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Abstract: Yeasts are one of the main ingredients responsible for flavor precursors production as-
sociated with sensorial characteristics in chocolate. Using wild yeast isolated from cocoa beans
fermentation is emerging as a strategy for developing starter cultures. However, the volatile com-
pounds (VCs) produced by yeasts are not yet known. This study aimed to select wild yeasts with
the potential to produce volatile compounds associated with desirable flavor attributes. A total
of 150 wild yeasts strains were isolated from the spontaneous cocoa beans fermentation, of which
40 were identified by morphology and physiological features. VCs produced were identified and
quantified using SPME-GC-MS and GC-FID and profiles were evaluated statistically by PCA and
cluster analysis for the compounds that had a high odor threshold value. Thirty-six VCs produced by
these yeasts were identified into six main families, namely esters, alcohols, acids, aldehydes, ketones,
and pyrazines. PCA showed the separation of the yeasts into two main clusters. Strains, Y195 and
Y246, belong to the first cluster and are the highest producers of alcohols related to floral perceptions.
In the second cluster, thirty-three yeasts were grouped by their ability to produce esters. Of all of
them, Y110MRS stood out for producing 2-phenyl ethyl acetate and isoamyl acetate associated with
fruity perceptions. This screening allowed us to identify yeasts that produced VCs of technological
interest and which could be used to develop a starter culture.

Keywords: yeasts; cocoa beans; VCs; GC-FID; PCA; aroma

1. Introduction

Cocoa beans (Theobroma cacao L.) are the primary source for the production of chocolate
and cocoa products. Cocoa beans’ worldwide production was estimated at 4728 million tons
in 2019–2020, of which 18.8% was produced by America [1]. Colombia is considered the
10th producer worldwide, at 63,416 tons of cocoa beans [2]. According to the International
Cocoa Organization, there are two main categories for cocoa beans, bulk or ordinary and
fine or flavor cocoa [3]. Fine or flavor cocoa is known for its high quality, in particular for
its flavor and aroma properties [4]. Between 2018 and 2020 the exporters of cocoa beans
increased from 3 to 4 million, approximately [5]. This increased market is due to consumer
preferences for healthier chocolate with a single origin and organoleptic properties. As
a result, this special cocoa has a differential price compared to the bulk cocoa market; it
is estimated that a ton of bulk cocoa has a value between US $2500 and US $2700, while
fine or flavor cocoa has values that vary between US $3500 and US $10,000 per ton [6].
Colombia’s cocoa is recognized worldwide for its characteristic taste and aroma [7]; thus, it
has the potential to advance the fine and aroma market.

Production of fine or flavor cocoa is influenced by many factors related to the harvest
and post-harvest processes, such as genotype, agroclimatic and edaphoclimatic conditions,
fermentation, drying, and roasting [8–11], resulting in a product with variable quality
and flavor heterogeneous characteristics. To improve cocoa beans’ sensorial quality from
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harvest to harvest, one of the main strategies employed is to standardize the cocoa bean
fermentation processes using starter cultures. Spontaneous cocoa bean fermentations are
mediated by succession with microorganisms that include yeasts, lactic acid, and acetic
acid bacterium, filamentous fungi, and spoilage bacteria. Among these microorganisms,
yeasts are essentials because they are involved in the conversion of sugars into ethanol as
well as aromatic secondary metabolites that may contribute to the flavor of cocoa [8,12].

Therefore, there is a consensus that yeasts are mainly responsible for the production
of compounds associated with good sensorial characteristics [13]. Selection of microbial
strains, in the cocoa industry, for starter culture is based on the properties thereof, such
as tolerance to high ethanol, temperature and acid concentration, resistance to low pH,
pectinolytic activity, volatiles compounds production with aroma characteristics, microbial
stability, and high fermentation activity [14]. For example, Samagaci et al. [15] isolated
36 yeast pectinolytic strains from spontaneous cocoa beans fermentation that were studied
for their response to stress conditions such as high temperature, alcohol, and acid concen-
tration, and low pH. As a result, the authors found that a combination of factors, such as
temperature with alcohol or acid, constitute a limiting factor for the growth of pectinolytic
yeasts during cocoa bean fermentation. Only strain YS201 was able to develop a response
to combined acid and heat shocks. They concluded that the selection of pectinolytic yeasts
strains as starter cultures for cocoa fermentation is not an adequate strategy. Similar find-
ings have been reported by Koffi et al. [16], who isolated different strains of high-ethanol
producers under physical–chemical stress conditions from spontaneous cocoa fermentation.
They found that two strains, Saccharomyces cerevisiae YB14, and Pichia Kudriavzevii YP13,
were able to resist parameters such as temperature, pH, ethanol, and organic acids. Thus,
these two strains were best adapted to combined metabolite stress and they may be useable
in starter cultures in cocoa fermentation.

