented by an (I × 1) column 
vector. PLS decomposes these matrices into a 
two-matrix product plus residual.  

EptETPX ff
T +′=+= ∑   

EquFUQY ff
T +′=+= ∑   

where, T and U are the matrices of score 
for X and Y; P and Q are the matrices of 
loadings for X, Y; E and F are the matrices 
residual, respectively, for a model with f 
latent variables. 

Above equations are solved in a way to 
maximize the covariance between T and U. 
These two matrices are related by the 
following inner relationship: 

U=TB+H 
where, B is a diagonal matrix and H is a 

residual matrix. This allows PLS to be 
expressed as a predictive model. The matrix 
Y can be calculated from U as follows:  

Y=TBQT + F  
The activity of the new compounds can be 

approximated from the new scores T*, which 
are substituted in the above equation, leading 
to the following equation: 

Ypred.=T × BQT  
In order to find the optimum number of 

latent variables to be used in model building, 
a leave-one-out cross validation was carried 
out (19). 

 
RESULTS 

 
Numerous descriptors were calculated for 

each studied molecule using Dragon. In order 
to get the linear relationship with independent 
variables, logarithms of the inverse of 
biological activity (Log 1/IC50) data of 48 
molecules were used.  

 
PLS modeling 

PLS generated eleven  significant LVs (the 
percent of variance explaind > 1) which can 
explain around 95% of the variances in the 
original descriptors data matrices. eleven LVs 
are reported in  Table 2 In this table the 
percent of variances was explained by each 
LVs and the cumulative percent of variances 
are represented. Therefore, we restricted the 
next studies to the selection of best subset of 
these LVs to perform regression between 
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Table 2. The results of PLS from the total calculated descriptors 

Latent variable % of Variance explained Cumulative % 
1 60.410 60.410 
2 11.828 72.238 
3 7.732 79.971 
4 4.355 84.326 
5 2.380 86.707 
6 1.405 88.112 
7 1.404 89.517 
8 0.748 90.266 
9 2.369 92.635 

10 1.372 94.007 
11 1.065 95.073 

  

Fig. 1. Optimization of the number of LVs 
 
 

 
 

Fig. 2. The calculated pIC50 of studied compounds vs 
experimental pIC50 
 

descriptors and activity. After dividing the 
molecules into two parts, calibration and 
validation sets, based on Kennard and Stone 
algorithm, building of regression model using 
calibration set was performed. The training 
and validation compounds are clearly indicat-
ed in Table 1. 

Two quantities including root mean square 
error of calibration (RMSEC) and root mean 
square error of cross validation (RMSECV) 
were used to optimize the number of the latent 
variables in model development. As it is 
shown in Fig. 1, the best PLS model contained 
nine latent variables. The predicted pIC50s by 
using PLS regression technique are listed in 
Table 1 and are plotted in Fig. 1 The plot of 
Fig. 2 shows that the data are distributed 
around a straight line with the respective slope 
equal to 0.907. 

As it can be seen from Table 3, the QSAR 
model based on PLS possess a high statistical 

quality. It could respectively explain and 
predict 90% and 83% of variances in the 
human catK inhibitory activity of the 
investigated compounds. The predictability of 
the generated PLS-based QSAR model was 
estimated according to Tropsha, Roy and 
coworkers recommended criteria (17,20). The 
results of LOO-CV technique applied on the 
training set are reported in Table 3. This 
results showed that generated PLS model is a 
reasonable QSAR model. These results 
confirm the success of calculated descriptors 
in modeling of the human catK inhibitory 
activity of the studied compounds. The value 
of R2 for test set is reported in Table 3 The 
data revealed that the proposed model has high 
prediction ability for the prediction set. 

