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The Pediatric Acute Liver Failure (PALF) study is a multicenter, observational cohort study
of infants and children diagnosed with this complex clinical syndrome. Outcomes in PALF
reflect interactions among the child’s clinical condition, response to supportive care,
disease severity, potential for recovery, and, if needed, availability of a suitable organ for
liver transplantation (LTx). Previously, we used computational analyses of immune/
inflammatory mediators that identified three distinct dynamic network patterns of
systemic inflammation in PALF associated with spontaneous survivors, non-survivors
(NS), and LTx recipients. To date, there are no data exploring age-specific immune/
inflammatory responses in PALF. Accordingly, we measured a number of clinical
characteristics and PALF-associated systemic inflammatory mediators in daily serum
samples collected over the first 7 days following enrollment from five distinct PALF cohorts
(all spontaneous survivors without LTx): infants (INF, <1 year), toddlers (TOD, 1–2 years.),
young children (YCH, 2–4 years), older children (OCH, 4–13 years) and adolescents (ADO,
13–18 years). Among those groups, we observed significant (P<0.05) differences in ALT,
creatinine, Eotaxin, IFN-g, IL-1RA, IL-1b, IL-2, sIL-2Ra, IL-4, IL-6, IL-12p40, IL-12p70, IL-
13, IL-15, MCP-1, MIP-1a, MIP-1b, TNF-a, and NO−

2=NO
−
3. Dynamic Bayesian Network

inference identified a common network motif with HMGB1 as a central node in all sub-
groups, with MIG/CXCL9 being a central node in all groups except INF. Dynamic Network
Analysis (DyNA) inferred different dynamic patterns and overall dynamic inflammatory
network complexity as follows: OCH>INF>TOD>ADO>YCH. Hypothesizing that
systemically elevated but sparsely connected inflammatory mediators represent
pathological inflammation, we calculated the AuCon score (area under the curve
derived from multiple measures over time divided by DyNA connectivity) for each
mediator, and identified HMGB1, MIG, IP-10/CXCl10, sIL-2Ra, and MCP-1/CCL2 as
potential correlates of PALF pathophysiology, largely in agreement with the results of
Partial Least Squares Discriminant Analysis. Since NS were in the INF age group, we
compared NS to INF and found greater inflammatory coordination and dynamic network
connectivity in NS vs. INF. HMGB1 was the sole central node in both INF and NS, though
org January 2021 | Volume 11 | Article 6108611
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NS had more downstream nodes. Thus, multiple machine learning approaches were
used to gain both basic and potentially translational insights into a complex
inflammatory disease.
Keywords: systems biology, inflammation, serum, biomarker, network analysis
INTRODUCTION

The Pediatric Acute Liver Failure (PALF) Study Group is the first
and only multi-center, multi-national collaboration to examine
PALF, a complex, devastating, rapidly evolving clinical syndrome
whose onset is not completely understood (1, 2). Outcomes in
PALF reflect a complex interaction among the child’s clinical
condition, response to supportive care, disease severity, potential
for recovery, and availability of a suitable organ if liver
transplantation (LTx) is deemed life-saving (1, 2). Specific
diagnostic and therapeutic targets and tools to predict death/
spontaneous survival or to inform LT decisions in PALF are not
available. In prior studies, we demonstrated that individuals with
PALF exhibit variable systemic inflammatory responses.
Traditional statistical analyses of these dynamic responses
could not always distinguish spontaneous survivors (S) from
non-survivors (NS) or LTx recipients; however, computational
analyses of principal inflammatory drivers and dynamic
networks did discriminate among these PALF sub-groups (3–
5). These analyses also suggested the presence of overly robust,
self-sustaining, and highly connected inflammation networks in
NS. Furthermore, our study suggested a common inflammatory
network regulated via HMGB1 and the chemokines IP-10 and
MIG, which may represent a general “liver signature” in
inflammatory conditions such as PALF, or which may represent
the central contribution of the liver to other inflammatory
diseases (4). Recently, we suggested that the inflammatory
dynamic networks, and in particular HMGB1 connectivity, are
dependent on (or reflect) the use of N-acetylcysteine (NAC) in
the context of APAP toxicity in PALF patients (5). Furthermore,
in isolated mouse hepatocytes (HC), high APAP dose led to a
much more complex dynamic networks in C57BL/6 HC than in
cells from HMGB1-/- animals, suggesting that HMGB1 plays a
central role in orchestrating the inflammatory response to
APAP (5).

Animal models, human in vitro studies, and human
observational studies have led to an increased understanding
of the ontogeny of the complex immune response in humans
that include age-dependent innate responses to damage-
associated molecular patterns (DAMPs) and pathogen-
associated molecular patterns (PAMPs), impaired Th17 and
Th1 responses, and altered cytokine responses to infections (6).
The increased frequency of infectious causes of PALF in infants
compared to older children may reflect these differences. The
role of an age-related immune/inflammatory response associated
with non-infectious causes of PALF (e.g., metabolic, immune
mediated, indeterminate) is unknown. We hypothesize that
immune/inflammatory dysregulation occurs in PALF that is
markedly dependent and/or reflective of developmental stage
org 2
of immune response. We further hypothesize that no single
inflammatory mediator determined at a single time-point along
the dynamic PALF trajectory would be sufficient to characterize
this complex syndrome and to predict outcome reliably. Rather,
complex networks among various mediators over time are more
likely to reflect dynamic changes in the systemic inflammatory
response. A key, unresolved question concerns the impact of age,
as a surrogate marker for immune development and response, on
PALF outcomes and course of inflammation. Given the dynamic
complexity of inflammation (7, 8), we thought to utilize a suite
of machine learning approaches to delineate the dynamics,
principal drivers, and interconnected networks of systemic
inflammation in five PALF cohorts (all survivors who
recovered spontaneously without liver transplant): infants (<1
year, INF), toddlers (1–2 years TOD), young children (2–4 years,
YCH), older children (4–13 years, OCH) and adolescents (13–18
years, ADO).
MATERIALS AND METHODS

Criteria for Patient Selection
This work is part of a multi-center study conducted through the
Pediatric Acute Liver Failure (PALF) Consortia (National
Institutes of Health/National Institutes of Diabetes, Digestive,
and Kidney Disease: 5U01 DK072146). The study was performed
in accordance with all relevant guidelines and regulations and
was approved by the Institutional Review Boards from all
participating institutions (listed in the Acknowledgments),
with written informed consent from parents and/or legal
guardians and Certificate of Confidentiality provided by NIH.
At the time of this analysis, PALF study enrollment included a
total of 1,144 participants less than 18 years of age who met the
following entry criteria: 1) no known evidence of chronic liver
disease, 2) biochemical evidence of acute liver injury, and 3)
hepatic-based coagulopathy (not corrected with vitamin K)
defined as a prothrombin time (PT) ≥ 15 s or international
normalized ratio (INR) ≥ 1.5 in the presence of clinical hepatic
encephalopathy (HE), or a PT ≥ 20 s or INR ≥ 2.0 regardless of
the presence or absence of HE (9, 10). In the present study, all
patients who met the PALF entry criteria were alive with their
native liver at 21 days after enrollment. Serum samples were
collected on the calendar day of enrollment (d0) or with the first
morning blood draw following enrollment and daily for up to
seven days (d1-d7). Since not all patients had research samples
obtained on all of the same days, patients were selected if they
had at least two daily samples with at least 100 µL of serum
available and fell into any of the age sub-groups as indicated in
Figure 1. Serum samples were promptly frozen at −80°C at the
January 2021 | Volume 11 | Article 610861
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enrollment site and later batch-shipped to the research
biorepository for long-term storage before analysis.