On the other hand, some studies have explored the selection of strains based on
volatile compounds production with aroma characteristics. In this context, Koné et al. [13]
isolated yeasts associated with spontaneous cocoa fermentation and qualitatively evalu-
ated the aromatic compounds produced by these species. Indeed, the authors identified
volatiles compounds produced by Pichia Kudriavzevii, Saccharomyces cerevisiae, Galactomyces
geotrichum, and Wickerhamomyces anomalus. These yeasts produced a total of 33 aroma
compounds grouped into four families such as esters, alcohols, acids, and others, which
could produce a great impact on the sensory qualities of cocoa liquor and chocolate. It
is important to mention that yeasts produce volatile compounds (VCs) that can enhance
sensory characteristics, but they do not prioritize one in particular, which makes it difficult
to design culture starters. Meersman et al. [17] selected thermotolerant and high-acetate
ester-producing parental S. cerevisiae strains for a generation of new hybrids that combine
these two properties. The results showed that these hybrids influence the final chocolate
flavor, producing aroma-active flavors and limiting the production of undesired off-flavors.
Interestingly, their results indicate that the selection or development of high-acetate ester-
producing strains can yield fruitier chocolates. Several criteria have been developed to
select yeasts for cocoa bean fermentation. However, these strategies are associated with
their ability to grow under stress conditions and the production of volatile compounds.
Among these strategies, the most representative for the selection of wild yeasts have been
the use of volatile compounds, but this approach has been only qualitative, and it is impossi-
ble to know if compounds produced by yeast reached the odor-active concentration. In our
view, the quantitative assessment of volatile compounds production is needed to identify
yeasts with the best potential to produce odor-active compounds. Therefore, we propose
the application of PCA to the concentrations of VCs that exceed the detection threshold by
each wild yeast, to establish relationships between these variables, which will help choose
yeasts that are easy to measure and cost-effective. Based on this strategy, the selected
yeasts will employ in future assays to carry out starter cultures that achieve improved
fermentation processes. In this context, the present contribution aimed to select wild yeasts
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with the most potential to produce volatile compounds associated with desirable flavor
attributes as well as floral and fruity aromas.

2. Results and Discussion
2.1. Yeast Isolation

A total of one hundred fifty (150) wild yeast strains were isolated from spontaneous
cocoa bean fermentations of three localities in Santander, Colombia. The morphological
characterization of yeasts showed thirteen different morphotypes (M) (Figure 1); 52% of
the strains (21 isolates) were identified at the genus level, while a total of 48% isolates
did not match any of the identities given by RapID Yeast Plus System. Four genera of
yeasts were identified: Hanseniaspora (n = 9), Saccharomyces (n = 7), Pichia (n = 5), and
Rhodotorulla (n = 1).
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M7, morphotype 7; M8, morphotype 8; and M9, morphotype 9.

Literature review indicates that yeasts composition during the cocoa fermentation
process is directly responsible for developing the flavor and aroma of chocolate. A previous
work carried out in the same research group that analyzed the VCs present in different
cocoa liquors found 24 compounds produced by yeasts, which suggests that some of the
compounds produced during fermentation can be maintained despite the roasting process,
for example, 3-methyl butyl acetate and 2-phenylmethyl acetate are also present in cocoa
liqueurs. After the roasting process, a greater variety of compounds appear due to the
oxidation of alcohols, which decreases their concentration with respect to the fermentation
process and give rise to the formation of compounds such as aldehydes and ketones, which
they increase their variety and concentration in cocoa liqueurs. Therefore, it is vitally
important to know the compounds produced by yeasts that positively impact the quality
of the final product in order to better design the starter inoculums [18].