The proposed regression models passed all 
the Tropsha tests for the predictive ability. 
Values of these quantities are shown in Table 
3 In order to avoid chance correlations which 
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Table 3. Statistic parameters and figures of merits of developed GA-ANFIS model 

        PLS model 
Statistics parameter 

Training set Test set 
N 38 10 

R2 0.907 0.838 

RMSE 0.323 0.549 

PRESS 2.922 3.032 

R2
LOOCV 0.847  

RMSELOOCV 0.363  

R2
L5OCV 0.812  

RMSEL5OCV 0.403  

R2-R0
2/R2 -0.101 -0.153 

R2-R'0
2/R2 -0.101 -0.186 

k 1.000 0.970 
k' 0.996 1.017 
Rm

2 0.632 0.537 

 
are possible because of a large number of 
generated columns (independent variables), 
and to examine the robustness of developed 
models, Y randomization test was applied to 
the models. The dependent variable vector is 
randomly permuted and a new QSAR model 
was constructed using the original independent 
variable matrix. The new modeling was 
expected to have low R2 values. For sureness, 
some iteration was carried out. If the results 
show a high R2, it implies that an acceptable 
QSAR model can not be obtained. The low 
R2and R2

CV values show that the good results 
in our original model are not due to a chance 
correlation or structural dependence of the 
training set. 

 
DISCUSSION 

 
To solve the problem of multicollinearity in 

the generated descriptors, PLS regression as a 
linear method was used to model structure-
activity relationships quantitatively. All the 
calculated descriptors were used in the 
modeling procedure.  

In multivariate data analysis, a represen-
tative training set must be extracted from a 
pool of real objects. Moreover, test objects 
should also be chosen to assess the quality of 
the developed model and to determine model 
parameters such as the number of latent 

variables in PLS regression. Several studies 
have addressed the problem of choosing a 
representative subgroup from a pool of 
objects. 

In this context, random sampling is a well-
liked method because of its straight forward-
ness and also because a set of objects 
randomly selected from a larger set follows the 
statistical distribution of the entire data set. 
However, random sampling does not assure 
the representativity of the total data set, nor 
does it avoid extrapolation problems. Actually, 
random selection does not guarantee that the 
objects on the boundaries of the total data set 
are included in the training set. An alternative 
approach to random selection method that is 
frequently used is the Kennard and Stone 
algorithm. Kennard and Stone is aimed at 
covering the multidimensional space in a 
uniform manner by maximizing the Euclidean 
distances between the calculated descriptors X 
matrix of the studied molecules. 

There are several tools to estimate and 
calculate the accuracy,the validity of the 
proposed QSAR model and the impacts of the 
preprocessing steps. Here, we have employed 
several techniques to ensure the effectiveness 
of the PLS in the modeling of catK inhibitory 
activity of studied aldehydes. Some of the 
common parameters used for checking the 
predictability of proposed PLS model are root 
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mean square error (RMSE), square of the 
correlation coefficient (R2 ), and predictive 
residual error sum of squares (PRESS). These 
parameters were calculated as follows: 

2/1

1

2 ])ˆ(/1[ ∑
=

−=
n

i
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2

1 1

22 )(/)ˆ( i
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where, yi  is the  measured bioactivity of the 
investigated compound i, iŷ  represents the 
calculated bioactivity of the compound i, x is 
the mean of true activity in the studied set, and 
n is the total number of molecules used in the 
studied sets. 

The efficacy of QSAR models is not just 
their capability to regenerate known data, but 
also they should have talent to generate a good 
estimation for any external data (21). The 
predictabilities of developed models are 
powerfully influenced by the overfitting 
problem. Overfitting problem is occurred when 
uninformative regressions enter to the 
developed QSAR model. Another reason of 
overfitting problem is the use of exceeded 
number of LVs in PLS model. There are 
several techniques to approximate the quality 
and accuracy of the QSAR models (22). Cross-
validation is the most regularly employed 
validation techniques (23). Consequently, to 
examine the predictability and to check 
overfitting problem in the resulting PLS 
model, the leave-one-out cross validation 
procedure was employed. The squared 
correlation coefficient for cross-validation 
(R2

CV) was then calculated by the following 
equation:  

)/(12 SSDPRESSRCV −=  

where, PRESS and SSD are the predicted 
residual sum of squares and the sum of the 

squared deviation from the mean, 
respectively.  