Age classification is arbitrary and often dependent upon
the underlying question(s) the Organization or research project
needs to address. For example, a Position Paper from the World
Health Organization to assess drug dosing administration
classifies a child as anyone <19 years with subcategories of
neonate (0–30 d), infant (1 mo to 2 years), young child (2–6
years), Child (6–12 years), and adolescent (12–18 years) (11).
The Federal Drug Administration uses the following age
categories for pediatric drug trials: Neonate (0 to 1 mo),
Infants (1 mo to 2 years), Child (2–12 years), and Adolescent
(12–16 years) (12). In guiding parents in understanding
neurodevelopment and psychosocial progress for their children,
the American Academy of Pediatrics use a classification of Baby
(0–12 mo), Toddler (1–3 years), Pre-school (3–5 years), Grade-
schooler (5–12 years), Teen (12–18 years) (11). Important, age-
specific diagnoses in PALF were identified between children <90
days, 91 days–3 years and 4–17 years (13). We recognize that age
is an unsatisfying surrogate for physiologic and immunologic
ontogenesis as well as the range of xenobiotic and infectious
exposures encountered between infancy and adolescence. We
hypothesized that a granular assessment across the 3 age-
specific PALF diagnostic categories, particularly within younger
children, would more likely identify age-associated differences in
the immune and inflammatory response in PALF. Age categories
Frontiers in Immunology | www.frontiersin.org 3
used for this analysis were classified as Infants (< 1 year), Toddler
(1 to < 2 years), Young Children (2 to < 4 years), Older Children
(4 to < 13 years), and Adolescents (13–18 years).

Assays of Inflammatory Mediators
We measured a number of inflammatory mediators including
cytokines and chemokines, HMGB1, and reactive nitrogen oxide
species that serve as biomarkers for the complex inflammatory
response using the Luminex™ 100 IS system (Luminex™, Austin,
TX) and the Human 25-plex® Luminex™ beadset (Millipore,
Billerica, MA). The cytokines/chemokines included Eotaxin, GM-
CSF, IFN-a2, IFN-g, IL-1b, IL-1 receptor antagonist (IL-1RA),
IL-2, soluble IL-2 receptor a chain (sIL-2ra), IL-4, IL-5, IL-6, IL-
7, IL-8, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17, IP-10,
MCP-1, MIG, MIP-1a, MIP-1b, and TNF-a. HMGB1 was
assayed by ELISA (Shino-Test, Kanagawa, Japan) and the NO
reaction products NO−

2 + NO−
3 were assayed using the nitrate

reductase method (Cayman Chemical, Ann Arbor, MI).

Statistical Analyses
All statistical analyses were carried out using SigmaPlot (Systat
Software, San Jose, CA) as indicated. Due to non-normal data
distribution, Kruskal-Wallis Analysis of Variance (ANOVA) on
Ranks was used to compare clinical characteristics. Two-Way
ANOVA followed by the Holm-Sidak post hoc test was used to
FIGURE 1 | Flowchart of recruitment and PALF study participation. From a large cohort of 1,144 participants in the PALF study, 115 spontaneous survivors
(determined at 21 days following enrollment without need for liver transplant) were selected if they had at least 2 or more daily samples with at least 100 µl of serum
available. Patients were divided into five sub-groups based on age at the time of enrollment as indicated, and serum samples collected per protocol were assayed
for a number of immune and inflammatory markers as described in Materials and Methods.
January 2021 | Volume 11 | Article 610861
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analyze the time-dependent changes in inflammatory mediators
across PALF sub-groups.

Machine Learning Analyses
Variable Importance in Projection Scores in Partial
Least Squares Discriminant Analysis
VIP scores measure the contribution that a variable makes to the
PLS-DA model, a variant of PLS for classification purpose, which
explains maximum separation between defined classes of
samples. Thus, we used VIP scores to define variables that
distinguish PALF patient sub-groups. The VIP score of a
variable is calculated as a weighted sum of the squared
correlations between the PLS-DA components and the original
variable. The weights correspond to the percentage variation
explained by the PLS-DA component in the model. The number
of terms in the sum depends on the number of PLS-DA
components found to be significant in distinguishing the
classes. VIP scores indicate the importance of each variable in
the projection used in a PLS-DA model and is often used for
variable selection (14). The variables with the highest VIP scores
are thus the most contributory variables in class discrimination.
Many studies use VIP values of 1 or 2 for further data analysis,
but this cut-off largely depends on the number of variables used
(15). In the present study, the number of variables (inflammatory
mediators) is relatively small, so we used a VIP cutoff of 1.0. To
calculate the VIP scores for all variables (inflammatory
mediators), we employed MetaboAnalyst (https://www.
metaboanalyst.ca), a web-based tool suite developed for
comprehensive metabolomic data analysis that also supports a
wide array of functions for statistical, functional, as well as data
visualization tasks (16, 17).

Dynamic Bayesian Network Inference
Network inference using inflammatory mediator data was
carried out in MATLAB® (The MathWorks, Inc., Natick, MA),
using a Dynamic Bayesian Network (DBN) algorithm adapted
from Grzegorczyk & Husmeier (18) and used by our group in
previous studies (3–5, 19–21). Given time-series data, DBN
analysis provides a way of inferring causal relationships among
variables (e.g. inflammatory mediators) based on probabilistic
measure. Unlike standard correlative approaches, DBNs consider
the joint distribution of the entire dataset when making
inferences about the dependencies between variables or nodes
in the network. The values of each node are assumed to be
distributed according to a chosen model (e.g. Gaussian) and the
relationships among nodes are defined by the structure of the
directed network and the corresponding conditional probability
distributions of the interacting nodes. Network structure is
inferred by a sampling technique that iteratively proposes
candidate structures and evaluates them based on how well
they fit the observed data using a specified scoring criterion,
until reaching convergence on a network structure with the
highest score. The algorithm uses an inhomogeneous dynamic
changepoint model, with a Bayesian Gaussian with score
equivalence (BGe) scoring criterion. The output of the
aforementioned algorithm is a final graph structure indicating
Frontiers in Immunology | www.frontiersin.org 4
the interactions. In this analysis, time courses of unprocessed
inflammatory mediator measurements from each patient were
used as input for the DBN inference algorithm as described.

Dynamic Network Analysis
DyNA was carried out to define, in a granular fashion, the central
inflammatory network nodes as a function of both time and
PALF patient sub-group. Since DyNA also allows for granular
temporal resolution of networks over distinct time intervals,
using inflammatory mediator measurements for each patient,
networks were created over seven consecutive time periods (d0–
d1, d1–2, d2–3, d3–4, d4–5, d5–6, d6–7) using MATLAB®

software as described previously (3, 4, 22). Connections,
defined as the number of trajectories of serum inflammatory
mediators that move in parallel (black edges) or in anti-parallel
(red edges) fashion across time intervals, were created if the
Pearson correlation coefficient between any two nodes
(inflammatory mediators) at the same time-interval was
greater or equal to a threshold ranging from an absolute value
of 0.7 (a correlation value commonly used to characterize
trajectories that move in parallel either up or down) to 0.95, as
appropriate. The network complexity for each time-interval was
calculated using the following formula: Sum (N1 + N2 +…+ Nn)/
(n − 1), where N represents the number of connections for each
mediator and n is the total number of mediators analyzed.