The most frequently reported genera in fermentation cocoa in countries, such as
Colombia, Brazil, Cuba, Ghana, Indonesia, Dominican Republic, Malaysia and Mexico
are Saccharomyces, Pichia, Hanseniaspora, Kluyveromyces, Hansenula, Wickerhamonyces and,
Candida [12]. For example, a study conducted by Lozano Tovar et al. [19] identified the
species Wickerhamomyces anomalus, Debaryomyces hansenii, Meyerozyma guillermondii, Pichia
guillermondii, Pichia Kudriavzevvi, Pichia manshurica, Trichosporon asahii, and Candida para-
psilosis from several cocoa fermentation processes in three regions of Colombia. Their
results showed that the strains W. anomalus, D. hansenii, and M. guillermondii were the most
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promising to be included in a microbial starter culture for cocoa bean fermentation, due
to their tolerance of high concentrations of sugars, acidity, and temperature. Experiments
lead in Brazil by Magalhaes et al. [20], isolated yeast strains of the genus Candida, Hanse-
niaspora, Rodhotorula, Saccharomyces, Pichia, Saccharomycopsis, and Trichosporon during the
fermentation of the three cocoa hybrids (pH 9, pH 15, and pH 16). Their results revealed
that S. cerevisiae was predominant during fermentation in all experiments, followed by H.
uvarum and Pichia. In addition, Koné et al. [13], isolated Saccharomyces cerevisiae, Candida
tropicalis, Pichia kudriazevii, Pichia galeiforms, Galactomyces geotrichum, and Wickerhanomyces
anomalus. Amount these yeasts found that P. kudriazevii, S. cerevisiae, G. geotrichum, and
W. anomalus were the strains that contributed to the formation of cocoa-specific aroma
compounds. Therefore, our results are in agreement with previous studies, which confirm
that the predominant genera of wild yeast in cocoa fermentation in Colombia are Saccha-
romyces, Pichia, Hanseniaspora, Kluyveromyces, Hansenula, Wickerhamonyces, and Torulaspora.
However, to the best of our knowledge, there are no previous reports associated with the
concentration of volatile compounds that can be produced by these strains.

2.2. Identification and Quantification for Volatile Compounds (VC’s)

The results related to the identification of VCs for each wild yeast will be exemplified
using the yeast Y111. Each compound was tentatively identified using the mass spectra
library since standards or chromatographic retention indexes were not available.

Figure 2 shows the chromatogram of yeast Y111, where major intense peaks A and B,
elute at 14.601 and 37.568 min, respectively. The first peak (A) corresponds tentatively to
3-methyl butyl acetate and the second (B) is tentatively 2-phenylmethyl acetate.; however,
Figure 3 shows the mass spectrum for 3-methyl butyl acetate to illustrate the analysis de-
veloped. Figure 3a shows the spectrum of the sample while Figure 3b shows the spectrum
of NIST SDR 169 libraries from 3-methyl butyl acetate, and a comparison of them figures
confirms that both mass spectra coincide with a probability of certainty of 90%. In addition,
the fragmentations patterns models of this compound include the following fragments:
acetyl at m/z = 43, isobutyl at m/z = 55, isoamyl at m/z = 70 and ethyl acetate at m/z = 87,
which suggests that signal of spectrum probably corresponded to a 3-methyl butyl acetate.
Additionally, the identity of the compound was confirmed by comparison of their experi-
mental Kovats Index (KIexp = 859) with reported in the literature for 3-methyl butyl acetate
(KI = 867) (Table 1). The absolute relative error between KIexp and KI was 0.9%, therefore,
this result confirms the identity of the compound. The results obtained for 3-methyl butyl
acetate coincided with those found by Jjunju et al. [21], who confirmed the structure and
identity of this compound using the presence of the fragment peak at m/z = 87.

This procedure was performed for all volatile compounds produced by each wild yeast,
obtained a total of thirty-six compounds were tentatively identified and were grouped as
follows: 12 esters, 6 alcohols, 6 acids, 5 aldehydes, 5 ketones, and 2 pyrazines (Table 1). For
the family of alcohols, the most abundant compounds were ethanol, 3-methyl butanol, and
2-phenyl ethanol (2-PE). Ethanol was the compound that reached the highest concentration
of all the volatile compounds evaluated with 974.85 mg/kg, this result is to be expected
because ethanol is a primary metabolic product of the fermentation of sugars, which is
directly related to the growth of yeasts present in the Sabouraud culture medium. In
cocoa fermentation, the ethanol produced by yeasts is used as a carbon source for acetic
acid bacteria and triggers biochemical reactions within the cocoa bean that lead to the
production of aroma precursors [22]. Results presented in Table 1 show that yeasts were
able to produce high concentrations of 2-phenyl ethanol (2-PE), about 51.4509 mg/kg,
evidencing the potential of the strains for producing this important aromatic alcohol during
the fermentation process. The ability to synthesize this compound naturally has been
reported for different strains of yeasts, such as Saccharomyces cerevisiae, Kluyveromyces
marxianus, Kluyveromyces lactis, Pichia fermentans, Pichia anomala, Schizosaccharomyces pompe,
and Hansenula anomala. The compound 2-phenyl ethanol is produced by yeasts using two
routes: converting L-phenylalanine (L-Phe) via the Ehrlich pathway or by de novo synthesis
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from sugars [23–25]. According to Fang Y. et al. 2020, alcohols and acids produced by
microorganisms during cocoa bean fermentation penetrate the cacao bean and start the
chemical reactions that will form the precursor of chocolate’s flavor [11]. Additionally,
the alcohols profile is desirable during cocoa fermentation because they are odor-active
compounds that denote floral notes. Therefore, the use of wild yeasts that produce higher
concentrations of alcohols could have favored the manufacture of flavor cocoa beans with
floral notes.
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Esters are key compounds in the development of desirable flavors [9,11]. The most
abundant compounds found in the esters family were 3-methyl butyl acetate (317.1846 mg/kg),
2-phenyl ethyl acetate (276.7966 mg/kg), and ethyl acetate (102.0740 mg/kg). Between
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them, the 2-phenyl ethyl acetate (2-PEA) is an interesting phenolic aroma compound in
cocoa bean fermentation due to its floral, fruity, and honey-like aroma. The chemical pro-
duction of 2-PEA is derived from the availability of 2-PE, which is its precursor. This VC is
obtained from the esterification of 2-PE with acetic acid and through the transesterification
of 2-PE with acetate esters [25]. Amount yeasts, Hanseniaspora stands out for being a genus
with more efficiency to produce 2-PEA [9,26]. In the case of 3-methyl butyl acetate, its
production can be explained by the esterification of 3-methyl butanol by yeasts. On the
other than, the synthesis of ethyl- acetate depends on the ethanol concentration. In addition,
3-methyl butyl acetate or isoamyl acetate, 2-phenyl ethyl acetate, and ethyl acetate are
considered markers of sensory quality in cocoa fermentation [26] and therefore, the isolated
yeasts in this study seem to have esters production potential that improve cocoa beans’
sensorial qualities.

