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Decentralized Learning Framework of
Meta-Survival Analysis for Developing
Robust Prognostic Signatures

abstract

PurposeAsignificant hurdle indeveloping reliablegeneexpression–basedprognosticmodelshasbeen the
limited sample size, which can cause overfitting and false discovery. Combining data frommultiple studies
can enhance statistical power and reduce spurious findings, but how to address the biologic hetero-
geneity across different datasets remains amajor challenge. Bettermeta-survival analysis approaches are
needed.

Material and Methods We presented a decentralized learning framework for meta-survival analysis
without the need for data aggregation. Our method consisted of a series of proposals that together
alleviated the influence of data heterogeneity and improved the performance of survival prediction.
First, we transformed the gene expression profile of every sample into normalized percentile ranks to
obtain platform-agnostic features. Second, we used Stouffer’s meta-z approach in combination with
Harrell’s concordance index to prioritize and select genes to be included in the model. Third, we used
survival discordance as a scale-independent model loss function. Instead of generating a merged
dataset and training themodel therein, we avoided comparing patients across datasets and individually
evaluated the loss function on each dataset. Finally, we optimized themodel byminimizing the joint loss
function.

Results Through comprehensive evaluation on 31 publicmicroarray datasets containing 6,724 samples of
several cancer types, we demonstrated that the proposed method has outperformed (1) single prognostic
genes identified using conventionalmeta-analysis, (2)multigene signatures trainedon single datasets, (3)
multigene signatures trained on merged datasets as well as by other existing meta-analysis methods, and
(4) clinically applicable, established multigene signatures.

Conclusion The decentralized learning approach can be used to effectively performmeta-analysis of gene
expression data and to develop robust multigene prognostic signatures.

Clin Cancer Inform. © 2017 by American Society of Clinical Oncology

INTRODUCTION

Gene expression-based prognostic (survival)
models can serve as useful biomarkers that
guide clinical decision making for precision
medicine.1,2 Although many of them have been
proposed, many have failed to be validated on
external independentdatasets, and fewhavebeen
incorporated into routine clinical practice.3 A
major issue has been that the discovery of most
models was developed on relatively small cohorts
that usually came from a single institution. The
limited sample size can cause overfitting and false
discovery, which leads to spurious findings and
overconfident results.4 Better approaches to devel-
oping robust prognostic models using gene expres-
sion data are needed.

Combining data from many studies—performing
ameta-analysis—overcomes the limitationsof small
sample sizes by increasing statistical power and by
allowing the robustness of findings to be assessed
across multiple cohorts. Given the availability of
large-scale public databases, such as the National
Center for Biotechnology Inormation Gene Expres-
sion Omnibus (GEO), ArrayExpress (Cambridge,
United Kingdom), and National Cancer Institute’s
The Cancer GenomeAtlas (TCGA),meta-analysis is
becoming increasingly important for investigating
high-throughput genomic and transcriptomic
data.5-7 Previous meta-analytic studies in breast
cancer,8 lungcancer,9 ovariancancer,10 andpan-
cancers11only investigatedsingleprognosticgenes.
However, a prognostic model, which integrates
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multiple genes synergistically interacting in biologic
processes, holds thepotential to further improve the
prediction accuracy.12

Theconventionalmethod to train such amodel is
the Cox regression analysis,13 where the model
parameters are obtained by maximizing the
partial likelihood function. To avoid overfitting
in the large-p-small-n scenario in genome-wide
transcriptomic studies, the L1-regularized ver-
sion of Cox regression is often used as well.14

Survival analysis has also been formulated as
a ranking problem, where the concordance in-
dex (c-index) instead of the partial likelihood is
maximized formodel optimization.15 In addition,
several methods have been proposed that are
based on support vector machines,16-18 Bayes-
ian methods,19,20 principle component analysis,21

area under the receiver operating characteristic
curve optimization,22 or ensemble machines.23

However, existing methods are designed for model
training using a single cohort. To our knowledge,
there has been no previous systematic approach to
training a prognostic model from multiple datasets
by leveraging the power of the meta-analysis.