Area Under the Curve and Connectivity Score
The AuCon score was developed to test the hypothesis that
mediators that are present at high systemic levels but with low
interconnectivity might represent pathological inflammatory
processes, and thus may serve as possible disease biomarkers.
In contrast, mediators present at low levels in the circulation and
that are highly connected were hypothesized to be part of an
adaptive and/or beneficial response to liver injury. Accordingly,
AuCon segregates mediators based on their circulating levels over
time (as defined by the area under the curve [AUC]), corrected
for their dynamic connectivity (N, defined by DyNA as described
above). TheAuCon score for each inflammatory mediator (i) was
calculated as follows: AuConi = log10 [(AUCi/(1+Ni)].
RESULTS

Clinical Outcomes Differ as a Function of
Age in Pediatric Acute Liver Failure
Patients
From 1,144 PALF study participants, we identified 115
spontaneous survivors that met the inclusion and exclusion
criteria described above. The participants were then separated
by age-group in five distinct PALF cohorts as shown in Figure 1.
Age distribution and clinical characteristics at enrollment for
PALF Study participants used in this study are shown in Table 1.
Interestingly, of the six clinical characteristics compared (ALT,
INR, total bilirubin, creatinine, venous ammonia, and
encephalopathy) there were statistically significant differences
in ALT and creatinine among all age-groups (Table 1).
January 2021 | Volume 11 | Article 610861
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Differential Dynamics of Systemic
Inflammatory Mediators in Pediatric Acute
Liver Failure Patients as a Function of Age
To assess the response and time-dependent changes in
inflammatory mediators across the different PALF sub-groups
(INF vs. TOD vs. YCH vs. OCH vs. ADO), we assayed a number
of mediators that represent most of the major inflammatory and
immune pathways. Multiple comparison of the time-courses in
the five patient sub-groups by Two-Way ANOVA suggested
significant changes in 17 inflammatory mediators (Eotaxin,
IFN-g, IL-1RA, IL-1b, IL-2, sIL-2Ra, IL-4, IL-6, IL-12p40,
IL-12p70, IL-13, IL-15, MCP-1, MIP-1a, MIP-1b, TNF-a, and
Frontiers in Immunology | www.frontiersin.org 5
NO−
2=NO3) out of 27 over time. The time-courses of the

inflammatory mediators for each patient sub-group and P
values are shown in Supplementary Figure 1.

Dynamic Bayesian Network Inference
Identifies Both Common and Age-Distinct
Nodes of Systemic Inflammation
We utilized DBN inference to determine if mediator feedback
structures in inflammatory networks in PALF are related to or
dependent on patient age. Similar to our previous studies in
PALF, trauma, and sepsis (3, 4, 20, 22, 23), we focused on
mediators that exhibit self-feedback as central nodes in the five
TABLE 1 | Age distribution and clinical characteristics at enrollment for PALF Study participants.

Patient sub-group No. of patients Sex (M/F) Age, mean (yr) Age, median (yr) Q1–Q3

infants (INF, <1 year) 26 19/7 0.13 0.04 0.03–0.12
toddlers (TOD, 1–<2 years)
young children (YCH, 2–<4 years)

12
15

8/4
10/5

1.39
3.17

1.39
3.13

1.20–1.54
2.76–3.73

older children (OCH, 4–<13 years) 21 11/10 7.47 6.68 5.43–9.75
adolescents (ADO, 13−18 years) 41 14/27 15.78 15.84 14.6–17.4
Patient sub-group INF

<1 year
TOD

1–<2 years
YCH

2–<4 years
OCH

4–<13 years
ADO

13–18 years
*ALT (IU/L)
INR
Total bilirubin (mg/dL)
*Creatinine (mg/dL)
Venous ammonia (µmol/L)
Hepatic encephalopathy (n)
Grade 0
Grade I
Grade II
Grade III
Grade IV
Unknown
Not assessable

1134.5 ± 464
3.12 ± 0.2
8.65 ± 1.4
0.39 ± 0.05
55.56 ± 7.7
11 (42.3%)
4 (15.4%)
0 (0.0%)
0 (0.0%)
0 (0.0%)
5 (19.2%)
6 (23.1%)

3912.3 ± 929
3.30 ± 0.51
6.33 ± 1.3
0.39 ± 0.07

92.67 ± 21.03
4 (33.3%)
1 (8.3%)
2 (16.7%)
1 (8.3%)
0 (0.0%)
2 (16.7%)
2 (16.7%)

4401.7 ± 1061
3.19 ± 0.54
7.03 ± 1.83
0.59 ± 0.22
52.54 ± 9.11
6 (40.0%)
3 (20.0%)
2 (13.3%)
0 (0.−0%)
0 (0.0%)
2 (13.3%)
2 (13.3%)

4006 ± 650
2.40 ± 0.23
7.71 ± 1.66
0.62 ± 0.13
44.08 ± 6.09
10 (47.6%)
5 (23.8%)
1 (4.8%)
1 (4.8%)
1 (4.8%)
2 (9.5%)
1 (4.8%)

4765 ± 614
3.04 ± 0.23
5.17 ± 0.93
0.87 ± 0.08
71.74 ± 7.8
28 (68.3%)
5 (12.2%)
2 (4.9%)
1 (2.4%)
0 (0.0%)
5 (12.2%)
0 (0.0%)

*significant difference among groups by Kruskal-Wallis Analysis of Variance (ANOVA) on Ranks
Patient sub-group INF

<1 year
TOD

1–<2 years
YCH

2 to <4 years
OCH

4–<13 years
ADO

13–18 years
Diagnoses, n (%)
Indeterminate
Acetaminophen (APAP)
APAP—acute toxicity
APAP—chronic exposure
APAP—therapeutic misadventure
Adenovirus
Enterovirus/Cocksackie/echovirus
Autoimmune hepatitis
Autoimmune marker positive
Fructosemia
Galactosemia
Hemophagocytic lymphohistiocytosis (HLH)
Ischemic hepatopathy/Sepsis/Cardiac
Ischemia/shock
Mitochondrial
Neonatal hemochromatosis (NH)/GALD
Herpes simplex
Hepatitis E
Drug-induced hepatitis
Chronic hepatitis
Urea cycle disorder
Wilson’s disease
Multiple
Other diagnosis

4 (15.4%)
1 (3.8%)

–

–

–

1 (3.8%)
6 (23.1%)

–

–

1 (3.8%)
1 (3.8%)

–

1 (3.8%)
–

–

3 (11.5%)
4 (15.4%)

–

–

–

–

–

–

4 (15.4%)

7 (5.8%)
–

–

–

–

–

–

–

2 (16.7%)
–

–

–

1 (8.3%)
–

–

–

–

–

–

–

–

–

–

2 (16.7%)