Our results showed the formation of acetic acid, an important contributor to the
aroma of unroasted cocoa seeds that were formed during fermentation by action enzymatic
degradation of the fruit pulp [27]. Of the pyrazines, two compounds were identified. It
is known that pyrazines in cocoa beans are originated from the Strecker degradation in
Maillard reactions during the roasting of cocoa beans [22]. However, in this study, two
pyrazines were identified in the samples tested. It should be noted that pyrazines are not
a family of compounds commonly found during fermentation, however, certain studies
have reported that it is possible to find them and they are not exclusively produced during
cocoa roasting [18].

On the other hand, in the present study three compounds were identified (2-pentanol,
α-terpineol, 2,4-di-tert-butylphenol) that had not been reported in similar studies but that
correspond to metabolites that can be produced by yeasts. Thus, for example, α-terpineol
is a metabolite related to floral aromas associated with lilacs (Table 2). This could be
produced thanks to the enzyme monoterpene synthase (MTS) in the early stages of the
formation of ergosterol, which is a structural compound of yeast Saccharomyces cerevisiae [28].
Indeed a study conducted by King, (2000) revealed the ability of Saccharomyces cerevisiae,
Kluyveromyces lactis and Torulaspora delbrueckii to convert monoterpenoids. These yeasts
demonstrated the greatest number of reactions, between them, the conversion of nerol and
linalool to α-terpineol [29].

Table 1. Volatile compounds concentrations (mg/kg) produced by yeasts quantified by gas chro-
matography and mass spectrometer (GC–MS) and their odor threshold value.

Families
Compounds Compound

Concentration [mg/kg]
OTV * [mg/kg]

Min Max

alcohols

ethanol 1.9755 974.8454 40
3-methylbuthanol 0.1687 65.4272 3

2-pentanol 0.0813 10.2901 4
2-phenylethanol 0.0759 51.4509 14
alpha-terpinol 0.0034 2.4455 0.33

2,4-DI-tert-butylphenol 0.1968 6.3304 -

esters

Ethyl acetate 0.0141 102.0740 5
2-penthyl acetate 0.2473 14.5378 0.005

3-methylbuthyl acetate 0.0314 317.1846 0.16
methylpropil acetate 0.0315 25.1614 1.6

ethyl benzoate 0.0002 17.3732 0.06
di-ethyl butanodiate 0.0245 3.8429 200

ethyl octanoate 0.0094 12.9963 0.58
2-phenylethyl acetate 0.0081 276.7966 0.65

ethyl decanoate 0.0104 14.3622 0.2
ethyl 3-phenylpropanoate 0.0547 12.0306 0.0016

ethyl 3-phenyl-2-propenoate 0.0355 6.9843 0.0011
ethyl dodecanoate 0.0150 10.4593 1.5
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Table 1. Cont.