Nevertheless, to extract useful information from
diverse data remains a daunting challenge given
the profound biologic heterogeneity among data-
sets and technical biases across measurement
platforms.Onepractical solutionhasbeen toapply
batch-effect correction algorithms24 or feature
transformation25 to the datasets and merge them
together. However, this merging approach es-
sentially requires a uniform or similar distribution
of known prognostic factors (biologic, clinical, or
demographic) across different cohorts. As a con-
sequence, certain selection criteria have to be
applied to carefully adjust for the population dif-
ferences at the expense of reduced statistical
power. Furthermore, when the meta-analysis in-
volves cohorts receiving different therapies, or even
distinct tissue of origins (eg, in pan-cancer studies),
merging is questionable because it introduces con-
founding factors and because comparing the
survival duration across cohorts no longermakes
sense.

In this article, we present a novel decentralized
learning framework of meta-survival analysis for
training a prognostic model from multiple gene
expression datasets without actuallymerging them.
Such a strategy, along with the proposed feature
transformation as well as carefully selected loss
function, effectively overcomes the data hetero-
geneity stemming frombothpopulation andmea-
surement biases.

MATERIAL AND METHODS

Gene Expression Data

We used the R package GEOquery to retrieve
the processed expression data for the GEO
datasets, with the exception of GEO datasets
GSE32062, GSE17260, and those used in exper-
iment 4. For GSE32062 and GSE17260, the pro-
cessed data were z-score transformed across
samples and lost the original ranking order. There-
fore, their raw data were directly downloaded from
GEO and transformed to percentile ranks without
normalization. For the datasets in Experiment 4,
we also downloaded the raw expression data but
further performed normalization within each indi-
vidual dataset by the robust multi-array average
algorithm26 to best reproduce the cell cycle pro-
gression (CCP) signature as performed by the
authors.

For the METABRIC dataset, the normalized
expression data were obtained from SYNAPSE
(Seattle, WA; www.synapse.org/#!Synapse:
syn1688369/) with institutional review board
approval. In addition, the processed data for
E.MTAB.386 (transcription andmicroRNA pro-
filing by array of human high-grade, late-stage
serous ovarian cancers) and The Cancer Ge-
nome Atlas Ovarian Cancer were obtained from
ArrayExpress (EMBL-EBI, Hinxton, United King-
dom; www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-386/) and the University of California
Santa Cruz Cancer Genomics Browser (version
2015),27 respectively.

Preprocessing

For any gene corresponding to multiple probe-
sets, the probeset with the largest mean expres-
sion was selected to represent that gene,
because this leads to the one with the highest
signal-to-noise ratio. For each of the experi-
ments, only the genes commonly present in
all the datasets involved were kept for subse-
quent analysis.

Feature Transformation

For each sample, we applied a feature trans-
formation method that transformed the expres-
sion profiles into normalized percentile ranks.28

Specifically, we ranked all the genes on the
basis of their expression values and then di-
vided these ranks by the total number of genes
and used the normalized ranks as features.
Because the ranks of the genes only depend
on their relative abundancy in the transcrip-
tome, this transformation maximally decouples
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the features from particular platforms or nor-
malization algorithms and therefore allows the
integration of data from various sources. Com-
pared with quantile normalization29,30 where
the result is dependent on the particular study
cohort, percentile ranking is performed intra-
sample and produces strictly uniform distribu-
tion for the transformed features. We showed
that the percentile rank-based gene signa-
tures had a higher stability than raw expression-
based signatures when evaluated on microarray
and RNA-Sequencing platforms (Appendix).
Another important advantage of ranking-based
gene signatures is that they can be used in a
truly individualized manner that facilitates their
practical implementation.

Gene Prioritization

After feature transformation, we prioritized the
genes on the basis of Stouffer’s meta-z method.31

Specifically, for eachgene,wecalculated its z-score
with respect to the survival in dataset k, zk, corre-
sponding to the Harrell’s c-index test.32,33 The
meta-z score was then given by z ¼ �K

1zk=
ffiffiffi
K

p
,

where K is the total number of datasets and
the meta–P value was F(z), where F($) is the
standard normal cumulative distribution func-
tion. We ranked the genes on the basis of their
meta–P values and kept the top d genes for
model training. We chose d o be the number of
genes whose adjusted overall P values were
smaller than .05 after Benjamini-Hochberg
correction.34