For a generated QSAR model, internal 
validation (including leave-one-out cross 
validation), although significant and essential, 
does not adequately assure the predictability of 
a developed model. In fact, it is insisted that 
models with high apparent predictive ability 

which is highlighted only by internal 
validation methods cannot be predictive when 
applied on new compounds not employed in 
developing the model. Thus, for a stronger 
estimation of the application of developed 
model for prediction on new chemicals, 
external validation of the models should 
always be carried out (17). To complete the 
study with regards to the predictability of the 
generated model, the proposed PLS must be 
used to predict the activity of ten molecules 
that did not employ in the modeling step (the 
testing set compounds). This predictive ability 
is estimated by the external R2

p (R2 for test set) 
that is defined as follows (24): 

∑

∑

=

=
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where, ty  is the average value of the 
bioactivity for the training set. The 
summations cover all the molecules in the 
testing set.  

Some criteria are suggested by Tropsha 
(17). If these criteria were satisfied then it 
could be concluded that the model is 
predictive (17). These criteria include: 

R2
LOO>0.5 

R2 >0.6  

1.02

2
0

2

<
−

R
RR

        1.02

2'
0

2

<
−
R

RR
  

0.85< k<1.15     or    0.85< k'<1.15                                  

R2 is the correlation coefficient of regres-
sion between the predicted and observed 
activities of the compounds in training and test 
sets. 2

0R  is the correlation coefficients for 
regressions between predicted versus observed 
activities through the origin, 2'

0R  is the cor-
relation coefficients for regressions between 
observed versus predicted activities through 
the origin, and the slope of the regression lines 
through the origin are assigned by k and k ', 
respectively. Details of definitions of para-
meters such as 2

0R , 2'
0R ,k and k' are presented in 

the literature (17).  
In addition, according to Roy and 

coworkers (20) the difference between values 
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of 2
0R  and 2'

0R  must be studied and given 
importance. They suggested following 
modified R2 form:  

)1( 2
0

222 RRRRm −−=
 

If 2
mR  value for given model is >0.5, 

indicates good external predictability of the 
developed model.  
 
QSAR applicability domain 

The applicability of domain (AD) was 
explained by the Williams plot of standardized 
residuals versus leverage (Hat diagonal) values 
(hi). The leverage method for defining the AD 
has been explained in details in the literature 
(17). The leverage (h) value of a compound in 
the original independent variable space is 
defined as below: 

 

      
 

where, xi is the LV vector of the investigated 
compound and X is the model matrix derived 
from the training set LV values. 

The warning leverage value (h*) is defined 
as 3(K + 1)/n, where, K is the number of 
independent variables. When h value of a 
molecule is lower than h*, the probability of 
accordance between calculated and experi-
mental values is as high as that of the 
molecules in the training set (4). A compound 
with hi > h* will reinforce the model if the 
compound is in the training set. But such a 
compound in the testing set implies that it is 
structurally distant from chemicals in the 
calibration set and its predicted data may be 
unreliable. However, this compound may not 
appear to be an outlier because its residuals 
may be low. Thus the leverage and the 
standardized residual should be used 
simultaneously for the description of the AD 
of the expanded model. It must be noted that 
the outliers are objects that emerge to break 
the pattern or grouping shown by the majority 
of the objects. Presence of outliers in the 
studied data set is more the rule than the 
exception for real world data. The reasons for 
outliers are different, such as instrument 
failure, non-representative sampling, formatt-
ing errors and observations stemming from 
other populations. Most usual multivariate 
regression techniques are sensitive to outliers 

because of the fact that they are based on least 
squares or similar criteria where even one 
outlier can have an illogically large effect on 
the accuracy of developed model and decline 
the model. Therefore, it is essential to (a) 
recognize outliers and (b) make a decision 
whether the outliers should be included or 
omitted in the modeling step. 

Applicability of domain for the developed 
PLS model is shown in Fig. 3 Response 
outliers are compounds that have standard 
residual points greater than the two standard 
deviation units. Influential compounds are 
points with leverage value higher than the 
warning leverage limit. As can be seen in Fig. 
3 all studied molecules in training and test sets 
lie in application domain of developed model. 
 
