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Abstract

The endothelial glycocalyx is vital for mechanotransduction and endothelial barrier integrity. We previously demonstrated
the early changes in glycocalyx organization during the initial 30 min of shear exposure. In the present study, we tested the
hypothesis that long-term shear stress induces further remodeling of the glycocalyx resulting in a robust layer, and explored
the responses of membrane rafts and the actin cytoskeleton. After exposure to shear stress for 24 h, the glycocalyx
components heparan sulfate, chondroitin sulfate, glypican-1 and syndecan-1, were enhanced on the apical surface, with
nearly uniform spatial distributions close to baseline levels that differed greatly from the 30 min distributions. Heparan
sulfate and glypican-1 still clustered near the cell boundaries after 24 h of shear, but caveolin-1/caveolae and actin were
enhanced and concentrated across the apical aspects of the cell. Our findings also suggest the GM1-labelled membrane rafts
were associated with caveolae and glypican-1/heparan sulfate and varied in concert with these components. We conclude
that remodeling of the glycocalyx to long-term shear stress is associated with the changes in membrane rafts and the actin
cytoskeleton. This study reveals a space- and time- dependent reorganization of the glycocalyx that may underlie alterations
in mechanotransduction mechanisms over the time course of shear exposure.
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Introduction

The endothelial glycocalyx, which is localized on the luminal

surface of the endothelium, interacts directly with blood flow, and

plays important roles in endothelial mechanotransduction [1–3],

modulation of vascular permeability [4,5], and mediation of

leukocyte adhesion [2,6]. Our previous study demonstrated that

initial exposure of statically cultured endothelial cells (ECs) to a

step change in shear stress induced dramatic reorganization of the

glycocalyx within 30 min [7]. In the present study, we investigated

the adaptive remodeling of endothelial glycocalyx to long-term

(24 h) fluid shear stress exposure that should more faithfully

represent the condition of fully adapted endothelial cells in vivo.

The endothelial glycocalyx contains various proteoglycans (PGs)

with associated glycosaminoglycans (GAGs), such as heparan

sulfate (HS) and chondroitin sulfate (CS). Syndecan-1 and

glypican-1 are two major heparan sulfate proteoglycans (HSPGs)

on apical EC surfaces. Syndecan-1 possesses both HS and CS

chains while glypican-1 exclusively carries HS chains [8,9].

Syndecan-1 is localized on the plasma membrane via a single

transmembrane domain [10] that interacts with cytoskeleton.

Glypican-1 is anchored to membrane rafts (MRs) by a glycosyl-

phosphatidylinositol (GPI) linkage [11–13].

MRs are classified into two types: protein-based membrane

domains (i.e., caveolae) and lipid-based domains (i.e., lipid rafts)

[7,14]. The cholera toxin B subunit (CTx-B), which binds

specifically to a component of the plasma membrane–glycosphin-

golipid, ganglioside GM1, has been used as a MR marker in many

studies [15,16]. Caveolin-1, which anchors caveolae to the actin

cytoskeleton [17], has emerged as a vital plasma membrane

mechanosensor [18]. Meanwhile integrity of the actin cytoskeleton

is essential for the immobility of caveolae [19]. In contrast, lipid

rafts are held together by specific lipid-lipid interactions [20],

organized in a liquid-order phase, and characterized by limited

acyl-chain order but high translational mobility [14,21].

Adaptation of the endothelium to fluid shear stress is dominated

by transformation in the actin cytoskeleton resulting in rearrange-

ment of filamentous actin (F-actin) into bundles of stress fibers

aligned in the direction of flow and into a diffuse network of short

microfilaments including lamellipodia and filopodia [22–24]. The

stress fiber bundles are composed of actin filaments in parallel

alignment that function as cellular cytoskeletal-contractile ele-

ments [23,25]. In static conditions (no shear stress), prominent

microfilament bundles, the dense peripheral bands, are present at

the cell periphery of confluent EC monolayers [25,26].

Previous work in our laboratory and others demonstrated that

HS plays a central role in mediating fluid shear stress-induced cell

motility and proliferative response [27], and change of the actin

cytoskeleton [28,29]. Our recent study showed that 15 dyn/cm2 of

shear stress induced the junctional clustering of HS via mobility of

GPI-anchored glypican-1 in lipid rafts during the initial shear

exposure up to 30 min. In contrast, the transmembrane protein

syndecan-1 with attached HS and CS, seemed to be fixed in

position, as did the fraction of glypican-1 with attached HS bound

to caveolae [7].
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In the present study, we further investigated changes of the

glycocalyx PGs with their associated GAGs, MRs (caveolin-1 and

GM1), and the spatial distribution of the actin cytoskeleton under

fluid shear stress for an extended time (24 h). Our results show that

new synthesis of glypican-1, syndecan-1 and HS converge to

restore the uniform distribution of HS over the cell surface that

was present at time 0. Shear-induced increases in caveolin-1/

caveolae and actin are predominantly distributed in the apical

regions of the cell where a sustained clustering of lipid rafts occurs.