Families
Compounds Compound

Concentration [mg/kg]
OTV * [mg/kg]

Min Max

aldehydes

3-methylbutanal 0.0069 18.6677 0.001
phenylacetaldehyde 0.0054 54.0838 0.004
2-phenyl-2-butenal 0.0107 0.1917 1.7

4-methyl-2-phenyl-2-pentenal 0.0007 2.9953 -
5-methyl-2-phneyl-2-hexenal 0.0029 3.0785 -

ketones

3-hydroxi-2-butanone 0.0013 0.0603 150
2-heptanone 0.0125 1.6152 0.14
2-octanone 0.0077 0.0254 0.05
2-nonanone 0.0158 0.1291 0.2

6-methyl-3.5-dihydroxi-2,3-dihydro-4h-pyran-4-one 0.0001 0.3478 0.25

acids

acetic acid 0.0079 76.8848 33
2 methyl propanoic acid 0.0027 0.0861 2.3
3-methylbutanoic acid 0.0009 13.0664 0.022
2-methylbutanoic Acid 0.0125 0.6547 0.05

decanoic acid 0.4681 3.0440 10
dodecanoic acid 0.0447 0.3476 -

pyrazines 2-methylpyrazine 6.4451 6.4451 2.5
2,3,5-trimethylpyrazine 0.0178 0.2596 1.8

* Taken by the authors from: Odor activity values (Aznar et al., 2003 [30]; Cordero et al., 2019 [31]; Cuevas-Glory,
Ortiz-Vazquez, Sauri-Duch, and Pino, 2013 [32]; Culleré, Escudero, Cacho, and Ferreira, 2004 [33]; Feng et al., 2018
[34]; Frauendorfer and Schieberle, 2008 [27]; Jetti, Yang, Kurnianta, Finn, and Qian, 2007yang [35]; Liu, Feng, and
Chen, 2017 [36]; Ouyang et al., 2017 [37]; Qian and Wang, 2005 [38]).

Table 2. Volatile compounds and their perceptions for the Principal Component Analysis.

Family Compounds Attributed Aroma

alcohols

C1 ethanol alcoholic
C2 3-methyl butanol Isoamyl alcohol balsamic fruit
C3 2-pentanol green, fruity, sweet, pungent, plastic–floral
C4 2-phenyl ethanol Phenylethyl alcohol flowery, rose, spicy, honey-like, caramel
C5 alpha-terpineol floral, lilac

esters

C6 ethyl acetate pineapple
C7 3-methyl butyl acetate Isoamyl acetate sweet fruit banana solvent, pear
C8 methyl propyl acetate banana, apple
C9 ethyl Benzoate fruity, sweet, medicinal, cherry, grape

C10 ethyl Octanoate fruity, sweet, musty, floral, pineapple
C11 2-phenyl ethyl acetate flowery (rose), honeyfruity, Sweet
C12 ethyl decanoate fruity, sweet, pear, grape, brandy
C13 ethyl 3-phenylpropanoate fruity
C14 ethyl 3-phenyl-2-propenoate fruity, cinnamon
C15 ethyl dodecanoate fruity floral, sweet

aldehydes C16 3-methyl butanal malty, sweet, chocolate
C17 phenylacetaldehyde nutty, honey-like

acids
C18 acetic acid acid, vinegar
C19 3-methyl butanoic acid sweet, rancid

More of the volatile compounds found in this study were consistent with previous
cocoa fermentation studies. In spontaneous cocoa beans fermentation performed in te Ivory
Coast were identified yeasts that produced a total of 33 aroma compounds, grouped into
esters, alcohols, aldehydes, acids, and ketones. Phenyl ethyl alcohol was the most common
VC produced by all yeast [13]. Experiments lead in Brazil by Magalhaes et al. 2017 [20]
using different cacao variety clones identified twenty-seven volatile compounds during
cocoa fermentation.
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Although ethanol’s concentration was the highest while 3-hydroxi-2-butanone con-
centration was the lowest, these results are insufficient to assure that those compounds’
concentrations reach the levels to be sensed olfactorily; therefore, is very important to
analyze this sense. For example, ethanol has an olfactory threshold value (OTV) greater
than 3-methyl butyl acetate and 2-phenyl ethyl acetate; which emphasizes that these last
compounds are 80 and 17 times easier to perceive than ethanol, respectively. The 3-methyl
butanal was the compound identified and quantified with the lowest OTV (0.001 mg/kg),
which re der this compound approximately 766 times more perceptible than ethanol. This
means that, although the concentration of 3-methy butanal was 52 times lower than of
ethanol, in a one-to-one comparison, the characteristic odor of 3-methyl butanal (flowers)
will be more perceptible than ethanol. Therefore, the concentrations of compounds are
insufficient to perform an equilibrate comparison between different families of compounds
responsible for aroma and flavor.