Development of Gene Signatures

We used the decentralized learning frame-
work to develop multigene signatures by com-
bining multiple datasets. Mathematically, this
entails minimizing the joint loss function,
loss ¼ �K

1 lossk where lossk is the loss of the
model on dataset k. In particular, we aimed to
build a linear model that minimizes the loss
function, which is defined as the survival discor-
dance (ie, in opposite direction of Harrell’s c-index)
as follows:

lossðwÞ ¼�K

k¼1�i: cðkÞi ¼1

3

�
�j: yðkÞj . yðkÞi

1
�
wTxðkÞi - wTxðkÞj

��
(1)

where 1ð$Þ is the Heaviside step function, yi is
the survival time, ci is the censoring label, and
xðkÞi is the feature vector (ie, normalized gene
ranks) of the i-th sample in dataset k. Because
of the nondifferentiability of the step function,

we approximated it with the hinge function,
such that the loss function becomes

lossðwÞ ¼�K

k¼1�i:cðkÞi ¼1

3

�
�j:yðkÞj . yðkÞi

max

�
0; 1þ wTxðkÞi - wTxðkÞj

��
(2)

Because of the convexity of the hinge function,
equation (2) is also convex. Therefore, minimiza-
tion of the loss function can be achieved by plug-
ging its gradient (more precisely, subgradient)
to any convex optimization solver such as the
quasi-Newton or Broyden-Fletcher-Goldfarb-Shanno
methods. In the following equation, we provide an
efficient algorithm to compute the subgradient of
equation (2) with respect to w. Without loss of
generality, we only derived the subgradient of the
loss function for dataset k and for simplicity’s sake
dropped the dataset index k, because the subgra-
dient of the total loss is the sum of the subgradients
of respective losses. According to equation (2), the
subgradient of a given dataset is given by

¶lossðwÞ
¶w

¼�i:ci¼1�j:yj . yi

�
xi - xj

�
$1

�
1-dji

�
(3)

where dji ¼ wTxj - wTxi. Na ı̈ve evaluation of the
above subgradient given w takes O(md) time,
where m is the number of elements in the list
E ¼ fðj; iÞjci ¼ 1; yj . yi; 1< i; j< ng. However, a
better implementation is to traverse E while main-
taining an n3 1 vector u to keep track of howmany
times each feature vector xi is selected based on
the value of dji. More specifically, we initialized
u = (0,0,…,0)T and for each ðj; iÞ2E, we updated
ui←ui þ 1 and uj←uj-1 if dji , 1. Then, after the
traversal, the subgradient was simply X$u, where
X=(x1,x2…,xn).ThisalgorithmtakesO(m+nd) time,
which is faster than O(md) as in general m = O(n).
The pseudo code for computing the loss function
and its subgradient is summarized in algorithm 1.

Furthermore, to avoid overfitting, we regularized the
joint loss with the ridge penalty. Therefore, the co-
efficient vector w was obtained by minimizing
lossðwÞ þ lkwk22. We performed cross-validation
in a leave-one-dataset-out manner to select the
penalty strength l. That is, for a given l, we trained
a model on the basis of all the datasets but one and
thencomputed the loss on thehold-out dataset. This
procedure was repeated for each dataset, and the
cumulated losswas computed. Thepenalty strength
that yielded the minimum cumulated loss was se-
lected. The final model was trained using all the
datasets with the optimal penalty parameter.
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Algorithm 1: compute loss function L and its sub-
gradient g

Input:

X ¼ ðx1; x2;…; xnÞ; w;
E ¼ 	ðj; iÞjci ¼ 1; yj . yi; 1< i; j< n



Procedure:

L = 0

u = (0,0,…,0)T

b = XTw

for each (j,i) in E do

if bj-bi , 1 then

L←L + 1 + bi-bj

ui←ui + 1

uj←uj-1

g = Xu

Output:

L, g

Evaluation Criterion

Harrell’s c-index32,33 was used to evaluate and
compare the predictive performance of the gene
signatures. The c-index ranges from 0 to 1, with
1 being perfect prediction and 0 being the opposite.
A c-index of 0.5 indicates random prediction.32,33

Here, c-index was chosen as the performance
measurebecause it assesseswhether a riskmodel
can correctly rank the survival for every pair of
patients. Therefore, it is a direct characterization of
the overall prediction performance. C-index has
been a popular choice for benchmarking survival
predictors. For example, it is the adopted evalu-
ation criterion in theDREAM(Dialogue forReverse
Engineering Assessments and Methods ) Breast
Cancer Prognosis Challenge.23 This, in fact, is also
why we aimed to minimize the survival discor-
dance (ie, the opposite of c-index) as the loss
function in our model. Interestingly, it has been
shown thatmaximizingCox’spartial likelihoodfunc-
tion approximately maximizes c-index.15 However,
as we have shown in algorithm 1, the hinge approx-
imatedsurvival discordance, and its gradient canbe
evaluated much more efficiently than the partial
likelihood.