8 (53.3%)
–

–

–

2 (13.3%)
–

–

–

1 (6.7%)
–

–

–

1 (6.7%)
–

1 (6.7%)
–

–

–

1 (6.7%)
–

–

–

–

1 (6.7%)

7 (33.3%)
1 (4.8%)

–

–

1 (4.8%)
1 (4.8%)

–

2 (9.5%)
2 (9.5%)

–

–

1 (4.8%)
–

1 (4.8%)
–

–

–

–

1 (4.8%)
–

–

–

1 (4.8%)
3 (14.3%)

5 (12.2%)
10 (24.4%)
10 (24.4%)
1 (2.4%)

–

–

–

2 (4.9%)
1 (2.4%)

–

–

2 (4.9%)
1 (2.4%)

–

–

–

–

1 (2.4%)
2 (4.9%)
1 (2.4%)
1 (2.4%)
1 (2.4%)
1 (2.4%)
2 (4.9%)
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age-subgroups of PALF survivors (INF, TOD, YCH, OCH, and
ADO). Though data were segregated by age-group before being
subjected to DBN inference, the algorithm did not make
assumptions about the connectivity of the network in any
sub-group. DBN inference suggested a primary network driven
by two core motifs: HMGB1 (in all subgroups) and MIG
(in all sub-groups except INF, where HMGB1 was inferred to
affect its downstream production). In addition, HMGB1 was
inferred to affect the downstream production of MCP-1 (in all
sub-groups) and sIL-2Ra (in all sub-groups except ADO)
(Figure 2).

Variable Importance in Projection Scores
in Partial Least Square Discriminant
Analysis Identify Inflammatory Mediators
That Serve as Major Discriminants in
Age-Based Pediatric Acute Liver Failure
Subgroups
We next thought to examine quantitatively the discriminatory
power of individual mediators by comparing the Variable
Importance in Projection (VIP) scores in Partial Least Square
Discriminant Analysis (PLS-DA). Ranking of the different
mediators according to their VIP scores is shown in Figure 3.
As a result of this analysis, the factors with the highest VIP scores
(cutoff of 1.0) and thus the most contributory variables in class
discrimination (INF vs. TOD vs. YCH vs. OCH vs. ADO) in the
PLS-DA model were MIG, sIL-2Ra, MCP-1, and HMGB1
(Figure 3).
Frontiers in Immunology | www.frontiersin.org 6
Dynamic Network Analysis Shows
Differential Trajectories of Systemic
Inflammation That Differentiate Pediatric
Acute Liver Failure Age-Based Subgroups
Previously, we showed that PALF patient sub-groups with
different outcomes (4) or same outcome but different
treatments (5) had different dynamic networks of inflammation
as inferred using Dynamic Network Analysis (DyNA), an
algorithm aimed at defining granular network connections over
discrete time intervals (4, 5, 24). Accordingly, we hypothesized
that employing the same methodology would also differentiate
among the interconnections among inflammatory mediators in
the five age-subgroups of PALF survivors. (INF, TOD, YCH,
OCH, and ADO) over seven time frames (d0-d7) as described in
Materials and Methods. In support of our hypothesis, DyNA
suggested different dynamic patterns and overall dynamic
inflammatory network complexity in all PALF sub-groups
(Figure 4). This analysis, in which DyNA was performed at
stringencies ranging from 0.7 to 0.95, suggested that dynamic
network signatures were both robust and distinct across age
groups. Accordingly, we focused on DyNA at a stringency level of
0.95 (Figure 5A). This analysis showed an overall different
network patterns as well as marked differences in inflammatory
mediators and overall network connectivity as a function of age,
as follows: OCH (138) > INF (84) > TOD (53) > ADO (15)
>YCH (numbers in parentheses indicate the total number of
connections/patient subgroup. We also depict these results as a
heatmap in Figure 5B. Based on this analysis, IL-1b, IL-12p70,
FIGURE 2 | Dynamic Bayesian Network (DBN) analysis of circulating inflammatory mediators in PALF patients. Serum samples from PALF survivors were assessed
for a number of inflammatory mediators and segregated into five sub‐groups (INF, TOD, YCH, OCH, and ADO) based on age as described in Materials and
Methods. Inflammatory mediators are shown as nodes, and the arrows connecting them suggest an influence of one mediator on the one(s) to which it is connected.
The arrows do not distinguish positive from negative influences of one mediator on another. Semi-circular arrows suggest either positive or negative feedback of a
given mediator (highlighted in red) on itself.
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FIGURE 4 | Dynamic Network Analysis (DyNA) of inflammatory mediators in PALF patients. Circulating inflammatory mediators in serum samples from PALF
spontaneous survivors were segregated into five sub-groups (INF, TOD, YCH, OCH, and ADO) and DyNA (stringency level 0.7−0.95) was performed during each of
the following seven time frames: d0−d1, d1−2, d2−3, d3−4, d4−5, d5−6, d6−7 as described in Materials and Methods. Panels (A–E) show the network complexity
in INF (A), TOD (B), YCH (C), OCH (D), and ADO (E) calculated as described in Materials and Methods.
FIGURE 3 | Variable Importance in Projection (VIP) scores in the Partial Least Square Discriminant Analysis (PLS-DA) of inflammatory mediators in PALF. Serum
samples of five PALF patient sub-groups (INF, TOD, YCH, OCH, and ADO) were assayed for 27 inflammatory mediators using Luminex® analysis as described in
Materials and Methods. In order to estimate quantitatively the discriminatory power of each individual mediator, VIP scores in PLS-DA were calculated in the main 5
components using the web-based tool MetaboAnalyst. The graphs rank the inflammatory mediators according to their VIP scores (left) and the colored boxes in the
right indicate the relative concentration of the corresponding mediator in the different patient sub-groups (INF, TOD, YCH, OCH, and ADO) as indicated. The insets
show the mediators with the highest VIP scores (cutoff value: ≥ 1, red dotted line).
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FIGURE 5 | Differential Dynamic Network Connectivity in PALF patients. (A) An overview of all the dynamic networks (stringency level 0.95) and mediator
connections over all time-intervals in five PALF patient sub‐groups (INF, TOD, YCH, OCH, and ADO) determined by DyNA as described in Materials and Methods
and Figure 4. Closed red circles represent mediators with at least one connection to another mediator, while open yellow circles represent mediators that had no
connections to other mediators. (B) Heatmap showing the total number of connections for each circulating inflammatory mediator determined by DyNA (stringency
level 0.95) in five PALF patient sub‐groups (INF, TOD, YCH, OCH, and ADO) as described in Materials and Methods. (C) Heatmap showing the AuCon scores for
each inflammatory mediator in five PALF patient sub‐groups (INF, TOD, YCH, OCH, and ADO) calculated from AUCs (Supplementary Figure 2) and DyNA
connectivity (stringency level 0.95, B).
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GM-CSF, IFN-a2, IL-2, and IFN-g were the mediators with the
highest number of connections (Figure 5B), suggesting that
inflammatory pathways associated with these mediators play
significant roles in PALF survivors. Of note, those mediators
were neither among the central nodes in the dynamic Bayesian
networks (see Figure 2 above) nor were among the mediators
with VIP scores greater than 1 (see Figure 3 above), possibly
indicating secondary or parallel/orthogonal pathways operant in
PALF patients who survive with their native liver to 21 days.