This work stands out for being the first study in which the volatile compounds
produced by wild yeasts from Colombian cocoa fermentation boxes are identified and
quantified. Additionally, the ability of wild yeasts to produce certain volatile compounds
associated with desired aromas in cocoa beans, such as 3-methyl-1-butanol (floral), 3-methyl
butyl acetate (banana), acetate of 2-phenyl ethyl (honey or strawberries), phenylacetalde-
hyde (walnut), among others; compared with other studies such as Meersman’s that used
commercial yeasts (Meersman et al., 2016).

In addition, it is observed that the compounds mentioned in the previous paragraph
exceed the detection threshold (OTV), therefore, it is very possible that in a directed
fermentation, cocoa beans are obtained with the perceptions previously described and
complemented in the supplementary material (Table S1).

Although an individual analysis of each yeast and each compound can be done, such
an analysis would be extensive due to the large number of analysis possibilities that could
be presented. For this reason, in this work, it was decided to propose an approach based on
PCA (which includes filters) and cluster analysis to prioritize those yeasts with the greatest
potential to produce volatile compounds.

2.3. Principal Component Analysis (PCA)

PCA was carried out to visualize the relationship between volatile compounds and
yeasts. The biplot shows that the first two principal components explained 44% of the total
variance. According to the loading plot (Figure 4), 33 strains of yeasts were characterized
by their relationship with fruit perception. The results showed that yeasts, Y218 and
Y73, were grouped at the positive PC1 region, and ethyl acetate (C6, pineapple), were
associated with this region. Additionally, Y110-mrs yeast was located in positive values of
this component, positively correlating with the volatile compounds 2-phenylethyl acetate
(C11, fruity, honey) and 3-methylbutyl acetate (isoamyl acetate) (C7, banana). While Y231
was associated with ethyl decanoate (C15, fruity). The presence of these esters has been
associated with a fruity perception (Mersman). Ethyl acetate, 2-phenyl ethyl acetate, and
3-methyl butyl acetate (isoamyl acetate) were quantitatively the most prominent acetate
esters, and their concentration varied between strains. Of all yeasts, Y110-mrs presented
the highest concentrations of 2-phenyl ethyl acetate (317.18 ± 9.69 mg/kg) and 3-methyl
butyl acetate (isoamyl acetate (218.03 ± 19.02 mg/kg)).

The strains Y195 and Y246 were placed in the negative PC2 region, and 3-methyl
butanol (C2, malty), 2-phenyl ethanol (C4, floral), phenylacetaldehyde (C17, nutty, honey),
3-methyl butanal (C16) were related with floral and sweet perception. Concentrations
51.45 mg/kg of 2-phenyl ethanol (C4, floral), 65.43 mg/kg of 3-methyl butanol (C2, malty),
and phenylacetaldehyde (C17, nutty, honey) 12.22 mg/kg were found in Y195. While Y246
reached concentrations of 38.52 mg/kg of 2-phenyl ethanol (C4, floral), 34.92 mg/kg of 3-
methyl butanol (C2, malty), and phenylacetaldehyde (C17, nutty, honey) 54.08 mg/kg. Com-
pounds ethyl decanoate (C12, pear, grape, brandy), ethyl 3-phenylpropionate (C13, fruity),
and acids were grouped in the positive region of PC1 but they were not related to yeasts.
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The cluster analysis for yeasts (Figure 5) presented four main groups. Cluster 1
includes strain Y87, which is related to esters, alcohols, and carboxylic acids. Cluster 2
consisted of strains Y195 and Y246, which had the greatest floral contributions. Cluster 3 is
constituted by strain Y200, which has the ability to produce 2-phenyl ethanol and methyl
propyl acetate, associated with floral and fruity perceptions. The last group (cluster 4)
was constituted by strains Y01, Y04, Y11c, Y12, Y13a, Y17, Y19, Y29a, Y33, Y52, Y73,
Y85, Y92a, Y92c, Y97, Y105, Y109sba, Y110sba, Y110mrs, Y111, Y112b, Y117, Y133, Y137,
Y163, Y173mrs, Y187, Y218, Y231, Y233, Y236, Y214b, and Y244. It should be noted that
the majority of yeasts analyzed are found in cluster 4 and these yeasts produced esters
frequently associated with fruity perceptions, which agrees with the typical fruity sensorial
profile of Colombian cocoa [18].
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3. Materials and Methods
3.1. Spontaneous Cocoa Beans Fermentations

Spontaneous cocoa bean fermentations were carried out in five different farms located
in San Vicente de Chucurí (6◦55′48.265′′ N, 73◦24′47.971′′79 W), El Carmén de Chucurí
(6◦50′35.3′′ N, 73◦27′35.8′′ W) and Río Negro (7◦20′14.2222′′ N, 73◦10′41.4552′′ W) in the
department of Santander, Colombia. Fermentations were done during the harvest season.
Cocoa pods of different hybrids were cut from the trees using pruning shears. The pods
were opened with a clean machete and the pulp-cocoa beans mass was removed manually.
After that, beans were transferred to boxes to ferment, following the conditions shown in
Table 3. After fermentation, the cocoa beans were sundried on coverable platforms for a
time varying from 4 to 6 days depending on the weather conditions.