We conclude that adaptation of the glycocalyx to long-term shear

stress is associated primarily with new synthesis of its components

and changes in organization of MRs and the actin cytoskeleton.

Materials and Methods

Cell Culture
The rat fat pad endothelial cell (RFPEC), a well-defined cell

culture model for studying the effect of shear stress on the

glycocalyx [7,28], was cloned from cells originally isolated from rat

Figure 1. Restoration of HS after 24 h of shear exposure. (A) Top: Phase contrast micrographs of confluent RFPEC monolayers show that they
fail to undergo change in cell shape under shear stress. Bottom: Representative immunofluorescent images of HS under static and shear stress
conditions showing boundary clustering at 30 min and restoration of coverage at 24 h. (B) MFI (n = 16 images), (C) Coverage, and (D) Radial
distribution of HS. The zero-radius represents the center of cell. The boundary of each cell was outlined by ImageJ. Then, the radial profile plug-in
automatically changed the borders to the best-fit circles (D inset) for subsequent analyses. Scale bar: 20 mm. *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0086249.g001
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epididymal fat pad (a gift from Drs. David C. Spray and Mia M.

Thi, Albert Einstein College of Medicine, Bronx, NY) [30] and

cultured in the present study as described previously [7,28,31].

Bovine aortic endothelial cells (BAEC) were purchased from

VEC Technologies and grown in MEM supplemented with 10%

FBS, 1% L-glutamine, and 1% penicillin-streptomycin [32]. Cells

(passage 6) were plated on to 50 mg fibronectin pre-coated glass

slides at a density of 16105 cells/cm2 and cultured for 4–6 days

until they attained confluence.

Figure 2. Validation of the clustering and subsequent restoration of HS under shear stress using bovine aortic endothelial cells. (A)
Top: Phase contrast micrographs of confluent BAEC monolayer reveal a typical dynamic change in cell morphology from cobblestone (static control)
to the elongated (fusiform) and oriented in the direction of flow. Bottom: Representative immunofluorescent images of HS under static and shear
stress conditions. (B) MFI, (C) Coverage, and (D) Scattering distribution displays the average intensity along lines from the centroid to the boundary of
cells (n = 10 cells). For each cell, 16 lines (D left insert) were selected to analyze the scattering distribution. We also showed the radial distributions (D
right insert, plotted by normalized radius on the horizontal axis and normalized intensity on the vertical; n = 50 cells). No significant differences were
found between radial distribution and scattering distribution at both static and 30 min (P.0.05) indicating the radial distribution is appropriate for
cobblestone ECs. The clustering of HS at 30 min and restoring of HS at 24 h on BAECs are similar to the results on RFPECs showed in our previous [7]
and the present study, respectively. Scale bar: 20 mm. *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0086249.g002
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Shear Application
The shear stress was initiated by a step change from zero to

15 dyn/cm2 using a parallel-plate flow chamber as described

previously [7,33,34], and was applied on RFPEC or BAEC

monolayers. Briefly, the shear stress reached its steady state value

rapidly after we turned on the pump which maintained the

hydraulic pressure in the flow system. The circulating medium for

shearing flow was DMEM (for RFPEC) or MEM (for BAECs) with

5% FBS and 0.5% BSA unless indicated otherwise. The flow

system was kept at 37uC in a humidified 5%/95% CO2/air

incubator. The cell morphology was visualized using a Nikon

Eclipse TE2000-E inverted microscope (Nikon) with a digital

camera (Photometrics cascade 650, Roper Scientific).

Cytochalasin D Treatments
The role of the actin cytoskeleton in the shear stress-induced

adaptive remodeling of the glycocalyx was further investigated

using an inhibitor of actin polymerization, cytochalasin D (CD,

Sigma). The optimal concentration of CD (40 nM) was deter-

mined by evaluating its dose-dependent effects on EC viability,

morphology, and actin cytoskeleton. For shear experiments, cells

were pre-incubated with 40 nM CD for 1 hour and were

subsequently subjected to shear stress in circulating medium with

the same concentration of CD (40 nM).

Immunofluorescence Staining
Immediately after exposure to shear stress, the distributions of

glycocalyx components (HS, CS, glypican-1 and syndecan-1), and

membrane rafts (caveolin-1 and GM1) were detected using

immunofluorescence staining methods as described previously

[7]. For visualization of the actin cytoskeleton, after shear

exposure, cells were fixed in 2% PFA, permeabilized with 0.1%

Triton X-100, and stained with Alexa Fluor 488 phallotoxin

(1 unit per coverslip; Molecular Probes) for 20 min. Negative

controls were carried out by omitting primary antibodies or

binding proteins. All images shown in the present paper had the

background subtracted unless indicated otherwise.

Confocal Microscopy and Quantification Analysis
All samples were imaged with a Zeiss LSM 510 laser scanning

confocal microscope (Confocal Microscopy Laboratory, The City

College of New York) using a Plan-Apochromat 636/1.4 Oil DIC

objective as described previously [7,31]. The image stacks were

analyzed with ImageJ software (version 1.46; NIH), and the mean

fluorescence intensity (MFI, mean6SE) and coverage were

assessed using the max-intensity Z-projection images as described

previously [7,31].