AuCon Scores Serve to Differentiate
Inflammatory Mediators Relevant in
Pediatric Acute Liver Failure
We next hypothesized that mediators that are both present at
higher levels in the serum over time, as well as being relatively
less connected in dynamic networks, reflect pathology in PALF.
Accordingly, we defined a novel metric based on the AUCs from
the time courses (Supplementary Figure 2) along with the total
number of connections (N) from DyNA (Figures 5A, B and
Supplementary Figure 2) for each inflammatory mediator (i).
This metric thus combines two independent analyses: the AUC
representing the magnitude of the dynamic production/release of
the mediators, and the number of DyNA connections across all
time points representing network connectivity. We termed this
score “AuCon”. The detailed AuCon scores for each mediator in
each patient group are shown in Figure 6. Based on this analysis,
HMGB1, MIG, IP-10, sIL-2Ra, and MCP-1 had the highest
Frontiers in Immunology | www.frontiersin.org 9
AuCon scores, indicating various combinations of relatively high
circulating levels over time along with relatively low or very low
network connectivity in all PALF sub-groups (Figure 5C). We
note that AuCon results were largely in line with the results of
PLS-DA/VIP analysis. Taken together, we interpret these results
as suggesting these mediators as potential correlates of
differential systemic inflammatory trajectories in PALF as a
function of age.

Dynamic Network Analyses Clearly
Differentiate Trajectories of Systemic
Inflammation in Pediatric Acute Liver
Failure Survivors vs. Non-Survivors
While only 22.6% (26/115) of survivors were in the INF age
range, in the NS the majority of patients (66,7%, 8/12) was < 1
year. We therefore sought to compare inflammatory networks of
INF (survivors) vs. NS (time-courses of inflammatory mediators
are shown in Supplementary Figure 3). A Spearman cross-
correlation analysis suggested different inflammatory programs
in INF vs. NS, with the latter exhibiting two fairly distinct
modules (Figure 6A). In contrast, the INF group had a more
homogenous distribution with only one main inflammatory
module (Figure 6A). Based on DBN inference (Figure 6B), the
two groups were remarkably similar, with HMGB1 as the sole
central node in both INF and NS and with shared downstream
nodes (sIL-2Ra, IP-10, MCP-1, and MIG). However, the NS
DBN included additional downstream nodes (eotaxin, IL-6,
A B

C

FIGURE 6 | PALF non-survivors have greater inflammatory coordination and dynamic network connectivity than survivors in INF age-group. Serum samples from PALF
survivors and non-survivors (all INF, <1 year) were assessed for 27 inflammatory mediators using Luminex® analysis as described in Materials and Methods.
(A) Spearman cross-correlation analysis of inflammatory mediators in INF (left panel) and INF-NS (right panel). (B) Dynamic Bayesian Network (DBN). Inflammatory
mediators are shown as nodes, and the arrows connecting them suggest an influence of one mediator on the one(s) to which it is connected. The arrows do not
distinguish positive from negative influences of one mediator on another. Semi-circular arrows suggest either positive or negative feedback of a given mediator (highlighted
in red) on itself. (C) Network complexity of circulating inflammatory mediators in PALF patients (INF vs. INF-NS) determined by DyNA (stringency level 0.95).
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and IL-8). In agreement with our prior studies (4, 5), DyNA
network connectivity was higher in NS as compared to INF
(Figure 6C). DyNA networks in NS consisted of 22/27 highly
connected mediators, as compared to less complex networks
with lower number of connected mediators in INF (15/27)
described above and shown in Supplementary Figure 4.
DISCUSSION

The clinical trajectory of PALF is dynamic and likely multi-
factorial, and thus the precise onset of disease is rarely identified
(1). Outcomes vary among children with seemingly similar
etiology, disease severity, and treatment; thus, additional factors
such as age, being a proxy for developmental and physiological
features unique to that age, are likely involved to explain these
variations. Immune dysregulation is becoming increasingly
evident in PALF and may be a principal mechanism for driving
organ failure regardless of diagnosis (4, 25, 26). Our preliminary
results suggested an iterative experimental and computational
framework for discovery of novel clinical biomarkers and
potential therapeutic targets in PALF (3–5). Age-associated
changes in principal drivers and networks of inflammation in
PALF are largely unknown, and a key question that remained
unanswered was the role of age in the dynamics of inflammatory
networks in PALF. We thought to explore this question using
Luminex data from participants in five distinct PALF cohorts (all
spontaneous survivors without LTx) segregated by age: INF,
TOD, YCH, OCH, and ADO. Our findings suggest a role for
age-associated maturity of immune system and differential
inflammatory networks in the response to liver injury in PALF.

Our previous work has recurrently pointed to four mediators
(HMGB1, MIG, IP-10, and MCP-1) as possible biomarkers in
PALF (4, 5). In line with those results, the DBN pattern in PALF
age-subgroups suggested a network regulated via switching
between HMGB1 and the chemokine MIG, each of which
drives its own expression. More importantly, comparison of the
VIP scores in PLS-DA revealed that those mediators, in addition
of being central nodes of the inflammatory response and together
withMCP-1, and sIL-2Ra, can serve to differentiate the different
PALF sub-groups as a function of age. This method has been
previously used to investigate the age-related metabolic changes
in healthy children from 6 months through 4 years of age (27).

The inflammatory processes associated with PALF are
dynamic and their complexity is the result of many immune/
inflammatory networks and mediator interactions that still need
to be identified or characterized. We have previously shown that
PALF patient sub-groups with different clinical outcomes (4) or
same outcome but different etiologies and treatments (5) had
different dynamic networks of inflammation. The results
presented here clearly suggest that the differences in
interconnections among inflammatory mediators and resulting
network complexity in PALF are also a function of developmental
stage. The differences in overall dynamic inflammatory network
complexity (OCH > INF > TOD > ADO >YCH) seem to clearly
reflect the age dependence. In contrast, we cannot explain the lack
of linearity as a function of age. It is important to note that the age
Frontiers in Immunology | www.frontiersin.org 10
range in OCH (9 years) is much larger than in INF, TOD and
YCH (<1−2 years) and almost double than in ADO (5 years);
thus, future studies with a larger number of patients will be
necessary to address this question.

There is abundant literature regarding the relationship
between abnormal levels of inflammatory cytokines/chemokines
and several disease states both in experimental and clinical
settings. Those inflammatory mediators include some that were
assessed in the present study: HMGB1, MIG, IP-10, sIL-2Ra,
and MCP-1. The prototypical damage-associated molecular
pattern (DAMP) molecule HMGB1 has been shown to
contribute to the pathogenesis of sepsis, traumatic shock,
autoimmune diseases, cancer, as well as hepatic steatosis and
fatty liver disease (28). Experimentally, an HMGB1 neutralizing
chimeric antibody has been shown to attenuate drug‐induced
liver injury and postinjury inflammation in mice (29), and an
increasing number of experimental disease models responding to
therapy targeting HMGB1 have been reported (30). Liver failure
has also been associated with elevated levels of bothMIG and IP-
10 mRNA (31, 32), and circulating levels of both chemokines
have been implicated in chronic hepatitis C (33). Similarly, highly
elevatated levels of MCP-1 haven been reported in livers from
patients with fulminant hepatic failure (34). More recently, our
collaborators in the PALF Study Group have identified sIL-2R as
one of the biomarkers linked to activation of CD8+ lymphocytes
that predict clinical outcomes in PALF (35). Our present results
not only confirm previous observations from our group and
others, but highlight the centrality of those five inflammatory
mediators and suggest that a coordinated response involving
those mediators is critical in liver diseases such as PALF.