Table 3. Spontaneous cocoa beans fermentation conditions on cacao farms of Santander, Colombia.

Farm Approximate
Content * Opening Pods Boxes

Recubering Turning Fermentation
Time

Drying
Time

Height
(msnm)

Relative
Humidity

(%)

Temperature
(◦C)

Villa Mónica 1 500 kg 10–12 h before start
of fermentation burlap bags turned daily,

starting at 48 h 6 days 6 days 879 77.2 22.4

El Paraiso 1 500 kg 10–12 h before start
of fermentation burlap bags turned daily,

starting at 48 h 7 days 6 days 1140 77 23

La Meseta 1 400 kg 2 days before start
of fermentation burlap bags turned daily,

starting at 48 h 6 days 6 days 715 77 26

Parcela 7 2 800 kg 2 days before start
of fermentation burlap bags turned daily,

starting at 48 h 7 days 6 days 325 58 30

El Dique 3 200 kg 2 days before start
of fermentation burlap bags turned daily,

starting at 48 h 8 days 4 days 1039 80 32

1 Farms located in San Vicente de Chucurí, 2 El Carmé de Chucurí and 3 Río negro. * Aproximate content of
pulp-cocoa beans mass in a box fermentation.

3.2. Sampling

A typical sample of 100 g was collected, taking 20 g of pulp-cocoa bean mass from
five different points inside box fermentation. All samples were taken at 30 cm under the
cocoa pulp–bean mass surface. The sampling and measurement of temperatures were done
at 0, 6, 12, 18, 24, 36, 48, 72, 96, and 120 h of fermentation. For each time, samples were
transferred into sterile plastic polyethylene bags and stored at 4 ◦C.

3.3. Culture-Dependent Microbiological Analysis

A sample of 25 g of pulp-cocoa beans mass from each collected sample was added
to 225 mL of sterile saline–peptone water (10 g/L bacteriological peptone (Merck) and
5 g/L NaCl (Merck, Darmstadt, Germany), pH 7.0 ± 0.2). Then, the mixture was manually
shaken for 3 min to obtain a cocoa pulp–bean solution. Subsequently, serial dilutions were
prepared up to 10−6 and aliquots of 100 µL from each dilution were spread by pouring onto
inoculated Sabouraud dextrose agar plates (Merck, Darmstadt, Germany) supplemented
with 100 mg/L of chloramphenicol (Sigma-Aldrich, Steinheim, Germany). The plates were
incubated at 30 ◦C for 2 days. Isolates were purified through subculturing plating and kept
at 4 ◦C for future identification.

3.4. Yeast Identification

Pure cultures of yeasts were selected and identified visually by their typical morpholo-
gies according to established by Kurtzman et al., 2011 [39]. The morphological features
observed for each strain were: color, shape, surface, and elevation. Afterward, strains were
identified through RapID Yeast Plus System (Remel, Inc., Lexena, KS, USA) and stored in
Sabouraud broth with glycerol 20% (v/v) at −80 ◦C.

3.5. Screening of Yeast Isolates

A schematic diagram of the main steps employed for the selection of wild yeasts with
the potential to produce VCs is illustrated in Figure 6.
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fingerprints.

Screening began by fixing the sample size of wild yeast for analysis; for this a pop-
ulation model with a confidence level of 95% and error of 6% [40] was used. Afterward,
each wild yeast that conformed to the sample was analyzed for the volatile compounds
produced by them, as follows.

3.5.1. Extraction of Volatile Compounds

Volatile compounds (VC) produced by isolated wild yeasts were determined as follows:
(i) each isolated wild yeast was incubated at 30 ◦C, 150 rpm for 12 h using 3 mL Sabouraud
broth (Merck); (ii) in the same conditions, vials containing only 3 mL sterile Sabouraud
broth were evaluated (control). After that, 2 g of this broth was conserved at 4 ◦C until
volatiles compounds were extracted using the method proposed by Palencia-Blanco et al.,
2020 [18]. Briefly, the vial was placed in a water bath at 60 ◦C for 15 min; then, 50/30-µm
fibers of divinylbenzene/carboxene/polydimethylsiloxane (DVB/CAR/PDMS, Supelco,
Bellefonte, PA, USA) were exposed into the headspace of the vials for 40 min at 60 ◦C.
Finally, the device that contained the fiber was removed from the vial and the vial was
transferred to a GC-injector.

