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A B S T R A C T   

Objectives: How to perform an intention to treat (ITT) analysis when a patient has a baseline value but no follow- 
up measurements is problematic. The purpose of this study was to compare different methods that deal with this 
problem, i.e. no imputation (standard and alternative mixed model analysis), single imputation (i.e. baseline 
value carried forward), and multiple imputation (selective and non-selective). 
Study design and setting: We used a simulation study with different scenarios regarding 1) the association between 
missingness and the baseline value, 2) whether the patients did or did not receive the treatment, and 3) the 
percentage of missing data, and two real life data sets. 
Results: Bias and coverage were comparable between the two mixed model analyses and multiple imputation in 
most situations including the real life data examples. Only in the situation when the patients in the treatment 
group were simulated not to have received the treatment, selective imputation using this information out
performed all other methods. 
Conclusions: In most situations a standard mixed model analysis without imputation is appropriate as ITT 
analysis. However, when patients with missing follow-up data allocated to the treatment group did not received 
treatment, it is advised to use selective imputation, using this information, although the results should be 
interpreted with caution.   

1. Introduction 

The standard method to estimate treatment effects in a randomised 
controlled trial (RCT) is an intention-to-treat analysis. In an intention-to- 
treat analysis, all patients randomised into the treatment condition 
should be analysed as being treated, regardless of receiving the complete 
treatment, only partly or nothing at all. 

The general principle of intention-to-treat analysis is widely recog
nised. However, in most methods dealing with the analyses of RCT data, 
the follow-up measurement(s) are used as the outcome, whereas the 
baseline value is used as a covariate. When using these methods, a 
problem arises when a baseline measurement is available for a particular 
patient, while all follow-up measurements are missing. The intention-to- 
treat principle states that these patients should be analysed according to 
their assigned condition. Yet, in an analysis adjusted for the baseline 
value, the data of these patients cannot be included in the analysis. 
There is a lot of discussion going on about how to deal with these pa
tients. Some epidemiologists argue that data of these patients should not 

be taken into account in the analysis, as no data is available on the 
follow-up measurements after treatment initiation. Others argue that 
not including data of these patients in the analysis drives against the 
principle of intention-to-treat and leads to bias in the effect estimates. In 
other words, the definition of intention-to-treat and how to deal with 
this principle in statistical analyses of RCT data remains unclear [1–9]. 

Several suggestions are provided in the literature on analysing RCT 
data to deal with the above mentioned problem. The most classical so
lution is to impute the follow-up measurement(s) with the baseline value 
carried forward [5]. Although highly criticized, this method is still 
widely used [10]. Multiple imputation using more complicated impu
tation methods (such as predictive mean matching) are suggested as a 
better alternative [11,12]. If there is more than one follow-up mea
surement available, a mixed model analysis can be performed to esti
mate treatment effects. In mixed model analysis, data of patients with a 
baseline measurement but missing follow-up measurements are mostly 
ignored (i.e., are not part of the analysis). This is based on the idea that 
the use of a mixed model analysis (adjusting for the baseline value) is 
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enough to deal with the missing data. However, although it is true that a 
mixed model analysis is suitable for the analysis of longitudinal data 
with outcome missingness [13,14], the cases with only a baseline value 
are not included in the analysis, because no follow-up outcome mea
surements are available. Because of this phenomenon, an alternative 
mixed model analysis has been proposed in which the baseline value is 
part of the longitudinal outcome and the model is estimated without the 
inclusion of the treatment variable, but with including time and the 
interaction between treatment and time. Due to the fact that the treat
ment variable is not part of the model, the intercept of such an analysis 
reflects the combined baseline value for both the treatment and control 
group. In this alternative mixed model analysis, the regression coeffi
cient for the interaction between treatment and time reflects the treat
ment effect [13,15,16]. If the follow-up outcome measurements for a 
particular patient are only partly missing, there is no problem in 
applying a mixed model analysis (adjusting for the baseline value) to 
deal with the missing data [17]. 