In addition, we evaluated the performance using
the univariable Cox regression analysis. That is,
after a survival model (gene signature) was trained
on the training datasets, it was applied to the in-
dependent testing dataset to produce a risk score.
This risk score was then analyzed using Cox
regression to assess its correlation with survival

in the testing cohort. Importantly, the risk score
was treated as a continuous covariable instead
of a binary one on the basis of a certain cutoff in
the Cox regression, so that the performance
was irrelevant to arbitrary cutoff choices. We
compared the Cox P values of the gene signa-
tures with a smaller value indicating better
prediction.

RESULTS

Overview of the Proposed Method

To our knowledge, we are introducing a new
approach to conducting meta-analysis to develop
robust multigene signatures. Compared with a
straightforwardmerging approach,35 our approach
allows training a prognostic signature by integrating
information frommultiple datasets without actually
merging them (Fig 1). This is achieved by using a
decentralized learning strategy, where the loss
functions (survival discordance) are computed
within each dataset and then summed into an
overall loss function. This approach, as opposed
to simple aggregation and merging, eliminates the
need to compare between patients who come from
different populations andmay have distinct clinical
characteristics or have undergone different treat-
ment regimens. As such, the gene signature built
by decentralized learning will only reveal the com-
mon underlying genetic drivers across populations
rather thanbeing influencedbypopulation-specific
biases.

Experimental Design

Todemonstrate the effectiveness of our approach,
we performed four different experiments as de-
scribed below (Table 1). Altogether, we ana-
lyzed 31publicmicroarraydatasetsencompassing
6,724 gene expression profiles of patients with
cancer.

Experiment 1 involved seven microarray datasets
of breast cancer with the overall survival (OS) or
disease-specific survival information available. We
used six GEO datasets for training and the META-
BRIC dataset for testing. We compared the pro-
posed method with conventional meta-survival
analysis methods (Appendix), including single
prognostic genes, models trained on a single
dataset, and models trained on the merged
dataset. It should be noted that for the models
trained on a single dataset and on the merged
dataset, we also used ridge penalty for regula-
rization so that it would be comparable with the
proposed method, which is also regularized by
ridge penalty. In addition, we compared it with
themeta-analysismethodofRiesteret al,36which is

4 ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics

http://ascopubs.org/journal/cci


also able to produce amultigene risk score without
merging datasets. Importantly, it estimates the
coefficient of each gene independently in a fixed-
effect model and thus may be regarded as a mar-
ginalized version of the proposed method.

The purpose of experiment 2 was to evaluate the
proposedmethod for predicting OS of high-grade,
late-stageovariancancer.Thebenchmarkmethods
included the model trained on the merged dataset,
Riester’s risk score, and the top-performing prog-
nostic gene signatures reported in a previousmeta-
analysis study.37 We assessed the prediction
performance in a leave-one-dataset-out fashion,
wherewe trainedamodel onall thedatasets except
the one that was to be tested. This procedure was
repeated until all the datasets were independently
tested. It should be noted that in such a process,
model training was strictly separated from the test
dataset. Thismeansboth thegeneprioritizationand
cross-validation–basedhyperparameter tuning(l in
ridge regression) were also performed using only
datasets allocated for training to avoid overesti-
mation of the result.

Experiments 3 and 4 were designed to compare
the performance of meta-survival analysis (ie, the
proposed method, the model trained on the
merged dataset, and Riester’s risk score) with
established multigene signatures in applications
where their clinical validity has been extensively
tested. In particular, experiment 3 was aimed
for prediction of recurrence-free survival (RFS)
in eight microarray datasets, for which the
70-gene signature38 was implemented.However,

experiment 4 concerned OS prediction of non–
small-cell lung cancer in 10 microarray datasets,
and the CCP signature39 was used as the bench-
mark. For both experiments, signature evaluation
was performed in a leave-one-dataset-out manner
as described previously.

