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In order to attempt predictions of the universe of protein

folds - so-called fold space - we need to know how many

protein families there are in nature and how many of these

are likely to possess a novel fold. Genome sequencing still

considerably outpaces the various structural genomics initia-

tives currently underway in the USA, Canada, Japan,

Germany and the UK, with more than 160 completely

sequenced genomes yielding about one million protein

sequences at the start of 2004 [1]. This contrasts with

24,000 entries of three-dimensional protein structures in

the Protein Data Bank (PDB) [2,3], some 500 of which were

determined by structural genomics consortia over the last

three years. Although this seems a daunting contrast,

mounting evidence from the Gene3D (our unpublished data

and [4]), SUPERFAMILY [5,6], and Genomic Threading

[7,8] databases suggests that a relatively small repertoire of

protein folds (around 800) can already be mapped onto

about half of all the amino-acid residues encoded in the cur-

rently available genome sequences. 

Encouragingly, and in parallel with the expansions in the

structure and sequence databanks over the last decade, pow-

erful new technologies have been developed for recognizing

relationships between proteins on the basis of sequence

and/or structural similarity [9]. These allow the universe of

protein-family space to be more accurately charted, by

allowing recognition of extremely distant homologs. 

Estimations of the number of folds
Although Wolf et al. [10] attempted to predict the number of

folds in individual genomes, most estimates consider the

total number of folds in all of nature. Current estimates of

the number of folds range from 1,000 to 10,000, depending

on the models and approximations applied [11-13]. One of

the earliest estimates of fold numbers was a simple approxi-

mation by Chothia [14]. This assumed that there is a limited

number of folds in nature that sequences can adopt, given

the intrinsic physical constraints. If these are randomly

sampled in the projects that solve protein structures, then

the probability that a new protein sequence has a known fold

can be estimated by determining the proportion of unrelated

sequences, for example in the structure classifications data-

base SCOP [15,16], that share the same fold as one another

and are therefore likely to share that fold with the new

sequence. This approach predicted around 1,000 folds, given

the proportion of sequences of known structure in SCOP that

had unique folds, the fraction of the Swiss-Prot sequence

database [17,18] these sequences comprised, and the fraction

of new sequences found to be related to sequences already in

Swiss-Prot. 

A similar model applied by our group [19] also took account

of the number of protein families in Swiss-Prot. Using the

CATH structure database [20,21], we predicted a higher esti-

mate of around 8,000 folds. Both these simplistic calculations
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[14,19] ignore bias in the sequence and structure databases

and the fact that some folds, often referred to as superfolds

[20], are more highly reused by different protein families in

nature than is expected by chance. This uneven fold-family

distribution, revealed by several analyses [22-24] can be

clearly seen in Figure 1, which shows that a small percentage

of fold groups in the CATH domain structure database (54

folds, or 6.6% of the total) are very highly populated,

accounting for 76% of domain families for which a structure

has been predicted, whilst there are many folds adopted by

only a single family. 

Although similarity in the folds adopted by different families

may reflect folding preferences and convergence to energeti-

cally stable folds, it is likely that many of the families that

adopt the superfolds are in fact very distantly related, beyond

the sensitivity of current algorithms to detect homology at the

sequence level. Families adopting the eight-stranded ���

TIM-barrel folds are a case in point, with recent analysis sug-

gesting that many of these families may have evolutionary

links - an idea that is supported by unusual sequence signa-

tures and functional properties [25,26].

Since Chothia’s early estimates [14], several groups have

applied more sophisticated statistical approaches that model

the uneven distribution of fold usage in various ways

[22,24]. Random sampling of known sequence families and

assigning equal likelihood to each fold gives rise to a

non-uniform fold distribution which, when further modified

to account for the extreme bias of the superfolds and the fact

that many folds are only rarely seen in nature, gives an esti-

mate of 4,000 folds [23]. 

Coulson and Moult [12] assume the existence of three types

of folds: superfolds, which are adopted by very many protein

families and are highly recurrent within proteomes; meso-

folds, which have an intermediate number of protein fami-

lies associated with them; and unifolds, adopted by a single

narrow sequence family. On the basis of this assumption,

they simulated the expansion of new folds classified in the

SCOP structure database over the preceding two years, as a

fraction of new sequence families added. Assuming a

maximum of 50,000 protein families in nature, this

approach predicts up to 400 mesofolds and some 10,000

unifolds in addition to 9 superfolds. Perhaps more impor-

tantly, the majority of sequence families belong to superfold

and mesofold groups, and for 80% of these families we prob-

ably already know the fold. 