Suggestion of potent compounds 

As a final point, one could dispute that how 
researchers can interpret the developed PLS 
model or how developed model can be used to 
propose novel aldehyde derivatives with 
improved activity. In other words, what does 
the developed QSAR model mean to medicinal 
chemists? As discussed above, the calculated 
latent variables do not mean physico-
chemically, but they may be employed for 
building statistical models which help the 
medicinal chemist limit the number of 
compounds to be synthesized. For instance, 
medicinal chemist can propose a training set 
comprised of molecules which have the 
characters of two or more chemical classes 
with the smallest amount of similarity. Then 
one can use the developed models to predict 
the activity of the proposed molecules. This 
practice may lead to the introduction of 
biologically active molecules.  

 

 
 

Fig. 3. William's plot of generated PLS-based QSAR 
model
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Table 4. Structure and details of suggested antagonists 

R1

R3R2 O

H
N

H

O

R4  

 
Since experimental and computed activities 

of compounds used in the model development 
step showed good correlation, developed 
QSAR model was employed to calculate 
inhibitory activities of suggested compounds. 
Structures of novel antagonists of catK may 
then be suggested and their activities could be 
evaluated by using the developed model. 
Compounds owning the general structure 
similar to the investigated compounds 
containing various substituents may give rise 
to the novel compounds. Structures of these 
novel ligands as well as their LVs were 
generated. Consequentlye, using calculated 
LVs and developed model, activities of 
proposed ligands were calculated. 

The general structures of six suggested 
compounds and details of their calculated 
activities are reported in Table 4 The 
suggested compounds are combination of the 
most potent compounds of Table 1 All 
suggested compounds were submitted to 
activity evaluation using developed QSAR 
model. The relative high predicted activity of 
suggested compounds could be further 
confirmed by synthesising their chemical 
entities. 

 
CONCLUSION 

 
Quantitative relationship between mole-

cular structure and human catK inhibitory 
activity of a series of aldehyde derivatives was 
discovered by one of the most commonly used 
regression methods, PLS. Evaluation of a test 
set of ten compounds with the developed PLS 

model revealed that this model is reliable and 
has a good predictability. Since the QSAR 
study was performed on the basis of 
theoretical descriptors calculated completely 
from molecular structure, the proposed model 
could potentially provide useful information 
about the activity of the studied compounds. 
Various tests and criteria such as leave-one-out 
cross validation, leave-many-out cross 
validation, and also criteria suggested by 
Tropsha were employed to examine the 
predictability and robustness of the developed 
model. This model could explain and predict 
90 % and 83 % of variances in the pIC50 data, 
respectively. 

 
REFERENCES 

 
1. Arkan E, Shahlaei M, Pourhossein A, Fakhri K, 

Fassihi A. Validated QSAR analysis of some diaryl 
substituted pyrazoles as CCR2 inhibitors by various 
linear and nonlinear multivariate chemometrics 
methods. Eur J Med Chem. 2010;45:3394-3406. 

2. Saghaie L, Shahlaei M, Fassihi A, Madadkar-
Sobhani A, Gholivand M, Pourhossein A. QSAR 
Analysis for Some Diaryl-substituted Pyrazoles as 
CCR2 Inhibitors by GA-Stepwise MLR. Chem Biol 
Drug Des. 2011;77:75-85. 

3. Saghaie L, Shahlaei M, Madadkar-Sobhani A, 
Fassihi A Application of partial least squares and 
radial basis function neural networks in multivariate 
imaging analysis-quantitative structure activity 
relationship: Study of cyclin dependent kinase 4 
inhibitors. J Mol Graph Model. 2010;29:518-528. 

4. Shahlaei M, Fassihi A, Nezami A. QSAR Study of 
some 5-methyl/trifluoromethoxy-1H-indole-2,3-dione-
3-thiosemicarbazone derivatives as anti-tubercular 
agents. Res Pharm Sci. 2009;4:123-131. 

5. Shahlaei M, Fassihi A, Saghaie L. Application of  

Compound R1 R2 R3 R4 Activity 
S1 PhCH2 Me i-Bu Et 6.12 
S2 PhCH2 n-Pr i-Bu CH2-i-Pr 6.13 
S3 PhCH2 Me i-Bu CH2-i-Pr 6.24 
S4 PhCH2 n-Pr i-Pr Me 6.31 
S5 PhCH2 Me i-Pr n-Bu 6.11 
S6 PhCH2 n-Pr i-Pr n-Bu 6.22 



M. Shahlaei et al. / RPS 2011; 6(2): 71-80 

 

 80

PC-ANN and PC-LS-SVM in QSAR of CCR1 
antagonist compounds: A comparative study. Eur J 
Med Chem. 2010;45:1572-1582. 