Because there remains heterogeneity in applied methods to deal with 
the problem of missing data on all follow-up measurements while the 
baseline value is available, the purpose of this study is to compare the 
performance of different methods to deal with this problem. The 
methods that are evaluated in this study are all frequently used in 
practice. 

2. Methods 

2.1. Missing data scenarios 

Two scenarios for missing data were evaluated: 1) missing 
completely at random, and 2) missing at random, in which missingness 
was associated with the baseline value of the outcome. Both scenarios 
were evaluated in two situations: 1) a situation where there is no in
formation about whether or not the patients with missing data in the 
treatment group actually received the treatment, and 2) a situation in 

which the subjects with missing data in the treatment group did not 
receive the treatment. For all scenarios, 5% missing, 10% missing, 20% 
missing and 40% missing were evaluated. 

2.2. Simulations 

We simulated longitudinal RCT datasets with a normally distributed 
outcome variable. The simulation set up included two follow-up mea
surements on 150 patients. A dichotomous treatment variable was 
created that randomly and evenly assigned the simulated patients to 
either the control group or the treatment group. The parameters used for 
the simulation set up were derived from one of the datasets used in the 
real-life data examples. Both the random intercept variance and the 
residual variance were about 0.5 (i.e. 0.7 squared), so the intraclass 
correlation coefficient between the two repeated measurements is equal 
to 0.5. The baseline value was generated from the value at the first 
follow-up measurement with a regression coefficient of 0.6. The model 
which was used for the simulation included an intercept of 1.5 and a 
regression coefficient for treatment of 1. For each condition 500 samples 
were generated. The simulations were performed with STATA and Box 1 
and box 2 show the syntax used for the simulations. 

To evaluate the performance of the different methods, we examined 
bias, and coverage probability of regression coefficients. Bias was 
determined by comparing the difference between the true treatment 
effect and the treatment effects estimated with the different methods. 
The percentage of times that the confidence interval of the estimated 
treatment effect included the true treatment effect was used to assess the 
coverage probability. Since a 95% confidence interval was used, the 
ideal coverage should have a score of 95% [18]. 

2.3. Statistical methods 

We compared the following methods with each other: 1) no impu
tation, 2) single imputation, using the baseline value carried forward, 

Box 1 
Syntax used to simulate RCT datasets with complete data  
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and 3) multiple imputation using predictive mean matching [11,12]. 
The imputation model included the baseline value of the outcome and 
the treatment variable and in all situations 20 imputations were per
formed. Additionally, in the scenarios where the patients who were 
randomized to the treatment group with missing data on follow-up 
measurements did not receive the treatment a selective imputation 
model was used in which data of these patients were imputed as if they 
were control patients. 

For all situations, mixed model analysis was used to estimate treat
ment effects. Regarding no imputation, two different analyses were 
performed: 1) a standard mixed model analysis with the follow-up 
measurements as the outcome adjusting for the baseline value. In this 
first analysis, the patients with a baseline measurement but without all 
follow-up measurements were ignored (i.e., these patients were not part 
of the analysis) (Equation (1)). 

Yt = β0 + β1X + β2Yt0 (1)  

where, Yt = the outcome measured at the follow-up measurement(s), X 
= treatment variable, β1 = overall treatment effect, β2 = is the effect of 
the outcome variable measured at baseline, and Yt0 = outcome variable 
measured at baseline. 

2) an alternative mixed model analysis in which both the baseline 
value and the follow-up measurements were used as the outcome 
meaning that also patients with only a baseline value were included in 
the analysis. This model consisted of time and the interaction between 
treatment and time [13,15] (Equation (2)). 

Yt = β0 + β1time + β2time × X (2)  

where, Yt = the outcome measured at the baseline and follow-up mea
surement(s), X = treatment variable, time = the time variable, β1 =

effect of time for the treatment group coded 0, and β2 = overall treat
ment effect. 