3.5.2. Identification of Volatile Compounds

Volatile compounds adsorbed in microfibers were desorbed using a GC Hewlett-
Packard 7890A with an HP 5972 mass selective detector (MSD), Agilent Technologies.
Briefly, fibers were exposed for 7 min at 265 ◦C. Then, the volatile compounds desorbed
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therefrom were injected into the column using a split mode ratio of 3:1. The temperature
gradients used in the oven column were: 30 ◦C (0–10 min), 3 ◦C·min−1 up to 60 ◦C,
10 ◦C·min−1 up to 150 ◦C, 4 ◦C·min up to 200 ◦C, 4 ◦C·min−1 up to 250 ◦C, finally 250 ◦C
(5 min). Separation of compounds was performed in an HP-5 column (30 m × 0.25 mm
i.d. × 0.25 µm film thickness). Nitrogen was used as the gas carrier with a constant
flow velocity of 1 mL·min−1. Later, volatile compounds were analyzed into the mass
spectrometer using an electronic impact ionization energy and source temperature of 70 eV
and 230 ◦C, respectively.

Volatile compounds identification was performed as follows: (i) all compounds with a
relative chromatographic area greater than 0.5% were selected for analysis; (ii) mass spectra
obtained were compared with the mass spectra of Wiley 275L and NIST SRD69 libraries,
and (iii) manual comparisons were performed between the experimental Kovats indexes
(KIexp) and the Kovats indexes reported in the literature (KIlit) (Babushok, Linstrom, and
Zenkevich, 2011). KIexp for the compounds was calculated using the following equation:

KIexp = 100n + 100
[

tRx − tRn

tRN − tRn

]
(1)

where: KIexp = experimental Kovats index of compound x, n = number of carbon atoms of
n-alkane eluted from compound x, tRx = retention time of compound x, tRn y tRN = retention
time of n-alkanes that eluted before and after compound x, respectively. In this work an
n-alkanes series varying from Cx to Cy was used.

3.5.3. Quantification of Volatile Compounds Produced by Each Yeast

Quantification of volatile compounds produced by each yeast was performed using
the procedure described in Section 3.5.2 with some modifications. A flame ionization
detector (FID) was used instead of an MS detector, and hydrogen was used as carrier
gas instead of nitrogen. Finally, quantification was performed following the procedure
described by Palencia-Blanco et al. [18]. Briefly, 20 µL of toluene at 4200 mg/L was added
to 2 mL of methanol as an internal standard (IS). The concentration of volatile compounds
was calculated using Equation (2) and response factors (RF) reported by [18] expressed as
mg/L. Each sample was evaluated by duplicate.

[VC] =
RF×AreaVC × [IS]

ÁreaSI
(2)

where, VC: volatile compound concentration; RF: response factor; Area VC: volatile com-
pound area; Area IS: internal standard; and IS: internal standard.

3.6. Statistical Data Analysis

For each wild yeast the determination of volatile compound concentration was carried
out in duplicate and all results were expressed as an average. Volatile compound concen-
trations were compared with the odor threshold values (OTVs) from the literature; the
main purpose of this comparison was to identify the VCs that had a concentration greater
than OTV, and, consequently, could be more important in the potential profile of aromas
produced by the wild yeasts.

Two multivariate methods were used to explore the possible contribution that each
volatile compound concentration produced by each yeast could have to the aroma. First,
principal component analysis was used (PCA) to classify the yeasts according to volatile
compounds produced. For this analysis, the data sets were transformed as follows: volatile
compounds with an occurrence of less than five times in the entire matrix were elimi-
nated, the same procedure was carried out for yeasts that produced less than five volatile
compounds. Then, volatile compound concentrations were converted to Z-scores [17].
The second method performed was a Hierarchical cluster analysis (HCA) using Ward’s
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minimum variance method and half-squared Euclidean distances. The data were processed
with Unscrambler X software (version 10.5.1, CAMO Inc., Oslo, Norway).

4. Conclusions

The proposed methodology to select yeasts based on the volatile compounds they pro-
duce allowed the concrete prioritization of individuals exhibiting the highest probabilities
of producing volatile compounds whose concentrations exceed the odor threshold value
(OTV). It also made it possible to classify yeasts according to their tendency to produce
floral compounds, such as Y195 and Y246, or yeasts that produce both floral and fruit
compounds, such as Y200. This information is key for the development of starter cultures
that will improve the sensory characteristics of liqueurs and chocolate products that will be
produced using cocoas from targeted fermentation.

Supplementary Materials: The following supporting information can be downloaded online, Table
S1: Range of concentrations of volatile compounds produced by yeasts and their corresponding
detection limits.
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