6. Shahlaei M, Sabet R, Ziari MB, Moeinifard B, 
Fassihi A, Karbakhsh R. QSAR study of anthranilic 
acid sulfonamides as inhibitors of methionine 
aminopeptidase-2 using LS-SVM and GRNN based 
on principal components. Eur J Med Chem. 
2010;45:4499-4508. 

7. Bromme D, Okamoto K. Human cathepsin O2, a 
novel cysteine protease highly expressed in 
osteoclastomas. Biol Chem Hoppe Seyler. 
1995;376:379-384. 

8. Gelb BD, Shi GP, Chapman HA, Desnick RJ. 
Pycnodysostosis, a lysosomal disease caused by 
cathepsin K deficiency. Science. 1996;273:1236-1238. 

9. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde 
A, Rommerskirch W, et al Impaired osteoclastic 
bone resorption leads to osteopetrosis in  cathepsin-
K-deficient mice. Proc Natl Acad Sci USA. 
1998;95:13453-13458. 

10. Alves MFM, Puzer L, Cotrin SS, Juliano MA, 
Juliano L, Brömme D, et al S3 to S3′ subsite 
specificity of recombinant human cathepsin K and 
development of selective internally quenched fluo-
rescent substrates. Biochem J. 2003;373:981-986. 

11. Robichaud J, Oballa R, Prasit P, Falgueyret JP, 
Percival MD, Wesolowski G, et al A novel class of 
nonpeptidic biaryl inhibitors of human cathepsin K. 
J Med Chem. 2003;46:3709-3727. 

12. Boros EE, Deaton DN, Hassell AM, McFadyen RB, 
Miller AB, Miller LR, et al Exploration of the P2-P3 
SAR of aldehyde cathepsin K inhibitors. Bioorg 
Med Chem Lett. 2004;14:3425-3429. 

13. Catalano JG, Deaton DN, Furfine ES, Hassell AM, 
McFadyen RB, Miller AB, et al Exploration of the 
P1 SAR of aldehyde cathepsin K inhibitors. Bioorg 
Med Chem Lett. 2004;14:275-278. 

14. Hyperchem. Molecular Modeling System. In: 
Developed by Hyper Cube Inc. and Auto Desk, Inc. 

15. Todeschini R, Consonni V, Mauri A, Pavan M. 
DRAGON software. Milano, Italy: 2002. 

16. Todeschini R, Consonni V. Handbook of Molecular 
Descriptors. Weinheim, Germany: Wiley-VCH; 2000. 

17. Tropsha A, Gramatica P, Gombar V, The 
importance of being Eearnest: Validation is the 
absolute essential for successful application and 
interpretation of QSPR models. QSAR Comb Sci. 
2003;22:69-77. 

18. Kennard R, Stone L. Computer Aided Design of 
Experiments. Technometrics. 1969;11:137-148. 

19. Wold H. Estimation of Principal Components and 
Related Methods by Iterative Least Squares. In: 
Krishnaiah PR, Editor. Multivariate Analysis. New 
York: Academic Press, 1966. p. 391-420. 

20. Roy PP, Roy K. On some aspects of variable 
selection for partial least squares regression models. 
QSAR Comb. Sci. 2008;27:302-313. 

21. Gramatica P, Papa E. QSAR modeling of 
bioconcentration factor by theoretical molecular 
descriptors. QSAR Comb Sci. 2003;22:374-385. 

22. Wold S. Validation of QSARs. Quant Struct-Act 
Relat. 1991;10:191-193. 

23. Zhang W, Tropsha A. Novel variable selection 
quantitative structure–property relationship approach 
based on the k-nearest-neighbor principle. J Chem 
Inf Comput Sci. 2000;40:185-194. 

24. Atkinson AC. Plots, Transformations and 
Regression. UK: Clarendon Press; 1985. 