2.4. Real-life examples 

The first real-life example is taken from an intervention study in 
which the effectiveness of a long-term homocysteine-lowering treatment 
with folic acid plus pyridoxine in reducing systolic blood pressure was 
evaluated [19]. In this 2-year, randomized, placebo-controlled trial, a 
baseline measurement and two follow-up measurements (after 1 year 
and after 2 years) were performed. At each time-point systolic blood 
pressure was measured four times and the average value was used in the 
analysis. In this first example 6% of the patients only had a baseline 
value. 

The second real-life example is taken from a study by Warmerdam 
et al. [20,21] in which an RCT was performed to compare internet based 
cognitive behavioral therapy (CBT), internet based problem solving 
therapy (PST) and a waiting list control group (WL) regarding treatment 
of patients with depressive symptoms. In this study, besides a baseline 
measurement, measurements were taken at 5, 8 and 12 weeks after 
baseline and both depression and anxiety were used as outcome vari
ables. In this second example 22% of the patients only had a baseline 

Box 2 
Syntax used to simulate RCT datasets with MAR data  
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value. 
Regarding the real-life data examples the same statistical methods 

were applied as for the simulated datasets and all analyses were per
formed with STATA (version 15). 

3. Results 

3.1. Simulations 

Tables 1–4 show the results of the simulations. It should be realised 
that the real treatment effect is basically an empirical true value and not 
equal to 1. This is because it is based on an analysis adjusted for the 
baseline value of the outcome. When missing is completely at random, 
the standard mixed model analyses and multiple imputation performed 
well in all situations, while the alternative mixed model analyses per
formed slightly worse and showed underestimated regression co
efficients. Single imputation based on the baseline value carried forward 
performed much worse (Table 1). When missingness was associated with 
the baseline value, both mixed model analyses performed equally well, 
although the estimates with standard mixed model analyses were 
slightly overestimated, while the estimates with the alternative mixed 
model analyses were slightly underestimated. Multiple imputation per
formed slightly better than both mixed model analyses, although the 
differences were small. Single imputation based on the baseline value 
carried forward, again, did not perform well (Table 2). 

In the situations in which the subjects with missing data in the 
treatment group did not receive the treatment the results of the simu
lations were quite different (Tables 3 and 4). Both mixed model analyses 
lead to highly overestimated regression coefficients, irrespective 

whether the missing values were completely at random or related to the 
baseline value. The performance became worse with increasing per
centage of missing data. In all situations, the alternative mixed model 
analyses performed slightly better than the standard mixed model ana
lyses. Multiple imputation also lead to overestimated regression co
efficients, but performed well in the situation where the missing values 
were related to the baseline value. Single imputation based on the 
baseline value carried forward, on the other hand, performed better than 
both mixed model analyses and multiple imputation in all situations. 
Selective multiple imputation, taking into account that the patients in 
the treatment group did not received the treatment, performed best in all 
situations. However, this method also gave slightly overestimated 
regression coefficients in the situation in which the missing values were 
related to the baseline values. 

3.2. Real-life examples 

Tables 5 and 6 show the results of the real-life examples. In the first 
example, 6% of the patients had only a baseline value, but there was a 
huge difference between the baseline values of the two groups. Never
theless, the regression coefficients for the standard mixed model analysis 
and multiple imputation were highly comparable. The alternative mixed 
model analysis on the other hand showed a slightly lower regression 
coefficient. The regression coefficient obtained from the analysis with 
single imputation based on the baseline value carried forward was much 
lower than the other estimated regression coefficients (Table 5). 

In the second real-life example, 22% of the patients had only a 
baseline value. The baseline values of the group with only a baseline 
value were slightly higher than the baseline values of the patients with 

Table 1 
Results (bias and coverage) of the simulation analysis: missing completely at random.    