Comparison of the Proposed Method With
Conventional/Existing Meta-Analysis Methods for
Predicting Breast Cancer Disease-Specific Survival

In experiment 1, we used the proposedmethod to
train a multigene signature by combining six GEO
datasets. When tested on the METABRIC data-
set, the resulting signature achieved the highest
c-index score of 0.681 (P, 2.23 10216;P values
are for Cox regression analysis, unless otherwise
indicated) among all competing methods (Fig 2).
The Riester’s risk score and the model trained on
themergeddataset, respectively, scored a c-index
of 0.666 (P, 2.23 10216) and 0.664 (P, 2.23
10216) on the METABRIC dataset. We identified
single prognostic genes after the meta-analysis
approach of Gentles et al.11 The top 10 genes in
terms of the largest absolute meta-z scores were
CCNB2, AURKB, TPX2, FOXM1, TRIP13, ALG3,
CDKN3, CPT1A, UBE2C, and DDX39A. When
evaluated on the METABRIC dataset, the best
performing gene was UBE2C (c-index, 0.643;
P, 2.23 10216). Finally, we trained gene signa-
tures on each of the six GEO datasets and tested
their performances on theMETABRIC dataset. The
resulting c-index scores showedawide range, from
0.483 to 0.669.

Multigene signature

Optimal signature

Minimize pseudolikelihood
of Cox regression

Multigene signature

Optimal signature

Minimize sum of survival
discordances

Survival

discordance

Survival

discordance

Survival

discordance

Fig 1. Schematic
overview of (A) the
proposed method on the
basis of decentralized
learning versus (B) the
method on the basis of data
merging for developing
multigene signatures using
meta-analysis.
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Comparison of the Proposed MethodWith Existing
Meta-Analysis Methods and Prognostic
Signatures for Predicting Ovarian Cancer OS

Experiment 2 contained all the datasets used in a
previous study by Waldron et al for comparative
meta-analysis of prognostic gene signatures for
high-grade, late-stage ovarian cancer,37 except
onedatasetbecauseof theretractionof itsassociated
article by Dressman et al.40 We used Waldron et al’s

code to reproduce the same cohorts in the meta-
study. As shown in Figure 3, our gene signature
developed using the proposedmethod had the best
average (weighted by sample size) performance
(c-index, 0.62) among all competing methods,
including the model trained on the merged dataset,
Riester’s risk score, and the top 10 prognostic models
(which were essentially trained on single datasets)
previously reported37 (c-index range, 0.55 to 0.61).

Table 1. Thirty-One Public Datasets Used for Meta-Survival Analysis

Experiment Cancer Type Outcome Subdataset Experiment Design Benchmark Methods

Experiment 1 Breast OS/DSS GSE1456 Train on GEO datasets Single-prognostic genes

GSE3143 Test on METABRIC dataset Models trained on single datasets

GSE7390 Model trained on merged dataset

GSE16446 Riester’s risk score36

GSE24450

GSE20711

METABRIC

Experiment 2 Ovarian OS TCGA-OV Leave one dataset out Model trained on merged dataset

GSE26712 Riester’s risk score36

GSE18520 Top 10 prognostic models previously
reported37GSE32062

GSE17260

GSE13876

GSE19829

GSE9891

E.MTAB.386

Experiment 3 Breast RFS GSE7390 Leave one dataset out Model trained on merged dataset

GSE25055 Riester’s risk score36

GSE25065 70-gene signature38

GSE12093

GSE17705

GSE19615

GSE1456

GSE24450

Experiment 4 Lung OS GSE3141 Leave one dataset out Model trained on merged dataset

GSE83227 Riester’s risk score36

GSE19188 Cell cycle progression39

GSE30219

GSE31210

GSE37745

GSE50081

GSE68465

GSE14814

GSE68571

Abbreviations: DSS, disease-specific survival; GEO, Gene Expression Omnibus; OS, overall survival; RFS, recurrence-free survival; TCGA-OV, The Cancer Genome Atlas
Ovarian Cancer.
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Comparison of the Proposed MethodWith Existing
Meta-Analysis Methods and the 70-Gene
Signature for Predicting Breast Cancer RFS