For distribution analysis, the boundary of each cell was outlined

by the ImageJ polygon selection tool. Then, the radial profile plug-

in automatically changed the borders to the best-fit circles for

subsequent radial distribution analysis [7]. Because the morphol-

Figure 3. Redistribution of CS after 24 h of shear exposure. (A) Immunofluorescent images of CS under static condition and shear exposure
for 30 min and 24 h. (B) MFI, (C) Coverage, and (D) Radial distribution of CS. Scale bar: 20 mm. *P,0.05.
doi:10.1371/journal.pone.0086249.g003
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ogy of BAEC was fusiform after 24 h shear stress application, we

obtained and normalized the intensities of pixels along lines from

the centroid to boundary points, and then developed a new

scattering distribution method to examine the distribution of HS

on these cells.

A new vertical (Z) spatial distribution analysis method was used

for caveolae and actin. In brief, a plane crossing the center of the

cell in Z direction was selected as the interface. The images above

or below the interface were extracted from the original Z-stack to

make two new substacks in the same order, which were defined as

the apical stack and basal stack, respectively. Then, the MFIs and

coverages of these stacks were assessed using the max-intensity Z-

projection images of the substacks.

Statistical Analysis
Data are presented as mean6SD obtained from at least three

independent experiments (n = 3) unless indicated otherwise. The

images for coverage calculations were obtained from at least

12 max-intensity Z-projection images. At least 40 cells were

chosen for radial distribution analyses, and 10 cells were chosen

for scattering distribution analyses. Statistical analysis was

performed by one-way analysis of variance (ANOVA) with either

the least significant difference (LSD) test or Tamhane’s T2 test

(depending on Levene’s statistic for homogeneity of variance), and

nonparametric tests (Wilcoxon Paired Signed-Rank Test) using the

SPSS 20.0 software package. Differences in means were consid-

ered significant if P,0.05.

Results and Analysis

Redistribution of GAG Under Long-term Shear Stress
The restoration of HS. In our previous study [7], we showed

that HS covered most of the apical cell surface under static

conditions, and moved toward the cell’s downstream edge during

10 min of 15 dyn/cm2 shear stress application, and eventually

clustered at the cell boundary after 30 min.

The redistribution of HS after long-term shear exposure was

further investigated (Fig. 1). After 24 h of shear exposure, HS was

reclaimed in the central region of the cell surface, but the

clustering HS was still observable at the cell boundary (Fig. 1A and

D). The MFI of HS showed a significant increase about 43%

above static (P,0.05, Fig. 1B). The coverage of HS was restored to

86.865.4%, the same level as static condition (Fig. 1C). The

distribution of HS was returned to nearly uniform (Fig. 1D). These

results suggest that new synthesis of HS contributes to the

restoration of HS in the central region of the cell.

Similar phenomena were observed on BAECs during shear

exposure (Fig. 2). BAECs maintained the cobblestone shape at

30 min, but after 24 h, the BAECs became fusiform and oriented

to the direction of flow (Fig. 2A). HS clustered at the cell boundary

Figure 4. Redistribution of glypican-1 under shear stress. (A) Immunofluorescent images show that shear stress induces clustering of
glypican-1 at 30 min, and enhances the glypican-1 intensity at 24 h. (B) MFI, (C) Coverage, and (D) Radial distribution of glypican-1 (n = 80 cells). Scale
bar: 20 mm. *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0086249.g004

Adaptation of Glycocalyx to Fluid Shear Stress

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e86249



at 30 min, and was restored in the central region of the cell surface

after 24 h (Fig. 2A and D) with a higher MFI of 138% of static

(P,0.05; Fig. 2B) and an insignificant increase in coverage

(P= 0.17; Fig. 2C). The scattering distribution (Fig. 2D) showed

the average intensity along lines from the centroid to the boundary

of cells (Fig. 2D left insert). At 30 min, HS was concentrated at the

cell boundary. After 24 h, the distribution of HS returned to the

static level. These results further confirmed our observation of the

adaptive remodeling of HS on the surface of endothelial cells.

No significant difference was found between the distributions of

HS obtained by using the radial distribution (Fig. 2D right insert)

and the scattering distribution at both static and 30 min (P= 0.23)

indicating that both the radial distribution and the scattering

distribution are appropriate for cobblestone ECs.

The synthesis of CS. Unlike HS, the MFI, coverage and

distribution of CS did not change significantly when cells were

exposed to shear stress for 30 min as previously described [7].

After 24 h (Fig. 3), CS at cell-cell appositions was slightly disrupted

(Fig. 3A). The MFI of CS increased significantly by nearly 20% of

static (Fig. 3B), although the coverage of CS remained at

85.364.9%, close to the static level (Fig. 3C), and the distribution

did not change significantly (Fig. 3D). Therefore, long-term shear

stress induces the synthesis of CS with a nearly uniformly

distribution on the apical cell surface.