Several groups have attempted to model the uneven fold-

family distribution using power laws. Power law distribu-

tions - in which a small number of high-frequency instances

occur, but there is a moderate number of common instances

and a huge number of very rare instances - appear to be

ubiquitous in nature and society, and seem to explain many

of the biological trends recently revealed by genome data,

such as protein-family distributions, domain associations,

and protein-protein interactions [13,27,28]. Karev et al.

[29,30] model protein-family distributions by simulating the

birth (gene duplication), death (gene loss) and innovation

(new protein) of different domains in individual genomes.

Although this entirely stochastic model fails to account com-

pletely for the observed distribution, it shows that a close fit

is possible using a model with only three independent para-

meters. Implicit in the model is the notion that the ‘fit’ get

‘fitter’, and domains randomly duplicated early in evolution

increasingly dominate the population. None of these models

incorporates selection pressures that might operate to favor

the retention of duplicated domains performing important

biochemical activities. But, in fact, many highly recurrent

domains do appear to have important biochemical functions,

for example in providing energy or redox equivalents for

enzyme reactions, or in responding to cellular signals and

binding to DNA [31,32]. 

These more recent models of the number of folds [12,22-

24,29,30] continue to ignore possible biases in the structure

and sequence databases. For example, it is likely that proteins

sampled for structure determination have been relatively

easy to solubilize, purify and crystallize - as shown by the

small numbers of transmembrane structures known. Perhaps

more worrying are recent analyses suggesting that we have

barely sampled sequence and family space, as each new

genome adds more families and there is no sign of saturation
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Figure 1
The proportion of domain families represented by CATH fold groups.
Within the CATH database [20,21], structures are grouped into fold
groups on the basis of both overall shape and connectivity of their
secondary structures. Domain families are related at the 35% sequence
identity level by complete linkage clustering. The number of domain
families within each fold group gives a measure of the sequence diversity
of that fold group. A group of 54 CATH fold groups (only 6.6% of the
cumulative total of CATH fold groups) accounts for 76% of domain
families, as shown by the dotted lines.
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in this expansion [33]. Even with the huge advances in

genome sequencing, there are still at least ten million organ-

isms as yet uncharacterized [13].

To be more optimistic, though, it is likely that as the sequence

and structure databases expand, making it easier to link rela-

tives and also increasing the sensitivity of the profile-based

homology search methods and fold-recognition methods,

there may be a considerable coalescence of families. Assess-

ment of several widely used homolog-detection methods

(such as PSI-BLAST and hidden Markov models, HMMs)

using structurally validated homologs has shown significant

increases in performance accompanying expansions in the

sequence and structure databases [32]. 

How many protein families are currently
recognized?
Given that most estimates of how many folds there are

depend heavily on the numbers of protein families that have

been identified and their mapping to existing folds, it is

useful to briefly consider the current strategies and technical

challenges involved in identifying these families. Structural

genomics initiatives have promoted several new sequence-

based approaches to recognizing protein families. These

arose because although there are many well-established

protein-family databases (such as PRINTS [34,35], Pfam

[36,37], SMART [38,39], ProDom [40,41], InterPro [42,43],

TIGRFAMs [44,45] and MIPS [46,47]) most cover only a rel-

atively small proportion of the known sequences. Pfam

[36,37], which now includes over 7,000 manually curated

families, identifies many of the largest protein families, and

any lack of coverage is addressed to a certain extent by Inter-

Pro [42,43], which integrates Pfam with several other

protein-family resources. The advantage of all these curated

databases is that relatives are recognized using family-spe-

cific sequence profiles or regular expressions, and there is

some degree of manual validation.

Faster approaches for identifying protein families within

very large datasets (such as those in non-redundant

GenBank [48,49] or Swiss-Prot/TrEMBL [17,18]) often

involve aligning the sequences against each other using

BLAST and then clustering those with significant similarity

[50-54]. The simplest protocols use single-linkage cluster-

ing, which often collapses too many families, giving relatives

with insufficient global similarity. In ProtoNet [50,51] these

effects are robustly handled by permitting alternative user-

defined thresholds for clustering that allow granularity to

range from families with small closely related proteins to

much broader families comprising proteins sharing common

sequence motifs. Some of the most promising new methods

employ Markov clustering, in particular the TribeMCL [55]

implementation developed by Enright and co-workers and

used by the TRIBES [56,57] and Gene3D resources (our

unpublished data and [4]). 