In order to efficiently discover novel inflammatory interactions
that suggest possible PALF biomarkers, we created a novel metric
(the AuCon score), which combines both systemic levels of a given
mediator over time (AUC) as well as dynamic network
connectivity (from DyNA). Based on prior studies in which we
demonstrated that the cytokine IL-6 was elevated but not
connected in mice undergoing experimental trauma/hemorrhage
(36), we designed the AuCon metric to test the hypothesis that
mediators that are elevated systemically but only sparsely
connected might differentiate the age-related trajectories of
systemic inflammation of PALF. Ranking the AuCon scores in
the five PALF patient sub-groups clearly highlighted five
mediators (HMGB1, MIG, IP-10, sIL-2Ra, and MCP-1) that
met the criteria above. Interestingly, four of these mediators (MIG,
sIL-2Ra, MCP-1 and HMGB1) were identified by VIP scores in
PLS-DA as the most major contributors to sub-group separation.
Further study is needed in order to determine if AuCon scores
simply serve to differentiate inflammatory trajectories or if this
metric could highlight distinct biological functions.

Our modeling methods are limited by the imperfect current
understanding of the etiology of PALF and, similar to our
previous PALF studies (3–5), there are some unavoidable
limitations to the present work. First, as the exact onset date
for PALF cannot be determined, we are unable to determine the
onset for the systemic inflammation in PALF patients. Under
ideal circumstances, serial time course data would be obtained
from the same PALF patients but unfortunately, this is not
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always possible. We could only analyze 8 days of samples, so
changes in dynamic networks either before or after this time
period remain unidentified and warrant further investigation.
The same applies to samples from participants with short, mild
events or severe, rapid progression to death or transplantation
that were excluded from this analysis given the analytical
requirement for at least two or more available blood samples.
We also note the relatively small number of patients in some sub-
groups as well as the differences in age range discussed above.

In conclusion, our findings support and extend previous
observations regarding the use of computational modeling in
PALF. These tools served to identify immune/inflammatory
networks and mediator interactions that distinguish among
outcome and age groups in PALF. Specifically, our results
demonstrate that a combination of the measurement of relevant
inflammatory mediators in serum samples from PALF participants
followed by computational analysis (developed for biologically
complex and dynamic conditions (37–41) and correlation of
biomarkers with clinical outcomes as a function of age, a
combined approach that has proven its value in other clinical
settings, might be used not only to differentiate patient etiologies
but may lead to novel therapeutic opportunities for PALF.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Institutional Review Boards from all
participating institutions (listed in the Acknowledgments).
Written informed consent to participate in this study was
provided by the participants’ legal guardian/next of kin.
AUTHOR CONTRIBUTIONS

YV RS, and RZ conceived the study, and wrote and edited
manuscript. DB and JY performed the analyses. All authors
contributed to the article and approved the submitted version.
Frontiers in Immunology | www.frontiersin.org 11
FUNDING

This project was supported by a Multi-Center Group to Study
Acute Liver Failure in Children (NIH/NIDDK grant UO1
DK072146) and by the National Institutes of Health (NIH)
through Grant No. UL1TR001857 (award to RZ from CTSI,
University of Pittsburgh).
ACKNOWLEDGMENTS

We thank the collaborative effort of the following current and
former principal and co-investigators of the Pediatric Acute
Liver Failure Study (by site): University of Pittsburgh: Robert
H. Squires MD, Benjamin L. Shneider MD; Cincinnati Children’s
Hospital: John Bucuvalas MD and Mike Leonis MD PhD; Lurie
Children’s Hospital of Chicago (Chicago): Estella Alonso MD;
University of Texas Southwestern: Norberto Rodriguez-Baez
MD;Seattle Children’s Hospital: Karen Murray MD and Simon
Horslen MB ChB; Children’s Hospital Colorado (Aurora):
Michael R. Narkewicz MD; St Louis Children’s Hospital: David
Rudnick MD PhD and Ross W. Shepherd MD; University of
California at San Francisco: Philip Rosenthal MD; Hospital for
Sick Children (Canada): Vicky Ng MD; Riley Hospital for
Children (Indianapolis): Girish Subbarao MD; Emory
University: Rene Romero MD; Children ’s Hospital of
Philadelphia: Elizabeth Rand MD and Kathy Loomes MD;
Kings College-London (England): Anil Dhawan MD;
Birmingham Children’s Hospital (England): Dominic Dell Olio
MD and Deirdre A. Kelly MD; Texas Children’s Hospital: Saul
Karpen MD PhD, Mt. Sinai Medical Center: Nanda Kerkar MD;
University of Michigan: M. James Lopez MD PhD; Children’s
Hospital Medical Center (Boston): Scott Elisofon MD and
Maureen Jonas MD; Johns Hopkins University: Kathleen
Schwarz MD; Columbia University: Steven Lobritto MD.
We would also like to thank Regina M. Hardison, Tamara Lee
Haller, and Steven H. Belle from the Data Coordinating Center at
the University of Pittsburgh and the dedicated research
coordinators at each site.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.
610861/full#supplementary-material
REFERENCES

1. Squires RHJr, Shneider BL, Bucuvalas J, Alonso E, Sokol RJ, Narkewicz MR,
et al. Acute liver failure in children: the first 348 patients in the pediatric acute
liver failure study group. J Pediatr (2006) 148(5):652–8. doi: 10.1016/
j.jpeds.2005.12.051

2. Squires RH. Acute liver failure in children. Semin Liver Dis (2008) 28(2):153–
66. doi: 10.1055/s-2008-1073115

3. Azhar N, Ziraldo C, Barclay D, Rudnick DA, Squires RH, Vodovotz Y, et al.
Analysis of serum inflammatory mediators identifies unique dynamic
networks associated with death and spontaneous survival in pediatric acute
liver failure. PLoS One (2013) 8(11):e78202. doi: 10.1371/journal.pone.
0078202

4. Zamora R, Vodovotz Y, Mi Q, Barclay D, Yin J, Horslen S, et al. Data-Driven
Modeling for Precision Medicine in Pediatric Acute Liver Failure. Mol Med
(2017) 22:821–9. doi: 10.2119/molmed.2016.00183

5. Zamora R, Barclay D, Yin J, Alonso EM, Leonis MA, Mi Q, et al. HMGB1 is a
Central Driver of Dynamic Pro-inflammatory Networks in Pediatric Acute
Liver Failure induced by Acetaminophen. Sci Rep (2019) 9(1):5971.
doi: 10.1038/s41598-019-42564-5
January 2021 | Volume 11 | Article 610861

https://www.frontiersin.org/articles/10.3389/fimmu.2020.610861/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2020.610861/full#supplementary-material
https://doi.org/10.1016/j.jpeds.2005.12.051
https://doi.org/10.1016/j.jpeds.2005.12.051
https://doi.org/10.1055/s-2008-1073115
https://doi.org/10.1371/journal.pone.0078202
https://doi.org/10.1371/journal.pone.0078202
https://doi.org/10.2119/molmed.2016.00183
https://doi.org/10.1038/s41598-019-42564-5
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Vodovotz et al. Age-Dependent Inflammatory Networks in PALF
6. Dowling DJ, Levy O. Ontogeny of early life immunity. Trends Immunol
(2014) 35(7):299–310. doi: 10.1016/j.it.2014.04.007

7. An G, Vodovotz Y. Translational Systems Biology: Concepts and Practice for
the Future of Biomedical Research. New York, NY: Elsevier (2014).