No imputation Imputation 

% missing Real valuesa Standard mixed model Alternative mixed model Single (BVCF) Multiple (PMM) 

5% 0.723 (0.153) 0.722 (0.157) 0.698 (0.148) 0.689 (0.154) 0.719 (0.157) 
Bias − 0.001 − 0.025 − 0.034 − 0.004 
Coverage 94% 93% 94% 93% 
10% 0.723 (0.153) 0.722 (0.161) 0.698 (0.152) 0.654 (0.155) 0.724 (0.161) 
Bias − 0.001 − 0.025 − 0.069 0.001 
Coverage 95% 93% 91% 94% 
20% 0.723 (0.153) 0.720 (0.171) 0.696 (0.161) 0.578 (0.154) 0.727 (0.169) 
Bias − 0.003 − 0.027 − 0.145 0.004 
Coverage 94% 92% 82% 93% 
40% 0.723 (0.153) 0.722 (0.196) 0.696 (0.187) 0.436 (0.147) 0.701 (0.191) 
Bias − 0.001 − 0.027 − 0.287 − 0.022 
Coverage 93% 93% 47% 91% 

BVCF: baseline value carries forward; PMM: predictive mean matching. 
a Numbers are regression coefficients and standard errors (between brackets). 

Table 2 
Results (bias and coverage) of the simulation analysis: missing at random, in which missing was associated with the baseline value.    

No imputation Imputation 

% missing Real valuesa Standard mixed model Alternative mixed model Single (BVCF) Multiple (PMM) 

5% 0.723 (0.153)  0.734 (0.158) 0.709 (0.149) 0.695 (0.153) 0.725 (0.157) 
Bias 0.011 − 0.014 − 0.028 0.002 
Coverage 94% 93% 94% 95% 
10% 0.723 (0.153) 0.735 (0.162) 0.709 (0.152) 0.664 (0.152) 0.736 (0.161) 
Bias 0.012 − 0.014 − 0.059 0.013 
Coverage 94% 93% 93% 93% 
20% 0.723 (0.153) 0.737 (0.173) 0.711 (0.152) 0.577 (0.149) 0.719 (0.170) 
Bias 0.014 − 0.012 − 0.146 − 0.004 
Coverage 94% 92% 83% 96% 
40% 0.723 (0.153) 0.738 (0.196) 0.711 (0.186) 0.448 (0.144) 0.700 (0.190) 
Bias 0.015 − 0.012 − 0.275 − 0.023 
Coverage 93% 93% 51% 94% 

BVCF: baseline value carries forward; PMM: predictive mean matching. 
a Numbers are regression coefficients and standard errors (between brackets). 
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one or more follow-up measurement for both outcome variables. As in 
the first real-life data example, the two mixed model analyses and 
multiple imputation showed comparable results. There is no clear 
pattern in the differences between the methods for the two outcome 
variables and the two conditions. Also comparable to the first real-life 
data example, the single imputation based on the baseline value car
ried forward, showed much lower regression coefficients (Table 6). 

4. Discussion 

The purpose of this paper was to compare different methods to deal 
with the problem of missing all follow-up measurements in an RCT while 
the baseline value of the outcome is available. It was shown that in most 
situations, the mixed model analyses were comparable to multiple 
imputation. Only in the situation where it is known that subjects 

allocated to the treatment did not perform the treatment, a (selective) 
multiple imputation is preferable above mixed model analyses without 
imputation. Surprisingly, the alternative mixed model analysis did not 
perform better than the standard mixed model analysis, although it is 
suggested that the alternative mixed model analysis should be preferred 
above the standard mixed model analysis in this situation. This because 
in the alternative mixed model analysis, all subjects are included in the 
analysis, while in the standard mixed model analysis the subjects with 
only a baseline measurement are not included in the analysis. 

Although selective imputation seems to be an acceptable approach 
[5], it should be realised that it is questionable whether or not the 
analysis with selective imputation can be classified as intention-to-treat. 
In the selective multiple imputation method, the patients in the treat
ment group with missing data were imputed as if they were allocated to 
the control condition. And although the analysis is on an 

Table 3 
Results (bias and coverage) of the simulation analysis: missing completely at random. Subjects missing in the intervention group did not perform the intervention.    