In experiment 3, the proposed method predicted
breast cancer RFS for seven of eight datasets
(c-index, 0.682 to0.735;P= .02 to1.531028) but
not forGEOdatasetGSE7390 in leave-one-dataset-
out testing. In comparison, the model trained on
the merged dataset achieved significant prediction
for six datasets (c-index, 0.643 to 0.724; P = .03
to 9.73 1027) but not for GEO datasets GSE7390

and GSE12093; Riester’s risk score obtained signif-
icant results for six datasets (c-index, 0.643 to 0.716;
P = .01 to 7.6 3 1026) but not for GEO datasets
GSE7390 and GSE19615; the 70-gene signa-
ture achieved significant prediction for six data-
sets (c-index, 0.647 to 0.721; P = .05 to 2.5 3

1025) but failed for GEO datasets GSE7390 and
GSE19615. Overall, the proposed method outper-
formed the model trained on the merged dataset in
seven of the eight datasets, outperformed Riester’s
risk score in seven of the eight datasets, and

0.4 0.5 0.6 0.7 0.8

Proposed model 0.681
Riester 2014 0.666
Merged dataset 0.664
GSE7390 0.667
GSE1456 0.653
GSE24450

G
en

e 
S

ig
n

at
u

re

C-Index

0.596
GSE20711 0.586
GSE3143 0.584
GSE16446 0.461
UBE2C 0.643
DDX39A 0.643
TPX2 0.637
FOXM1 0.635
CCNB2 0.632
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CPT1A 0.598
ALG3 0.596
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Proposed 0.59 0.62 0.55 0.69 0.62 0.62 0.68 0.66 0.63 0.62

Merged dataset 0.57 0.63 0.54 0.66 0.64 0.62 0.63 0.55 0.67 0.61

Riester 2014 0.55 0.64 0.57 0.58 0.61 0.62 0.63 0.52 0.67 0.59

TCGA 2011 0.61 0.57 0.69 0.60 0.55 0.47 0.60 0.63 0.58

Yoshihara 2012 0.57 0.62 0.50 0.55 0.51 0.64 0.60 0.57

Bonome 2008 (263 genes) 0.56 0.50 0.68 0.54 0.52 0.53 0.58 0.60 0.56

Yoshihara 2010 0.56 0.55 0.54 0.52 0.53 0.62 0.53 0.55

Kernagis 2012 0.55 0.55 0.65 0.58 0.57 0.54 0.55 0.56 0.56

Sabatier 2011 0.56 0.54 0.55 0.54 0.57 0.52 0.62 0.56 0.57 0.56

Crijins 2009 0.54 0.58 0.56 0.60 0.47 0.55 0.59 0.55 0.54

Bentink 2012 0.53 0.55 0.57 0.56 0.53 0.52 0.57 0.55 0.54

Bonome 2008 (572 genes) 0.53 0.55 0.60 0.50 0.54 0.63 0.54 0.55 0.54

Mok 2009 0.51 0.57 0.60 0.57 0.51 0.53 0.56 0.57 0.54

Fig 3. Concordance indices of the proposed method for prediction of ovarian cancer overall survival, compared with the
model trained on themerged dataset, Riester’s risk score, and the top 10 prognostic gene signatures previously reported.37

Blank cell indicates that the given dataset was used for training the prognosticmodel in the corresponding row. The average
concordance indiceswere calculatedexcluding the trainingdatasets.Redcell indicateshighC-index.Blue cell indicates low
C-index. Gray-shaded cell indicates the corresponding dataset was used for training and therefore its C-index was not
reported. TCGA, The Cancer Genome Atlas.

Fig 2. Concordance
indices of the proposed
decentralized learning
method for prediction of
breast cancer overall
survival on the METABRIC
dataset, compared with
models trained on single
and merged datasets,
Riester’s risk score, and
single prognostic genes.
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outperformed the70-genesignature inall theeight
datasets in terms of c-index (Fig 4A). Interestingly,
the proposedmethod also outperformed the other
threemethods in termsofP valuesofCox regression
analysis (Fig 4B), even though it did not explicitly
maximize thepartial likelihood (as themodel trained
on the merged dataset does).