One of the hardest problems in clustering sequences into

protein families is handling the similarities between multi-

domain proteins and the fact that many different multi-

domain proteins share common domains but in different

contexts. A significant proportion [58] of proteins are multi-

domain - up to 80% in eukaryotes. Furthermore, Teichmann

and others [58] have shown that domains have frequently

been shuffled and recombined in different ways within

genomes, often giving rise to subtly different functions [59].

This recurrence of domains suggests their importance as

primary evolutionary units, and although some researchers

hypothesize that smaller supersecondary structural motifs

may be the building blocks of evolution [60], the majority of

globular compact folds characterized to date comprise whole

domains. Thus, although some protein-family resources

cluster complete gene sequences into families, most attempt

to divide proteins into their constituent domains before or

after clustering. Recognizing the boundaries of domains is a

non-trivial algorithmic challenge, however, particularly if no

structural data are available. Even methods based on struc-

tures disagree in their assignments 20-40% of the time [61].

The problem is compounded by discontinuities in some

domain sequences, whereby the insertion of a second

domain disrupts an existing domain within a multi-domain

protein. Structural data in the CATH database [20,21]

suggest that these discontinuities exist in about 23% of

domains occurring in multi-domain proteins [62]. 

Some of the most successful approaches to the problem of

domain-boundary prediction combine sequence data with

the propensities of particular amino-acid residues, using

neural networks [54,63,64]. Other methods exploit the

recurrence of domains in different contexts to identify

boundaries from multiple alignments [40,65,66]. The

elegant approach of Heger and Holm (named ADDA [66])

exploits graph theory to build networks of domain links in

multi-domain proteins from which multiple alignments can

be extracted and recursively analyzed and chopped up to

yield their single-domain components. 

Estimates of the number of protein families that have so far

been identified vary substantially, depending on the

sequence datasets clustered and the thresholds employed.

The ADDA algorithm of Heger and Holm [66] identifies

some 34,000 domain families in a combined sequence

dataset - derived from Swiss-Prot, TrEMBL, the Protein

Information Resource (PIR), PDB, the Caenorhabditis

elegans protein database Wormpep and Ensembl genome

databases - which, after removing redundancy at 40%

sequence identity, contained almost 250,000 protein

sequences. These are chopped into domains and then clus-

tered into 34,000 domain families. Almost 170,000 domains

remain as singletons that are not clustered into any family.

Similarly, a recent analysis by Liu and Rost [67], chopping

and clustering sequences from eukaryotic genomes,
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suggested 17,000 domain-like clusters (regions likely to be

domains) in eukaryotes that are likely to have a currently

unidentifiable globular structure. Again these represent low

estimates, as the eukaryotic genomes currently contribute

about half of the total sequences within completed genomes.

A more recent publication reports 63,000 domain families

from the clustering of 62 complete genomes [68,69].

In our work to develop the Gene3D database of annotated

complete genomes [4], we benefited from a number of pub-

licly available algorithms [55,70] and resources [48,49,71].

Our Pfscape protocol (unpublished) first clusters the

600,000 sequences from 120 completed genomes into

59,000 gene families using the TRIBE-MCL algorithm [55],

with some 112,000 singleton sequences remaining. Pfscape

then maps CATH and Pfam domains onto sequences in these

gene families using the SAM-T99 hidden Markov model

method [72]. In addition to the 1,277 CATH-domain families

and 5,179 (non-overlapping) Pfam-domain families that are

recognized, a further 46,000 or so uncharacterized domain

families remain, giving a total of almost 53,000 domain fam-

ilies. Figure 2 shows that most of these remaining uncharac-

terized families (termed NewFam) tend to have far fewer

members than the CATH and Pfam families.