No imputation Imputation 

% missing Real valuesa Standard mixed model Alternative mixed model Single (BVCF) Multiple (PMM) Multiple selective (PMM) 

5% 0.684 (0.154) 0.722 (0.157) 0.698 (0.148) 0.667 (0.155) 0.717 (0.156) 0.682 (0.158) 
bias 0.038 0.015 − 0.017 0.033 − 0.002 
coverage 94% 93% 94% 92% 95% 
10% 0.645 (0.154) 0.722 (0.161) 0.698 (0.152) 0.614 (0.156) 0.727 (0.161) 0.649 (0.163) 
bias 0.077 0.053 − 0.031 0.082 0.004 
coverage 92% 93% 93% 92% 98% 
20% 0.568 (0.155) 0.720 (0.171) 0.696 (0.161) 0.508 (0.156) 0.729 (0.170) 0.569 (0.170) 
bias 0.152 0.128 − 0.060 0.161 0.001 
coverage 86% 87% 93% 84% 97% 
40% 0.421 (0.155) 0.722 (0.196) 0.697 (0.186) 0.338 (0.148) 0.708 (0.192) 0.418 (0.182) 
bias 0.301 0.276 − 0.083 0.287 − 0.003 
coverage 66% 69% 92% 67% 99% 

BVCF: baseline value carries forward; PMM: predictive mean matching. 
a Numbers are regression coefficients and standard errors (between brackets). 

Table 4 
Results (bias and coverage) of the simulation analysis: missing at random, in which missing was associated with the baseline value. Subjects missing in the intervention 
group did not perform the intervention.    

No imputation Imputation 

% missing Real valuesa Standard mixed model Alternative mixed model Single (BVCF) Multiple (PMM) Multiple selective (PMM) 

5% 0.675 (0.148) 0.725 (0.157) 0.700 (0.148) 0.685 (0.152) 0.722 (0.157) 0.691 (0.159) 
bias 0.050 0.025 0.010 0.047 0.016 
coverage 93% 93% 94% 94% 96% 
10% 0.633 (0.150) 0.724 (0.161) 0.700 (0.152) 0.654 (0.151) 0.656 (0.153) 0.656 (0.162) 
bias 0.091 0.067 0.021 0.023 0.023 
coverage 92% 92% 95% 97% 97% 
20% 0.517 (0.161) 0.728 (0.172) 0.702 (0.163) 0.570 (0.149) 0.575 (0.173) 0.569 (0.173) 
bias 0.201 0.185 0.053 0.057 0.052 
coverage 74% 75% 94% 97% 98% 
40% 0.342 (0.163) 0.738 (0.195) 0.712 (0.185) 0.452 (0.143) 0.436 (0.183) 0.440 (0.185) 
bias 0.396 0.370 0.110 0.094 0.098 
coverage 46% 48% 88% 98% 97% 

BVCF: baseline value carries forward; PMM: predictive mean matching. 
a Numbers are regression coefficients and standard errors (between brackets). 

Table 5 
Baseline values and results of the different analyses to estimate the treatment effect in the blood pressure example study.   

Subjects with at least one follow-up (N = 130) Subjects with only baseline (N = 9) 

Baseline blood pressure 128.4 (15.4)a 132.2 (15.1)  

No imputation Imputation 

Standard mixed model Alternative mixed model Single (BCVF) Multiple (PMM) 
− 3.71 (− 6.78 to − 0.63)b − 3.47 (− 6.63 to − 0.30) − 3.17 (− 6.10 to − 0.24) − 3.71 (− 6.71 to − 0.71) 

BVCF: baseline value carries forward; PMM: predictive mean matching. 
a Numbers are mean values and standard deviations (between brackets). 
b Numbers are regression coefficients and 95% confidence intervals (between brackets). 
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intention-to-treat basis, i.e. all patients allocated to the treatment group 
are analysed as treatment, the imputation is not. On the other hand, 
when it is ignored that the patients with missing data on follow-up 
measurements did not receive the treatment, the effect estimates were 
highly overestimated. An overestimation of the effect estimate is not 
what you may expect from an intention-to-treat analysis. It should also 
be realised that a potential limitation of selective imputation is the fact 
that the patients who did not receive the treatment were imputed as they 
were control patients. It is however questionable whether that is correct, 
because in the literature there are some examples showing that treat
ment non adherers act differently than control patients [22,23]. So 
therefore, the results of the analyses with the selective imputation can be 
slightly invalid. 