8. An G, Vodovotz Y. Complex Systems and Computational Biology Approaches
to Acute Inflammation: A Framework for Model-based Precision Medicine.
New York, NY: Springer (2020).

9. Sundaram SS, Alonso EM, Narkewicz MR, Zhang S, Squires RH, Pediatric
Acute Liver Failure Study G. Characterization and outcomes of young infants
with acute liver failure. J Pediatr (2011) 159(5):813–8.e1. doi: 10.1016/
j.jpeds.2011.04.016

10. Squires JE, McKiernan P, Squires RH. Acute Liver Failure: An Update. Clin
Liver Dis (2018) 22(4):773–805. doi: 10.1016/j.cld.2018.06.009

11. Knoppert D, Reed M, Benavides S, Totton J, Hoff D, Moffett B, et al. Paediatric
Age Categories to be Used in Differentiating Between Listing on a Model
Essential Medicines List for Children. (2007). Available at: http://archives.
who.int/eml/expcom/children/Items/PositionPaperAgeGroups.pdf.

12. FDA. Pediatric Exclusivity Study Age Group. (2000). Available at: https://www.
fda.gov/drugs/data-standards-manualmonographs/pediatric-exclusivity-
study-age-group.

13. Narkewicz MR, Horslen S, Hardison RM, Shneider BL, Rodriguez-Baez N,
Alonso EM, et al. A Learning Collaborative Approach Increases Specificity of
Diagnosis of Acute Liver Failure in Pediatric Patients. Clin Gastroenterol
Hepatol (2018) 16(11):1801–10.e3. doi: 10.1016/j.cgh.2018.04.050

14. Banerjee P, Ghosh S, Dutta M, Subramani E, Khalpada J, RoyChoudhury S,
et al. Identification of Key Contributory Factors Responsible for Vascular
Dysfunction in Idiopathic Recurrent Spontaneous Miscarriage. PLoS One
(2013) 8(11):e80940. doi: 10.1371/journal.pone.0080940

15. Akarachantachote N, Chadcham S, Saithanu K. Cutoff threshold of variable
importance in projection for variable selection. Int J Pure Appl Math (2014)
94:307–22. doi: 10.12732/ijpam.v94i3.2

16. Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for Comprehensive and
Integrative Metabolomics Data Analysis. Curr Protoc Bioinf (2019) 68(1):e86.
doi: 10.1002/cpbi.86

17. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0:
towards more transparent and integrative metabolomics analysis. Nucleic
Acids Res (2018) 46(W1):W486–94. doi: 10.1093/nar/gky310

18. Grzegorczyk M, Husmeier D. Improvements in the reconstruction of time-
varying gene regulatory networks: dynamic programming and regularization
by information sharing among genes. Bioinformatics (2011) 27(5):693–9.
doi: 10.1093/bioinformatics/btq711

19. Emr B, Sadowsky D, Azhar N, Gatto LA, An G, Nieman GF, et al. Removal of
inflammatory ascites is associated with dynamic modification of local and
systemic inflammation along with prevention of acute lung injury: in vivo and
in silico studies. Shock (2014) 41(4):317–23. doi: 10.1097/SHK.0000000000000121

20. Almahmoud K, Namas RA, Zaaqoq AM, Abdul-Malak O, Namas R, Zamora R,
et al. Prehospital Hypotension Is Associated With Altered Inflammation
Dynamics and Worse Outcomes Following Blunt Trauma in Humans. Crit
Care Med (2015) 43(7):1395–404. doi: 10.1097/CCM.0000000000000964

21. Almahmoud K, Namas RA, Abdul-Malak O, Zaaqoq AM, Zamora R,
Zuckerbraun BS, et al. Impact of Injury Severity on Dynamic Inflammation
Networks Following Blunt Trauma. Shock (2015) 44(2):101–9. doi: 10.1097/
SHK.0000000000000395

22. Ziraldo C, Vodovotz Y, Namas RA, Almahmoud K, Tapias V, Mi Q, et al.
Central role for MCP-1/CCL2 in injury-induced inflammation revealed by in
vitro, in silico, and clinical studies. PLoS One (2013) 8(12):e79804.
doi: 10.1371/journal.pone.0079804

23. Namas RA, Vodovotz Y, Almahmoud K, Abdul-Malak O, Zaaqoq A,
Namas R, et al. Temporal Patterns of Circulating Inflammation Biomarker
Networks Differentiate Susceptibility to Nosocomial Infection Following
Blunt Trauma in Humans. Ann Surg (2016) 263(1):191–8. doi: 10.1097/sla.
0000000000001001

24. Mi Q, Constantine G, Ziraldo C, Solovyev A, Torres A, Namas R, et al.
Trauma/hemorrhage-induced inflammation in mice: Insights from data-
driven models. J Crit Care (2011) 26(2):e7. doi: 10.1016/j.jcrc.2010.12.030

25. Bucuvalas J, Filipovich L, Yazigi N, Narkewicz MR, Ng V, Belle SH, et al.
Immunophenotype predicts outcome in pediatric acute liver failure. J Pediatr
Gastroenterol Nutr (2013) 56(3):311–5. doi: 10.1097/MPG.0b013e31827a78b2
Frontiers in Immunology | www.frontiersin.org 12
26. Chapin CA, Burn T, Meijome T, Loomes KM, Melin-Aldana H, Kreiger PA,
et al. Indeterminate pediatric acute liver failure is uniquely characterized by a
CD103(+) CD8(+) T-cell infiltrate. Hepatology (2018) 68(3):1087–100.
doi: 10.1002/hep.29901

27. Chiu C-Y, Yeh K-W, Lin G, Chiang M-H, Yang S-C, Chao W-J, et al.
Metabolomics Reveals Dynamic Metabolic Changes Associated with Age in
Early Childhood. PLoS One (2016) 11(2):e0149823. doi: 10.1371/
journal.pone.0149823

28. Deng M, Scott MJ, Fan J, Billiar TR. Location is the key to function: HMGB1
in sepsis and trauma-induced inflammation. J Leukoc Biol (2019) 106(1):161–
9. doi: 10.1002/JLB.3MIR1218-497R

29. Lundbäck P, Lea JD, Sowinska A, Ottosson L, Fürst CM, Steen J, et al. A novel
high mobility group box 1 neutralizing chimeric antibody attenuates drug-
induced liver injury and postinjury inflammation in mice. Hepatology
(Baltimore Md) (2016) 64(5):1699–710. doi: 10.1002/hep.28736

30. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile
inflammation and infection. Annu Rev Immunol (2011) 29:139–62.
doi: 10.1146/annurev-immunol-030409-101323