Many of the largest families in Gene3D are very sequence-

diverse and are perhaps better described as superfamilies,

containing some very distant homologs (proteins with less

than 20% sequence identity). Thus, although Gene3D identi-

fies almost 53,000 domain superfamilies, these comprise

107.4 Genome Biology 2004, Volume 5, Issue 5, Article 107 Grant et al. http://genomebiology.com/2004/5/5/107

Genome Biology 2004, 5:107

Figure 2
Log-log plots of the sizes of (a) CATH, (b) Pfam and (c) NewFam (uncharacterized) families show power-law-like behavior. (d) Fitted power law
functions and their exponents are shown for comparison. Most NewFam families have relatively few members. See text for further details. 
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205,000 close families, in which relatives have 35% or more

sequence identity; and at least 20% of these close families

have one or more members with at least 35% sequence iden-

tity to a known structure. This suggests that structural

genomics initiatives would need to target representatives for

the remaining 165,000 or so families to obtain good struc-

tural models for all families in the examined genomes.

Mapping known protein folds and families onto
the genomes
There are now more than 180 completed genomes. What pro-

portion of these are we able to map with the current fold and

family classifications? Although estimates of the total number

of folds, ranging up to 10,000, suggest that we are a long way

from knowing the full fold repertoire, recent analyses of fold

and family distributions within sequenced genomes (by

SUPERFAMILY [5,6], Gene3D [4] and the Genomic Thread-

ing Database [7,8]) using structure-classification databases

(SCOP [15,16] and CATH [21,73]) suggest that between one

third and two thirds of residues can be assigned to struc-

turally characterized families in SCOP and CATH, adopting

around 800 folds in total. Specifically, it is possible to assign

folds to between 44% and 81% by HMM, and to achieve 64%

average coverage by threading, of sequences in completed

genomes; and 26-70% by HMM and 58% average coverage by

threading is possible on a residue basis (see Figure 3 for

coverage of some representative genomes by Gene3D).

From recent analyses using Gene3D domain families, after

exclusion of singleton sequences, 50% of domains can cur-

rently be assigned to 1,277 superfamilies (93,571 close fami-

lies) of known structure in the CATH database (Table 1). A

further 33% of domains of no known structure can be assigned

to about 1,832 Pfam superfamilies (61,722 close families; see

Figure 4). The remaining 17% of domains have been assigned

to NewFam uncharacterized domain families (52,973 close

families; see Figure 2), most of which are small families.

Several analyses (for example [74,75]) have shown that

approximately 22% of predicted protein sequences from

genome sequences (which will overlap to some extent with

CATH and Pfam assignments) contain transmembrane

regions, and about 10-20% of predicted sequences contain

long regions (50-100 amino acids) of disorder or low com-

plexity. There is also a significant proportion (around 16%)

of small amino-acid sequences with no predicted secondary

structure [74]. 

Are the singletons - of which there are currently 60,000 in

Gene3D - in fact distant relatives of existing families that are

not recognized by current algorithms, or are they genuinely

unique sequences having novel folds? Kunin and co-workers

[33] recently showed that although some singletons are reas-

signed to families as new genomes are completed, there is

still an overall gain in the number of singletons with each

additional sequenced genome. This may change as the data-

bases expand and recognition methods improve. Original

estimates of the proportion of singletons in bacterial

genomes lay at about 50% [22], but this number has steadily

fallen, with average values of 30% for the first release of

Gene3D in 2002 [76], and 18% for more recent releases of

Gene3D [4]. Some proportion of these proteins may never-

theless represent genuinely new families and folds.

The length distribution of singletons is lower than the length

distribution for the average structural domain [74], and

many of the very small sequences containing disordered

regions may correspond to unstructured proteins existing

only as complexes and/or peptides involved in regulation

and binding to DNA. These proteins may therefore not fold

independently and will lie outside the range of targets

amenable to structural genomics.

Revisiting the fold calculations
Using the number of domain families identified by Gene3D (see

Figures 1 and 4), we can make a very simple approximation

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2004/5/5/107                                                           Genome Biology 2004, Volume 5, Issue 5, Article 107 Grant et al. 107.5

Genome Biology 2004, 5:107

Figure 3
Gene coverage in Gene3D. The chart indicates the percentage of genes in
the indicated genome that have at least one non-overlapping assignment
from CATH or Pfam. Three representative genomes from each kingdom
of life show low, average and high coverage, respectively. The species
shown are Pyrobaculum aerophilum, Methanococcus jannaschii, Thermoplasma
acidophilum, Helicobacter pylori, Escherichia coli K12, Wigglesworthia
glossinidia brevipalpis, Plasmodium falciparum, Encephalitozoon cuniculi and
Schizosaccharomyces pombe. 
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of the total number of folds in nature by making the follow-

ing four assumptions. First, we assume that we now know

the folds for all the superfolds - defined as folds with three or

more homologous superfamilies in CATH (at present this

accounts for 71,080 close domain families for 54 highly popu-

lated CATH folds; see Table 1). Second, we assume that we

have been able to map these folds onto all their relatives in

the genome sequences, and so we can remove these folds and

families while estimating the remaining numbers of folds.