Surprisingly, the single imputation method based on the baseline 
value carried forward performed well in the situation where the subjects 
allocated to the treatment group did not receive the treatment. From the 
baseline value carried forward method it is often suggested that it leads 
to a conservative estimation of the treatment effect and is therefore an 
acceptable method to analyse RCT data. This is, however, not always 
true, but depends highly on the setting of the study. Suppose, an inter
vention is performed to reduce the decline in physical functioning in 
elderly people, the baseline value carried forward assumes no decline, 
which is actually a positive outcome. When, on the other hand, an 
intervention is performed to reduce blood pressure in hypertensive pa
tients, the baseline value carried forward assuming no reduction can be 
classified as a negative outcome. 

In the present study, predictive mean matching was used for multiple 
imputation. The advantage of predictive mean matching, when 
compared to other multiple imputation techniques, is that it imputes 
values that are observed in the dataset and are therefore much alike real 
values. And although it is not an issue in the present study, this makes 
the method suitable for normally distributed outcome variables as well 
as non-normally distributed outcome variables [20,21]. The general 
idea behind predictive mean matching is that first predictive values are 
generated for all cases (including the cases with no missing data). Sec
ondly, based on the predictive values, a group of cases without missing 
data (in the present study a group of five cases is used) is selected that 
are close to the predictive values of a case with missing data. From this 
group of cases, one case is randomly selected and the observed value of 
this particular case is used for the imputation. This procedure is then 
repeated for all (in the present study 20) datasets. 

In the real-life data examples the missing follow-up data was (highly) 
related to the baseline value. Nevertheless, the effect estimates of the 
standard mixed model analyses, the alternative mixed model analyses 
and multiple imputation were only slightly different. In the second real- 
life data example the difference in effect estimates were higher due to 
the fact that the percentage of missing data was much higher. Because it 

is not clear which of the effect estimates reflects the real treatment ef
fect, it is suggested that sensitivity analyses should be included in the 
analysis of RCT data in order to obtain a more robust effect estimation 
[5]. Surprisingly, the results of sensitivity analyses on RCT data are 
almost never reported in the scientific literature and when they are re
ported, they are mostly performed to show the robustness of the analysis 
against different assumptions underlying the statistical analysis. How
ever, sensitivity analyses can also be performed with different statistical 
methods and based on the real-life data examples it seems to be 
appropriate to report the results of different statistical methods as 
sensitivity analyses, especially in situations where the percentage of 
missing follow-up data is relatively high. 

In the present paper, different methods were used to analyse RCT 
data in which patients had a baseline value and no follow-up data. 
Although less common, it is also possible that patients were not 
measured at baseline but do have follow-up data. In an analysis adjusted 
for the baseline value, these subjects are (of course) also excluded from 
the analysis. It is expected that the probability of having a missing 
baseline value is not related to the follow-up measurements, so this 
situation can be considered as missing completely at random (MCAR). 
Probably, in this situation, standard mixed model analysis, alternative 
mixed model analysis and multiple imputation will not lead to very 
different effect estimates. Also because the percentage of patients 
without a baseline value but with follow-up measurements will be 
relatively low. 