Redistribution of Glypican-1
The coverage of glypican-1 on the apical surface decreased by

nearly 49% during 30 min of shear exposure as previously

described [7], then increased to the baseline level again after

24 h of exposure (Fig. 4A and C). A 50% increase in the glypican-

1 MFI was observed at 24 h (Fig. 4B). There was no difference in

the distribution of glypican-1 at 24 h compared to the static

condition (Fig. 4D). Although glypican-1 continued to cluster in

the cell boundary at 24 h, the distribution over the cell surface was

more even than at 30 min (P,0.05). These observations support a

sustained clustering of glypican-1 and significant synthesis on the

cell surface.

The Synthesis of Syndecan-1
During the first 30 min of shear exposure, the MFI, coverage,

and distribution of syndecan-1 did not change, as previously

described [7] (Fig. 5). After exposure to shear stress for 24 h, the

MFI of syndecan-1 increased by nearly 63% (Fig. 5A and B), the

coverage was raised to 79.465.7% (vs. 52.767.4% at static

condition, P,0.01; Fig. 5C). But the distribution of syndecan-1

under all of these conditions was stable (Fig. 5D). The increases in

MFI and coverage of syndecan-1 without alteration of the

distribution, suggest that shear stress induced the synthesis of

syndecan-1 that was evenly distributed over the cell surface.

Figure 5. Synthesis and distribution of Syndecan-1 under shear stress. (A) Immunofluorescent images show that shear stress induces the
syndecan-1 increase after 24 h of shear exposure. (B) MFI, (C) Coverage, and (D) Radial distribution of syndecan-1. Scale bar: 20 mm. **P,0.01.
doi:10.1371/journal.pone.0086249.g005
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The Spatial Distribution of Caveolae/caveolin under
Shear Stress

Figures 6 and 7 show a time-dependent spatial re-distribution of

caveolin-1 in ECs exposed to fluid shear stress. The caveolin-1 was

well expressed at all time points (Fig. 6A). The MFI did not change

in cells exposed to the flow for 30 min as previously described [7],

but increased significantly by about 30% after 24 h of exposure

without coverage change (Fig. 6B and C). During the first 30 min,

like under static conditions, the caveolin-1 distribution was much

higher near the cell boundary than in the interior. However, the

distribution changed dramatically at 24 h with most caveolin-1

distributed toward the middle of the cells (Fig. 6A and D).

Caveolin-1 is presented not only on the cytosolic face of the

plasma membrane, but also in the cytoplasm and nucleus. To

examine the detailed change in spatial distribution of caveolin-1

under shear stress, the original Z stack was split into apical and

basal stacks (Fig. 7). In the basal stack, the local concentration of

caveolin-1in the cell boundary was gradually disrupted with shear

stress exposure time (Fig. 7A and 7E). Caveolin-1 presented a

diffuse pattern, mostly localized in the interior of cells after 24 h of

shear stress exposure (Fig. 7A and 7D), although the MFI and

coverage of the basal stack were maintained at the static level at

both 30 min and 24 h (Fig. 7B and C). In contrast, the MFI of

caveolin-1 in the apical stack progressively increased with shear

exposure time reaching significance relative to the static control

and the 30 min time point after 24 h (Fig. 7B). The coverage of

caveolin-1 in the apical stack was raised slightly, but not

significantly relative to the static control after 24 h of shear stress

exposure (Fig. 7C). Caveolin-1 did display a striking contrast in the

MFI and coverage between the apical stack and basal stack at 24 h

(151% vs. 91% in MFI, 87.166.1% vs. 68.0612.8% in coverage,

apical stack vs. basal stack, P,0.05). From this, we conclude that

caveolin-1 was concentrated in the apical stack due to new

synthesis and movement from the basal stack to the apical stack.

Both in the apical and the basal stacks, the distribution of caveolin-

1 after 30 min of shear stress exposure changed only slightly

relative to the static control (Fig. 7D and E). After 24 h of shear

stress exposure, the caveolin-1 distributed more in the cell interior

and less near the boundary in the apical stack (Fig. 7D) and much

less near the cell boundary in the basal stack (Fig. 7E).

Redistribution of GM1 under Shear Stress
We investigated the distribution of MRs by labeling the

ganglioside GM1 with fluorescent CTx-B (Fig. 8). During shear

application, GM1 clustered at the cell boundary (Fig. 8A and D).

The MFI of CTx-B was significantly enhanced at 30 min (by

about 31%), but there was no recruitment of caveolin-1 or

glypican-1 to MR as shown by Western-blot assay in our previous

study [7], suggesting the GM1 is recruited to the lipid raft fraction

of MR. Only a small further increase in MFI at 24 h was observed

Figure 6. Redistribution of caveolae/caveolin under shear stress. (A) Immunofluorescent images of caveolin-1 at time points. (B) MFI, (C)
Coverage, and (D) Radial distribution of caveolin-1. After 24 h exposure to shear stress, the MFI of caveolin-1 was increased, and its localization at the
center of cells was enhanced. Scale bar: 20 mm. *P,0.05.
doi:10.1371/journal.pone.0086249.g006
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(131% of static at 30 min vs. 142% of static at 24 h), indicating

that the recruitment of GM1 was rapidly activated and then

maintained at a nearly stable level.