Third, we assume that singletons can be removed from the

estimate, as they are probably very distant relatives belonging

to known folds that have diverged beyond the sensitivity of

current recognition methods, or else they are short sequences

unlikely to fold independently but associated with functional

complexes. Although singletons could represent novel folds

and could therefore skew any estimate of the total number of

protein folds, they do not represent a significant proportion

of domains. Finally, we assume that non-superfolds and non-

singletons have been sampled randomly by families in nature

and that there are no biases in their representation within the

current sequence and structure databases. 

Removing the 54 superfolds from the Gene3D dataset leaves

22,491 close domain families of known structure (see

Table 1), which adopt 759 folds in CATH (see Figure 1). We

can therefore expect the remaining 114,695 domain families

in Gene3D that are of unknown structure (Pfam close

domain families plus NewFam close domain families) to

adopt (114,695/22,491) x 759, or 3,871 new folds. Adding

together the superfolds, known folds and estimated number

of new folds (54 + 759 + 3,871) we get an estimate of the

number of folds encoded within the 120 genomes included in

Gene3D of 4,684. This will probably be a lower bound for

the total number of protein folds in nature. But all fold esti-

mates are unsatisfying, in that they necessitate simplified

models of fold usage and optimism regarding lack of bias in

the databases; whilst our sampling of ‘species’ space remains

so sparse, calculations on the numbers of folds in all of

nature seem rather esoteric.

A few large protein families dominate more
than half of all predicted protein sequences
Perhaps a more optimistic outlook for the structural

genomics initiatives comes from the observation that fewer

than 1,000 large CATH and Pfam families map to a signifi-

cant proportion (around 60%) of all the predicted products of

genome sequences, excluding singletons (see Figure 4). What

roles are relatives from these large families performing and

why are they recurring so frequently within the proteomes? 

We used Gene3D to examine the recurrence of structurally

characterized families in the predicted proteomes of a set of

56 bacterial genomes [77]. Interestingly, some 274 CATH-

defined families are common to a significant proportion of

these genomes. Less than 30 of the families are highly dupli-

cated, dominating almost 50% of all the CATH-annotated
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Table 1

A summary of the families and superfamilies within Gene3D

Type of family Proportion of non-singleton domains Number of superfamilies Number of close families Number of folds

Known structure (CATH) 50% 1,277 93,571 759 + 54

Superfolds (all of known structure) 71,080 54

Unknown structure (Pfam) 33% 1,832 61,722
3,871

NewFam 17% 52,973

Total, excluding singletons: 208,266 4,684

Data are from [4]; NewFam denotes uncharacterized families. Around 60,000 singletons are excluded from the analysis. See the text for how the number
of folds is estimated for the domains of unknown structure.

Figure 4
The cumulative number of domains within domain superfamilies (ranked
by decreasing size). The 1,000 largest domain superfamilies account for
nearly 60% of all domain sequences (see dotted lines). The figure excludes
singleton domain families, and is derived from our own unpublished work. 
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genome sequences. In these families, domain recurrence in

any proteome correlates with genome size and, in some fam-

ilies, domains are frequently located in proteins with differ-

ent domain compositions [59]. Many are associated with

metabolic pathways, where they perform generic functions

such as the provision of energy or redox equivalents for reac-

tions. Frequently some aspect of the chemistry is conserved

between paralogs, but substrate specificity may have been

modulated by changes in the geometry of active sites. In

some cases structural embellishments to the fold cause

changes in surface geometry, modulating protein-protein

interactions and altering the repertoire of domain associa-

tions [59]. A significant proportion adopt a small number of

folds, namely TIM-barrel folds, Rossmann-like folds or ��-

plait superfolds. Interestingly, these are among the most

ancient folds [78,79]. They all possess simple, regular,

layered architectures that might be expected to promote

optimal packing of hydrophobic residues in the core of the

protein. In support of these hypotheses, Caetano-Anolles

and Caetano-Anolles [79] have also proposed that �� sand-

wiches and �-barrel-like structures evolved first, with β
sandwiches evolving later, predominantly in eukaryotes,

where the all-� immunoglobulin superfold recurs exten-

sively. The regularity of their architectures may contribute to

the ease with which these folds have been observed to toler-

ate residue mutations [80], allowing some of the families to

diverge further and to adopt a range of different functions. 