Comparison of the Proposed MethodWith Existing
Survival-Analysis Methods and CCP Signature for
Predicting Lung Cancer OS

In experiment 4, the proposed method predicted
lung cancer OS in nine of 10 datasets (c-index,
0.584 to 0.833; P = .02 to 6.03 10214) in leave-
one-dataset-out testing, whereas the result for
GEO dataset GSE19188 was not significant. How-
ever, the model trained on the merged dataset
significantly predicted OS in seven datasets
(c-index, 0.568 to 0.686; P = .03 to .003) but
not for GEOdatasets GSE83227, GSE14814, and
GSE19188; CCP significantly predicted OS in
only four GEO datasets: GSE68465, GSE30219,
GSE31210, and GSE68571 (c-index, 0.601 to

0.749;P=6.831024 to8.831029); andRiester’s
risk score significantly predicted OS in three GEO
datasets: GSE68465, GSE30219, and GSE31210
(c-index, 0.589 to 0.692; P = 5.23 1023 to 8.43
10-5). Figure 5 shows that the proposed method
consistently outperformed the other three in terms
of both c-index and Cox P values.

DISCUSSION

The availability of multitudinous public datasets
has provided an opportunity to enhance statistical
power and identify more reliable gene signatures
by meta-analysis. However, the profound hetero-
geneity in these data also represents a significant
challenge. To address this issue, we proposed a
decentralized learning framework for developing
robust prognostic signatures on the basis of meta-
analysis of multiple gene expression datasets.
Through comprehensive evaluation on large-
scale datasets totaling more than 6,000 samples
of several cancer types, we demonstrated that our
method outperformed (1) single prognostic genes
identified using conventional meta-analysis, (2)
multigene signatures trained on single datasets,
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Fig 4. (A) Concordance
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(3) multigene signatures trained on merged data-
sets as well as by existing meta-analysis methods,
and (4) clinically applicable, establishedmultigene
signatures. These results confirm that the decen-
tralized learning approach can effectively integrate
information from multiple datasets and be used to
derive robust multigene prognostic signatures.

There are several methodologic advantages of the
proposed method that may explain its improved
prediction. The decentralized learning approach
allows us to perform meta-analysis of multiple
datasets without the need for data aggregation.
It does thisbyestimating acommonsurvivalmodel
where the loss function is calculated individually
on each dataset, and the model coefficients are
jointly estimated by minimizing the overall loss

function. However, the simple merging approach
implicitly assumes that the patients in different co-
horts have similar characteristics. In practice, how-
ever,significantbiologicandclinicaldifferences (eg,
cancer stage, histology, or therapies) exist among
datasets, which can lead to suboptimal results if
data are aggregated without careful selection.

Different from previous studies, we used Harrell’s
c-index41 as the selection criterion for gene prior-
itization because it is a direct, more relevant
method to measure the survival prediction perfor-
mance compared with the statistical significance
of a Cox regression model. For the same reason,
the survival discordance was explicitly used as
the loss function for developing gene signatures
rather than the pseudo-likelihood of the Cox
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regression,13 the use of which was also proposed
by Vikas et al.15 There are, however, essential
differences between our work and the approach
takenbyVikas et al.15 First andmost important, we
integrated such a ranking-based survival model
in a decentralized learning framework and there-
fore successfully addressed the data heterogene-
ity problem, which to our best knowledge, is the
first in meta-survival analysis studies. Second, to
better match the ranking nature of the model, we
preprocessed the gene expression profiles into
population-independent normalized percentile
ranks, which served to standardize the data as well
as regularize outliers. Third, we used the hinge func-
tion to approximate the survival discordance and de-
veloped a fast algorithm to evaluate the subgradient
for gradient-based optimization. It turned out that
both feature transformation and hinge loss approx-
imation can significantly accelerate convergence in
model training and improve themodel performance.

From a computational perspective, the decentral-
ized learning approach is more efficient because it
allows the loss function to be calculated in situ for
each dataset. The model training can be accom-
plished in a distributed fashion, because commu-
nicationbetweendatasets only involves the transfer
of the updated model coefficients and respective
losses. This is particularly attractive for large multi-
institutional collaborative efforts, such as the Can-
cerLinQ project,42 when patient privacy is desired.
However, training a model in a merged cohort
requires all data to be pooled together in a central
database, which demands a huge storage capacity
and tremendous computing power.