The coverage of CTx-B labeled GM1 did not change with shear

durations (Fig. 8C). Fig. 8D illustrates that the distribution of GM1

during shear exposure was time-dependent. The difference in

distribution between the static condition and 30 min of shear

exposure indicates that GM1 rapidly moved to the cell boundary

under shear stress, similar to the movement of HS and glypican-1,

as previously described [7]. The distribution of GM1 tended to

return to the baseline distribution at 24 h. This may be associated

with part of the newly synthesized glypican-1 (Fig. 4), and the extra

labeling of GM1 in the immobile caveolae that accumulate near

the center of the cell at 24 h (Fig. 7).

The Spatial Distribution of Actin Cytoskeleton
The dynamics of the spatial redistribution of actin in response to

shear stress was studied (Figs. 9 and 10). Consistent with other EC

types, such as BAECs [22,24,26], the dense peripheral actin bands

were present under static conditions at the cell periphery of

RFPECs (Fig. 9A). In response to shear stress for 30 min, the

polymerization and polarization of actin filaments were obvious;

stress fibers were oriented preferentially parallel to the nearest

edge; and lamellipodia and filopodia emerged. The polymeriza-

tion and polarization of actin filaments on cells exposed to 24 h of

shear stress were further strengthened as prominent stress fibers

were observed (Fig. 9A). By quantitatively analyzing the changes of

the actin cytoskeleton, we found that the MFI and coverage of F-

actin increased dramatically with shear duration (Fig. 9B and C),

and the distributions of F-actin after shear application became

much more uniform compared to the static controls, indicating

that the increased stress fibers were spread across the cell and not

concentrated at the cell boundary (Fig. 9D).

The apical and basal stacks were used to further examine the

spatial characteristics of the actin cytoskeleton distribution (Fig. 10).

In static cells, we found that dense peripheral bands were visible

on both the apical and basal stacks (Fig. 10A). In the apical stack, a

stronger intensity of dense peripheral bands was present at 30 min

and 24 h compared to the static controls, but numerous long stress

fibers became evident only at 24 h. In contrast, the dense

Figure 7. The vertical spatial distribution of caveolae/caveolin under shear stress. (A) Z-projection of the apical and basal stack. The
interface between two substacks is the surface (layer) crossing the center of the cell edges. (B) MFI, (C) Coverage, (D) radial distribution in the apical
stack and (E) the basal stack. Much more caveolin-1 was distributed in the apical stack than in the basal stack under shear stress, especially for 24 h. In
the apical stack, the caveolin-1 concentrated more near the cell boundary under the static condition, and moved to the cell interior after exposure to
shear stress for 24 h; in the basal stack, the caveolin-1 was distributed nearly uniformly under static conditions and at 30 min; the caveolin-1 near the
cell boundary decreased after 24 h. Scale bar: 20 mm. *P,0.05.
doi:10.1371/journal.pone.0086249.g007
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peripheral bands in the basal stack were dispersed and gradually

not distinguishable with increasing shear durations. Nevertheless,

stress fibers, lamellipodia and filopodia protrusions emerged at

30 min, but by 24 h F-actin was scattered and arranged in a

disorderly and irregular fashion in the basal stack (Fig. 10A). The

actin in the apical stack was concentrated near the cell boundary

under static conditions, further enhanced in the cell boundary

after shear stress exposure for 30 min, and significantly increased

in the cell interior resulting a nearly uniform distribution after

24 h (Fig. 10D). The actin in the basal stack progressively

increased in the cell interior with shear stress duration rapidly

reaching significance relative to the static control after 30 min

(Fig. 10E). Correspondingly, the MFI and coverage of F-actin

increased significantly with shear duration in both apical and basal

stacks (Fig. 10B and C), indicating strong biological activity

(synthesis) in both the apical and basal aspects of the cell. Notably,

the MFI of F-actin at 24 h in apical stacks was greater than that in

the basal stacks (about 291% vs. 240% of static, in the apical vs.

basal stacks, P,0.05).

Role of the Actin Cytoskeleton in Reorganization of the
Glycocalyx

To further validate the importance of actin remodeling in the

reorganization of the glycocalyx, we measured the dynamics of HS

under shear stress with cells treated with cytochalasin D to disrupt

actin reorganization (Fig. 11, compare to Fig. 1 without

cytochalasin D). It is clear that the re-coverage of HS at 24 h is

blocked (panels A, C and D) as well as the new synthesis of HS

(panel B).