In addition, functional utility may also contribute to the

wide recurrence of these domains [13]. As Koonin and co-

workers propose [13], some perform generic functions that

are well conserved (for example, nucleotide binding in the

Rossmann-like domains) and have been re-used in multiple

functional contexts (in different pathways or cellular loca-

tions). Alternatively, as in the case of TIM barrels and ��-

plait folds, these architectures possess functional sites (for

example the base of the � barrel in the TIMs or the exposed

�-sheet surface in the ��-plaits) that can easily be re-engi-

neered to bring diverse combinations of residues into

contact, thereby creating novel catalytic environments. 

How unrealistic are fold estimates?
Our estimates here, made using Gene3D, suggest that the

largest, most recurrent families encoded within the

sequenced genomes have already been characterized in the

CATH database and can be expected to adopt about 800

folds. How realistic are our simple estimates of approxi-

mately 3,900 folds to be adopted by the remaining families,

most of which are characterized in Pfam and some of which

are quite small? (For example, Figure 2 shows that the

remaining uncharacterized NewFam families are generally

much smaller than the CATH and Pfam families.) Small fam-

ilies may turn out to be very distant relatives of superfolds

that have diverged beyond recognition, and in acquiring

highly specialized functions these now have the narrow

sequence constraints observed today [62]. Some may be

completely new folds, however, that have arisen by more

recent shuffling of subdomains and motifs. Soding and

Lupas [60] have presented some intriguing models of evolu-

tionary pathways using diverse recombination of small

common submotifs such as � hairpins and �� motifs. There

are fascinating examples of relatives in some families that

appear to have acquired new folds through subtle rearrange-

ments within supersecondary motifs [60,81].

It is clear that some common structural motifs are highly re-

used [82], and this has meant that fold space should perhaps

more accurately be viewed as a continuum [83,84], where

significant structural overlaps occur in some regions. For the

most highly populated architectures within CATH (�� sand-

wiches and � sandwiches), folds are often highly ‘gregarious’

(that is, some subcomponents of the fold are shared with

other folds), with at least 40-50% of their structures overlap-

ping structures from other fold groups. Given that the rela-

tives in many large superfamilies adopting these

architectures (for example, superfamilies adopting Ross-

mann-like folds or ��-plait folds) can be highly structurally

divergent, with only 50% of residues in the core remaining

structurally conserved during evolution [85], these overlaps

can create problems in identifying distinct regions within fold

space. The continuous nature of fold space may mean that

simulations exploring the number of folds in nature are unre-

alistic, and that it may be more useful to try to understand the

mechanisms by which common motifs can be assembled. 

In this context, it is notable that there have recently been

some considerable successes in ab initio structure predic-

tion, using approaches that assemble proteins from peptide

fragment libraries derived from known structures [86].

There now appear to be structural representatives for most

10-15 residue peptides [87], particularly those occurring

within secondary structures, and so these advances may

become increasingly important for structural modeling of

the large number of singletons and ‘unifolds’ revealed by

genome analyses. Such coarse models could help in suggest-

ing the location of an active site or functional interface,

perhaps allowing the putative biochemical role of the protein

to be modeled in a systems biology context, even if they are

not of sufficiently high accuracy to allow drug design. 

In summary, attempts to predict the total number of folds in

nature are still hampered by uncertainties and approxima-

tions. Most calculations predict somewhere in the range of

1,000-10,000 folds. Encouragingly for our understanding of

evolution and biological systems, we now know the fold for

many of the largest families, in particular those that domi-

nate the genome annotations. Some 800 CATH folds and an

additional 1,830 structurally uncharacterized Pfam families

can already be assigned to approximately 70% of proteins

predicted from genome sequences. Structural genomics ini-

tiatives that target the large structurally uncharacterized
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families can be expected to succeed in mapping fold space

for a significant proportion of sequence space over the

coming years. 
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