In principle, our approach can be generalized to
incorporate other types of omic data, such as
genomic, epigenomic, proteomic, and metabolo-
mic data.43 This may help reveal novel molecular
mechanisms beyond transcriptome associated
with a poor prognosis for patients with cancer.
Furthermore, thedecentralized learningapproach

may also be used to identify common biologic
themes of aggressive disease across different his-
tologies in a pan-cancer setting.11 Currently, our
method considers only those common genes
across all datasets for building the signature. As
the number of datasets increase, this may result
in a shrinking of available gene sets. One solution
is to impute the missing gene from the common
genes.44 Although in this study we applied the
ridge regularization, which led to a dense model,
the L2-norm can be simply replaced with the
L1-norm or a combination of both35 when model
sparsity (ie, a small number of genes) is desired.
Last but not least, we emphasize that our purpose
for applying decentralized learning was to inte-
grate datasets of multiple cohorts presenting the
same type of data (eg, gene expression profiles
here), whereas the heterogeneity mainly stems
from the sampling bias of the population. This
should be distinguished from studies that used
decentralized learning to integratemultiomicsdata-
sets (eg, transcriptomic, proteomic, metabolomic)
for the same cohort.45 An interesting future study
would be to combine these two types of studies to
develop more comprehensive models.

In conclusion, we propose a decentralized learn-
ing framework for developing multigene prognos-
tic signatures using genome-wide transcriptomic
data. Our approach allows us to perform meta-
analysis by integrating information from multiple
datasets without the need for data aggregation.
Given the increasing prevalence of large-scale
omic data, this approach can be used to identify
robust and more reliable multigene prognostic
signatures that will ultimately advance precision
medicine. Our codes for implementing the pro-
posed method are publically available at https://
github.com/maycuiyan/META-SURV.
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APPENDIX Stability of Percentile Rank-Based Gene Signatures
We evaluated the stability of percentile rank-based signatures versus raw expression-based signatures. We used the
RpackagecuratedOvarianCancer to obtainboth the sequencingandmicroarraydata for the sameTheCancerGenomeAtlas
Ovarian Cancer cohort. We randomly selected 100 genes and obtained two 100-gene signatures, respectively, using the
sequencing data and the microarray data. We then computed the sample-wise Pearson correlation to characterize
the similarity between the two gene signatures. We found that among 10,000 times of random gene signature generation,
the correlation on the basis of percentile ranks ranged between 0.48 and 0.93, showing a higher stability comparedwith the
range of 0.37 to 0.88 on the basis of raw expressions (Appendix Fig A1).

Conventional Survival-Analysis Methods
Single prognostic genes were identified using themeta-analysis approach of Gentles et al,11 whereby genes were prioritized
according to the z-score of Cox regression and the Liptak’s weighted meta-z. For single-dataset-trained models, we applied
the univariable Cox regression analysis to identify the genes significantly correlated with OS (P , .05 with Benjamini-
Hochberg [BH] correction, or P, .05 without BH correction if the former resulted in an empty list) on the particular dataset.
Then these genes were used to train a Coxmodel with ridge regularization. The penalty strength for ridge regularization was
determined by 10-fold crossvalidation.

To train a survival model from the merged dataset, we used ComBat24 to correct batch effect for each dataset and merged
them together. From the merged dataset, we identified genes significantly correlated with overall survival (P, .05 with BH
correction) by univariable Cox regression and used them to train a Cox model with ridge regression. Likewise, the penalty
strength for ridge regularization was determined by 10-fold cross-validation. We used the R function ComBat in the sva
package to implementbatcheffect correctionand thecv.glmnet in theglmnetpackage tobuild ridge regularizedCoxmodels.

Implementation of Established Multigene Signatures
The R package genefu was used to implement the 70-gene signature. The cell cycle progression score was computed by
averaging the gene expression values of the 31 genes using the data normalized by the multi-array average algorithm. For
GEO datasets GSE83227 and GSE68571, however, only 17 and 15 genes were found present. The cell cycle progression
scores for these two datasets were calculated by averaging the available genes, respectively.
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sample-wise Pearson
correlations between
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