Discussion

Our laboratory previously investigated the role of the glycocalyx

in mechanotransduction at short times [8] and the early response

of the glycocalyx to fluid shear stress [7]. Those studies

corresponded to the time frame of many in vitro investigations

of EC mechanotransduction [35,36] and endothelial permeability

[37,38]. It was demonstrated that the selective enzymatic removal

of GAG components, such as HS, results in the complete

inhibition of shear stress-induced nitric oxide (NO) production

[39,40], and that the glycocalyx is shear sensitive and closely

linked to membrane rafts and transmembrane structures. During

the initial 30 min of shear exposure, the movement of HS is

Figure 8. Redistribution of CTx-B labeled GM1 under shear stress. (A) The ganglioside GM1 was labeled with fluorescent CTx-B after shear
stress exposure. The arrows indicate the clustering of GM1. (B) MFI, (C) Coverage, and (D) Radial distribution of CTx-B. The zero-radius represents the
center of cell. GM1 was found to be clustered and recruited after 30 min of shear exposure [7]. The distribution of GM1 recovered close to the static
level after 24 h, although much of GM1 was still clustered. Scale bar: 20 mm. *P,0.05.
doi:10.1371/journal.pone.0086249.g008
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predominantly associated with glypican-1 that is anchored to

mobile lipid rafts, whereas the glypican fraction linked to caveolae

is not mobile; the immobility of CS and the remainder of HS is

associated with the transmembrane protein syndecan-1 [7]. The

present study revealed the adaptation of the glycocalyx to shear

stress during 24 h of shear exposure that should more faithfully

represent the condition of fully adapted endothelial cells in vivo.

Several studies have detected a substantial glycocalyx on

cultured RFPECs, the main cell type employed in the present

study [28,31,41]. We used RFPECs as a model cell for visualizing

the response of the glycocalyx to shear stress since these cells

display several characteristic endothelial mechanoresponses in-

cluding intercellular and cytoskeleton junction remodeling [28]

and shear-induced NO production, and are immuno-reactive to a

wide range of glycocalyx component antibodies [7].We used the

often studied BAECs to confirm the dramatic change in HS

distribution. Similar phenomena occurred on RFPECs and

BAECs showing consistent changes in the synthesis and reorga-

nization of HS (Figs. 1 and 2).

We also developed a new scattering distribution analysis method

for BAECs after 24 h of exposure because they remodeled into an

elongated (fusiform) shape (Fig. 2) whereas RFPECs retained their

cobblestone morphology at 24 h (Fig. 1).Other EC types as well do

not elongate in response to sustained shear stress. For example,

during exposure to 40 dyn/cm2 for 24 h, pig aortic ECs did not

align along flow direction [42]. The BAECs did maintain

cobblestone morphology after 30 min of shear exposure. To

compare the radial distribution and scattering distribution

methods on cobblestone cells, we measured the HS distribution

on BAECs under both static and shear (30 min) conditions, and

observed that both methods gave nearly the same distributions for

cobblestone ECs (Fig. 2D). Therefore, we used radial distribution

analyses for RFPECs at all time points since they retained a

cobblestone morphology.

The distributions of HS and glypican-1 became nonuniform

after 30 min of shear exposure (clustering at the cell boundary),

and then returned to a nearly uniform distribution between

30 min and 24 h (Figs. 1, 2 and 4). The distributions of CS and

syndecan-1 were not altered throughout the duration of shear

exposure (Figs. 3 and 5). The in vivo state was examined in [43]

where it was shown that the fully adapted state in the aorta of rats

and mice shows a highly uniform coverage of HS that is similar to

our 24 h state. Other gylcocalyx components have not yet been

examined in vivo.

At 30 min we further observed reductions in HS and glypican-1

coverages without MFI changes, and no alterations in coverage

Figure 9. Redistribution of actin cytoskeleton under shear stress. (A) After flow application, the actin cytoskeleton was visualized with
fluorescent phallotoxin. Blue arrows indicate the dense peripheral actin bands; white arrows indicate the stress fibers; and yellow arrows and red
arrowheads denote the filopodia and lamellipodia, respectively. (B) MFI, (C) Coverage, and (D) Radial distribution of F-actin. F-actin was found most
densely distributed along the edges of EC under static conditions, while fluid shear stress induced the polymerization of actin, the polarization of
actin filaments (30 min), and the formation of stress fibers (24 h). Scale bar: 20 mm. *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0086249.g009
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and MFI of syndecan-1 with bound CS. The decreases in the

coverages and altered distributions of HS and glypican-1 are

clearly due to the movement of glypican with anchored HS toward

the cell’s downstream edge. At 24 h, the coverages of HS and

glypican-1 were restored to their static levels (Figs.1, 2 and 4), that

of CS remained at its static level (Fig. 3) and that of syndecan-1

increased significantly (Fig. 5); the MFIs of all glycocalyx

components were increased above their static levels. However,

the boundary clustering of HS and glypican-1 were still clearly

visible. We conclude from the increased MFIs that the glycocalyx

components were synthesized during shear exposure for 24 hours.