In the present paper, RCT data with more than one follow-up mea
surement was used in the simulations and in the real-life data examples. 
Therefore, linear mixed model analyses were used to analyse the data. 
Of course, it is also possible that an RCT has only one follow-up mea
surement. Theoretically, it is expected that the results obtained in the 
present study will be the same in the situation with only one follow-up 
measurement. However, to investigate this we performed the same an
alyses on simulated data with only one follow-up measurement and on 
the real life data examples only using the first follow-up measurement. 
As expected the results of these analyses were comparable to the ones 
provided by the analyses on RCT data with more than one follow-up 
measurement. It should be noted, however, that the only difference is 
that in (most of) the analyses, only one follow-up measurement is ana
lysed (adjusted for the baseline value) and therefore, standard linear 
regression analyses can be used instead of linear mixed model analyses. 

It should be noted that in the examples used in the present paper 
missing data was either completely at random (MCAR) or related to the 
baseline value of the outcome (i.e., MAR). The assumption of using 
either mixed model analysis or multiple imputation is that missing is 
MAR. In real-life data, MCAR and MAR are probably the most common, 
however, missing data can also be not at random (MNAR). Although it is 
not possible to evaluate whether missing data is MNAR or MAR, there 

Table 6 
Baseline values and results of the different analyses to estimate the treatment effect for PST and CBT in the internet example studya.   

Subjects with at least one follow-up (N = 205) Subjects with only baseline (N = 58) 

Baseline depression 
Baseline anxiety 

31.34 (7.40)b 

10.45 (3.42) 
32.98 (7.94) 
11.40 (3.17)   

No imputation Imputation  

Standard mixed model Alternative mixed model Single (BVCF) Multiple (PMM) 
Depression      
- PST − 4.53 (− 7.33 to − 1.73)c − 4.66 (− 6.72 to − 2.61) − 2.47 (− 5.08 to 0.15) − 4.64 (− 7.44 to − 1.83)  
- CBT − 5.21 (− 8.08 to − 2.34) − 5.46 (− 7.56 to − 3.36) − 2.10 (− 4.71 to 0.51) − 5.05 (− 8.06 to − 2.03) 
Anxiety      
- PST − 1.47 (− 2.46 to − 0.48) − 1.39 (− 2.18 to − 0.61) − 0.73 (− 1.64 to 0.19) − 1.68 (− 2.74 to − 0.62)  
- CBT − 1.47 (− 2.50 to − 0.44) − 1.37 (− 2.18 to − 0.57) − 0.29 (− 1.21 to 0.62) − 1.57 (− 2.72 to − 0.42) 

PST: internet based problem solving therapy; CBT: internet based cognitive behavioral therapy. 
BVCF: baseline value carries forward; PMM: predictive mean matching. 

a The waiting list control group is used as reference group. 
b Numbers are mean values and standard deviations (between brackets). 
c Numbers are regression coefficients and 95% confidence intervals (between brackets). 
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are methods available that claim to appropriately take into account 
missing data which is MNAR. These methods, such as pattern mixture 
models, selection models and shared parameter models [24–28] are 
complicated and difficult to interpret and therefore, not often used in 
practice. It should also be noted that in the examples used in the present 
paper, missingness was only related to the baseline value of the outcome 
and therefore, only the baseline value was used for the imputation 
models. Although it is possible that missingness is related to other var
iables, the baseline value of the outcome is mostly by far the best pre
dictor of the missing outcomes. So, adding other variables to the 
imputation models would not add much information to the imputation 
models and would therefore probably not change the results of the 
simulations presented in this paper. 

5. Conclusion 

In a situation where it is not clear whether the patients with missing 
follow-up data allocated to the treatment group actually received 
treatment, it seems that using a standard mixed model analysis is 
appropriate as an intention-to-treat analysis. Using an alternative mixed 
model analysis or multiple imputation does not lead to more valid re
sults. This is irrespective whether missingness was related to the base
line value or not. However, when the patients with missing follow-up 
data allocated to the treatment group actually did not received treat
ment it is advised to use a selective imputation method using this in
formation, although the results should be interpreted with caution. In 
general, it should be encouraged to perform and report the results of 
different sensitivity analyses. 
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