31. Koniaris LG, Zimmers-Koniaris T, Hsiao EC, Chavin K, Sitzmann JV, Farber JM.
Cytokine-responsive gene-2/IFN-inducible protein-10 expression in multiple
models of liver and bile duct injury suggests a role in tissue regeneration.
J Immunol (2001) 167(1):399–406. doi: 10.4049/jimmunol.167.1.399

32. Bone-Larson CL, Hogaboam CM, Evanhoff H, Strieter RM, Kunkel SL. IFN-
gamma-inducible protein-10 (CXCL10) is hepatoprotective during acute liver
injury through the induction of CXCR2 on hepatocytes. J Immunol (2001) 167
(12):7077–83. doi: 10.4049/jimmunol.167.12.7077

33. Larrubia JR, Benito-Martinez S, Calvino M, Sanz-de-Villalobos E, Parra-Cid T.
Role of chemokines and their receptors in viral persistence and liver
damage during chronic hepatitis C virus infection. World J Gastroenterol
(2008) 14(47):7149–59. doi: 10.3748/wjg.14.7149

34. Czaja MJ, Geerts A, Xu J, Schmiedeberg P, Ju Y. Monocyte chemoattractant
protein 1 (MCP-1) expression occurs in toxic rat liver injury and human liver
disease. J Leukoc Biol (1994) 55(1):120–6. doi: 10.1002/jlb.55.1.120

35. Leonis MA, Miethke AG, Fei L, Maynor S, Chapin CA, Bleesing JJH, et al.
Four biomarkers linked to activation of CD8+ lymphocytes predict clinical
outcomes in pediatric acute liver failure. Hepatology (2020). doi: 10.1002/
hep.31271

36. Mi Q, Constantine G, Ziraldo C, Solovyev A, Torres A, Namas R, et al. A
dynamic view of trauma/hemorrhage-induced inflammation in mice:
principal drivers and networks. PLoS One (2011) 6(5):e19424. doi: 10.1371/
journal.pone.0019424

37. Vodovotz Y, Csete M, Bartels J, Chang S, An G. Translational systems biology
of inflammation. PLoS Comput Biol (2008) 4(4):e1000014. doi: 10.1371/
journal.pcbi.1000014

38. An G, Bartels J, Vodovotz Y. In Silico Augmentation of the Drug
Development Pipeline: Examples from the study of Acute Inflammation.
Drug Dev Res (2011) 72(2):187–200. doi: 10.1002/ddr.20415

39. Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Bartels J, et al.
Translational systems approaches to the biology of inflammation and
healing. Immunopharmacol Immunotoxicol (2010) 32(2):181–95.
doi: 10.3109/08923970903369867

40. An G, Nieman G, Vodovotz Y. Computational and systems biology in trauma
and sepsis: current state and future perspectives. Int J Burns Trauma (2012)
21-10(1):1–10.

41. An G, Nieman G, Vodovotz Y. Toward computational identification of
multiscale “tipping points” in acute inflammation and multiple organ failure.
Ann Biomed Eng (2012) 40(11):2414–24. doi: 10.1007/s10439-012-0565-9

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Vodovotz, Barclay, Yin, Squires and Zamora. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
January 2021 | Volume 11 | Article 610861

https://doi.org/10.1016/j.it.2014.04.007
https://doi.org/10.1016/j.jpeds.2011.04.016
https://doi.org/10.1016/j.jpeds.2011.04.016
https://doi.org/10.1016/j.cld.2018.06.009
http://archives.who.int/eml/expcom/children/Items/PositionPaperAgeGroups.pdf
http://archives.who.int/eml/expcom/children/Items/PositionPaperAgeGroups.pdf
https://www.fda.gov/drugs/data-standards-manualmonographs/pediatric-exclusivity-study-age-group
https://www.fda.gov/drugs/data-standards-manualmonographs/pediatric-exclusivity-study-age-group
https://www.fda.gov/drugs/data-standards-manualmonographs/pediatric-exclusivity-study-age-group
https://doi.org/10.1016/j.cgh.2018.04.050
https://doi.org/10.1371/journal.pone.0080940
https://doi.org/10.12732/ijpam.v94i3.2
https://doi.org/10.1002/cpbi.86
https://doi.org/10.1093/nar/gky310
https://doi.org/10.1093/bioinformatics/btq711
https://doi.org/10.1097/SHK.0000000000000121
https://doi.org/10.1097/CCM.0000000000000964
https://doi.org/10.1097/SHK.0000000000000395
https://doi.org/10.1097/SHK.0000000000000395
https://doi.org/10.1371/journal.pone.0079804
https://doi.org/10.1097/sla.0000000000001001
https://doi.org/10.1097/sla.0000000000001001
https://doi.org/10.1016/j.jcrc.2010.12.030
https://doi.org/10.1097/MPG.0b013e31827a78b2
https://doi.org/10.1002/hep.29901
https://doi.org/10.1371/journal.pone.0149823
https://doi.org/10.1371/journal.pone.0149823
https://doi.org/10.1002/JLB.3MIR1218-497R
https://doi.org/10.1002/hep.28736
https://doi.org/10.1146/annurev-immunol-030409-101323
https://doi.org/10.4049/jimmunol.167.1.399
https://doi.org/10.4049/jimmunol.167.12.7077
https://doi.org/10.3748/wjg.14.7149
https://doi.org/10.1002/jlb.55.1.120
https://doi.org/10.1002/hep.31271
https://doi.org/10.1002/hep.31271
https://doi.org/10.1371/journal.pone.0019424
https://doi.org/10.1371/journal.pone.0019424
https://doi.org/10.1371/journal.pcbi.1000014
https://doi.org/10.1371/journal.pcbi.1000014
https://doi.org/10.1002/ddr.20415
https://doi.org/10.3109/08923970903369867
https://doi.org/10.1007/s10439-012-0565-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Dynamics of Systemic Inflammation as a Function of Developmental Stage in Pediatric Acute Liver Failure
	Introduction
	Materials and Methods
	Criteria for Patient Selection
	Assays of Inflammatory Mediators
	Statistical Analyses
	Machine Learning Analyses
	Variable Importance in Projection Scores in Partial Least Squares Discriminant Analysis
	Dynamic Bayesian Network Inference
	Dynamic Network Analysis
	Area Under the Curve and Connectivity Score


	Results
	Clinical Outcomes Differ as a Function of Age in Pediatric Acute Liver Failure Patients
	Differential Dynamics of Systemic Inflammatory Mediators in Pediatric Acute Liver Failure Patients as a Function of Age
	Dynamic Bayesian Network Inference Identifies Both Common and Age-Distinct Nodes of Systemic Inflammation
	Variable Importance in Projection Scores in Partial Least Square Discriminant Analysis Identify Inflammatory Mediators That Serve as Major Discriminants in Age-Based Pediatric Acute Liver Failure Subgroups
	Dynamic Network Analysis Shows Differential Trajectories of Systemic Inflammation That Differentiate Pediatric Acute Liver Failure Age-Based Subgroups
	AuCon Scores Serve to Differentiate Inflammatory Mediators Relevant in Pediatric Acute Liver Failure
	Dynamic Network Analyses Clearly Differentiate Trajectories of Systemic Inflammation in Pediatric Acute Liver Failure Survivors vs. Non-Survivors

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