This is consistent with other studies in pig aortic EC [42] and

human EC-RF24 cells [44] showing that shear stress induces new

synthesis of HS and CS. Recently, Koo et al [45] examined the

effect of pulsatile flow on glycocalyx formation in cultured human

umbilical vein ECs (HUVECs). They reported that their

atheroprotective waveform (high mean shear, no reversal) induced

increases in HS and syndecan-1, a decrease in glypican-1, and no

alteration of CS after 7 days of exposure. Another study showed

that glypican-1 did not change on HUVECs exposed to the

atheroprotective waveform for 3 days [46].

The altered distributions of glycocalyx components indicate

reorganization of membrane microdomains. The reduction of

caveolin-1 in the cell boundary in the basal stack and the increase

in the cell interior in the apical stack at 24 h are prominent

characteristics of the reorganization of caveloin-1 over time

(Figs. 6 ad 7). The increased MFI and coverage in the apical

stack compared to the basal stack at 24 h indicates increased

caveolae in the central region of the apical membrane (Fig. 7).

This is consistent with previous work showing the assembly of

caveolae on the apical membrane in ECs exposed to shear flow for

6 h [47].

The shear stress-induced increase in caveolae in the apical

membrane after 24 h of shear exposure (Fig. 7) appears to be

associated with the newly synthesized HS and glypican-1 and their

distributions (Figs. 1, 2 and 4). The distribution of GM1 is still

Figure 10. The vertical spatial distribution of actin cytoskeleton under shear stress. (A) F-actin in the apical and basal stack. The interface
between two substacks is the plane crossing the center of the cell edges. Blue arrows indicate the dense peripheral actin bands; white arrows indicate
the stress fibers; and yellow arrows and red arrowheads denote the filopodia and lamellipodia, respectively. (B) MFI, (C) Coverage, (D) radial
distributions in the apical stack and (E) the basal stack. The polarized actin filaments were distributed slightly more in the basal stack than in the
apical stack initially and after shear for 30 min. After exposure to shear stress for 24 h, the stress fibers were well assembled in the apical stack, but
not the basal stack. In the apical stack, the actin distribution was still concentrated near the cell boundary after 30 min of shear exposure, and
became more uniform after 24 h, compared to the static conditions; in the basal stack, the distribution was more uniform at all times. Scale bar:
20 mm. *P,0.05.
doi:10.1371/journal.pone.0086249.g010
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skewed toward the boundary (Fig. 8) indicating that the clustering

of mobile lipid rafts with anchored glypican-1 and HS is still

present after 24 h.

Because the actin cytoskeleton interacts with the transmem-

brane core protein syndecan-1 and the caveolar structural protein

caveolin-1 for stabilization, it was visualized in the present study

(Figs. 9 and 10). Although the RFPEC did not elongate

significantly after 24 h of shear stress exposure (Fig. 1A), the

formation of stress fibers running along the cellular axis was

apparent (Fig. 9A). Similar results have been found on other EC

types including BAEC [22,24,26]. In RFPECs, dense peripheral

bands were present in static cells; lamellipodia and filopodia

protrusions and stress fibers emerged after shear exposure of

30 min and prominent stress fibers were observed at 24 h

(Fig. 10A).

We also present findings that have not been observed previously

- notably the shear stress-induced time-dependent spatial distri-

bution of the actin cytoskeleton. Fig. 10A displays the detailed

changes in spatial distribution, which present the z-projection

images of substacks (z-projection of original stack was shown in

Fig. 9A). Shear stress induced F-actin was distributed in both the

apical and basal stacks (Fig. 9B–C and 10B–C). Long stress fibers

were formed mainly in the apical stack after 24 h of shear

exposure (Fig. 10A). The dense peripheral bands were dispersed at

30 min in the basal stack, but were still prominent at 30 min and

detectable at 24 h in the apical stack. The F-actin appeared

disorderly and irregular without clear lamellipodia and filopodia in

the basal stack at 24 h (Fig. 10A). The shear-induced stress fibers

were distributed more prominently in the central region of the cell

relative to the cell boundary at 24 h compared to static or 30 min

(Fig. 9D, 10D and E). The actin in the central region of the cell

progressively increased in the basal stack with shear duration, and

dramatically increased in the apical stack after 30 min, suggesting

that actin-mediated mechanotransduction of shear stress is time-

and space- dependent. Interestingly, the administration of CD

(40 nM) did not prevent the clustering of HS in response to shear

stress at 30 min, but abolished the re-coverage of HS at 24 h

(Fig. 11), suggesting that the shear stress-induced clustering of HS

at 30 min is actin cytoskeleton-independent, and that the actin

cytoskeleton plays an important role in the re-organization of the

glycocalyx at 24 h.

The associations of syndecan-1 with stress fiber and lamellipo-

dia protrusion have been indicated in several studies [10,48,49].

Stress fibers are believed to support caveolae in the apical

Figure 11. Redistribution of HS in the presence of cytochalasin D (CD). Cells were treated with CD, an inhibitor of actin polymerization, 1 h
before and during the exposure to shear stress. (A) Confocal images, (B) MFI, (C) Coverage, and (D) Radial profile of HS in the presence of CD.
Disruption of the actin cytoskeleton by CD did not influence HS under static conditions and after shear exposure for 30 min, but attenuated the shear
stress-induced recovery of HS at 24 h. The distribution of HS at 24 h in the presence of CD was close to the level at 30 min. Scale bar: 20 mm.
**P,0.01.
doi:10.1371/journal.pone.0086249.g011
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Figure 12. Adaptive remodeling of glycocalyx with membrane rafts and actin cytoskeleton. Under static conditions, glypican-
1carrying only HS is localized on the dispersed lipid rafts and caveolae on the membrane. The actin cytoskeleton interacts with the transmembrane
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membrane by their association with caveolin-1 [17,19]. Thus it

appears that the distribution of F-actin over the cell surface,

including that which has been newly synthesized, provides a

supporting scaffold for new caveolae and their associated

glypican/HS. It has been demonstrated that caveolae and

caveolin-1 are crucial for both short- and long-term mechan-

otransduction in blood vessels of mice [50]. Newly synthesized

syndecan supported by actin provides a platform for additional HS

and CS that have been synthesized as well.

Figure 12 illustrates the adaptive remodeling of the glycocalyx,

the associated membrane rafts and the actin cytoskeleton as

described in detail in the figure caption. The adaptation of the

glycocalyx to fluid shear stress involves a balance between the

synthesis of glycocalyx components including both GAGs and core

proteins, and their degradation that is modulated by enzymes such

as heparinase and metalloproteases [4,6]. Increases in sulfated

GAGs in the circulation media were detected after 24 h of shear

exposure in an earlier study [42]. Although we did not observe

enhanced sulfated GAGs in the circulation media after 30 min of

shear exposure in a previous study [7], we have not examined this

issue at 24 h due to loss of cells from the edges of the cover slide

artificially elevating the media concentration of sulfated GAG.

Nonetheless, there was a clear enhancement of all GAGs and

core proteins after 24 h of shear as indicated by significant

increases in MFI. Notably, the mechanisms underlying the shear

stress-induced increase in GAG synthesis are still not known. GAG

synthesis induced by shear stress was concomitant with a decrease

in DNA synthesis and an increase in protein synthesis [42]. The

mRNA expressions of exostosin glycosyltransferase-1 and -2

(EXT1 and EXT2), two genes encoding glycosyltransferases

involved in the chain elongation step of HS biosynthesis, did not

change under shear stress [45]. The disruption of actin cytoskel-

eton by CD abolished the additional synthesis of HS on ECs

exposed to shear stress for 24 h (Fig. 11), indicating that the actin

cytoskeleton plays a role in shear-induced HS biosynthesis.

The new synthesis of HS and CS in EC exposed to shear stress

has been observed in several studies. Arisaka et al. [42] detected

the synthesis of sulphated GAGs in pig aortic EC exposed to shear

stresses of 15 or 40 dyn/cm2 for more than 24 h. Gouverneur

et al. [44] demonstrated the enhancement of HA and sulfated

GAGs on human EC-RF24 cells exposed to 9.7 dyn/cm2 of shear

stress for 24 h. Our findings focused on the sulfated GAGs and

revealed that both HS and CS were synthesized on RFPECs

exposed to 15 dyn/cm2 of shear stress for 24 h (Figs. 1–3), but not

for 30 min [7]. In addition, the major carriers of GAGs, syndecan-

1 and glypican-1 increased at 24 h (Figs. 4 and 5) but not 30 min

[7]. The MFIs of HS, CS, syndecan-1 and glypican-1were raised

by 43%, 20%, 63% and 50%, respectively, compared to static

conditions (Figs. 1–4). The large increases in MFI and coverage of

both syndecan-1 and glypican-1 suggest that more HS than CS is

synthesized because syndecan-1 binds both HS and CS chains

while glypican-1 is exclusively linked to HS. Our findings portray a

dynamic reorganization of the glycocalyx, associated membrane

rafts and actin cytoskeleton that may underlie alterations in

endothelial mechanotransduction mechanisms over the time

course of shear exposure.

Pathophysiological Implications of the Adaptation of the
Glycocalyx to Shear Stress

EC in large arteries are responsive to their fluid shear stress

environment, taking on an elongated, shear-aligned morphology

in atheroprotected regions and a cobblestone, non-aligned

morphology in atheroprone regions [51]. Cultured EC display

the atheroprone phenotype under static conditions and short

exposures to shear stress whereas they display the atheroprotected

phenotype after 24 h of exposure to moderate shear stress levels.

The present study (24 h shear exposure) and our recent study

(30 min shear exposure) [7] reveal dramatic differences in

glycocalyx organization that may underlie differences in mechan-

otransduction mechanisms as well as the selective permeability and

leuckocyte adhesion barrier properties in atheroprone and

atheroprotected regions of the circulation. These differences in

glycocalyx structure may be relevant to the underlying causes of

many pathologies including stroke, hypertension and diabetes [51–

53].
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