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Gut microbiota is associated with 
obesity and cardiometabolic 
disease in a population in the midst 
of Westernization
Jacobo de la Cuesta-Zuluaga1,4, Vanessa Corrales-Agudelo1, Eliana P. Velásquez-Mejía1, 
Jenny A. Carmona2,5, José M. Abad3 & Juan S. Escobar   1

Westernization and its accompanying epidemiological transitions are associated with changes in gut 
microbiota. While the extremes of this lifestyle spectrum have been compared (hunter-gatherers, 
industrialized countries), populations undergoing such shifts have received little attention. To fill the 
gap of knowledge about the microbiome evolution following broad lifestyle changes and the emergence 
of disease-associated dysbiosis, we performed a cross-sectional study in which we characterized the 
microbiota of 441 Colombian adults through 16S rRNA gene sequencing and determined its relationship 
with demographic, health-related and dietary parameters. We showed that in the gut microbiota 
of this cohort thrive taxa proper of both hunter-gatherers (Prevotella, Treponema) and citizens of 
industrialized countries (Bacteroides, Bifidobacterium, Barnesiella); the relative abundances of these 
taxa differed from those in Western and non-Western populations. We also showed that the Colombian 
gut microbiota is composed of five consortia of co-abundant microorganisms that are differentially 
associated with lifestyle, obesity and cardiometabolic disease, and highlighted metabolic pathways 
that might explain associations between microbiota and host health. Our results give insights into the 
evolution of the gut microbiota, and underscore the importance of this community to human health. 
Promoting the growth of specific microbial consortia could help ameliorating physiological conditions 
associated with Western lifestyles.

The gut microbiota is fundamental to human health1, and its modulation may prove pivotal to the future of 
personalized medicine and nutrition2. However, identifying the ways in which this microbial community asso-
ciates with health is not straightforward because the gut microbiota is diverse, complex3, and varies according to 
geographic origin and lifestyle of the host4–7. The latter is especially relevant in the context of Westernization8, a 
growing nutritional and epidemiological transition characterized by changes in diet, reduced physical activity and 
increased prevalence of non-communicable diseases9.

Most comparative studies have contrasted the gut microbiota of extremely different populations, usually 
hunter-gatherers and urban inhabitants of industrialized countries. Hunter-gatherers harbor highly diverse gut 
microbiota rich in fiber-degrading organisms4–7, whereas Westernized microbiota have depleted diversity and 
higher levels of potentially pathogenic microbes3,8. Nevertheless, little attention has been given to populations 
in the midst of Westernization, that is, populations with recent nutritional and epidemiological shifts, making 
it unclear whether the microbiota evolves gradually along this lifestyle spectrum or whether there is a breaking 
point compelling this community to adopt a Westernized configuration.

Colombians are a good model to understand the changes associated with Westernization. A traditional diet 
rich in complex carbohydrates, mainly rice, potato and corn10 (Table S1), suggests that the nutritional transition 
in this population progresses at a slow pace; in contrast, the epidemiological transition is en route, as reflected 

1Vidarium—Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur 50-67, 050023, 
Medellin, Colombia. 2Dinámica IPS—Especialista en Ayudas Diagnósticas, Calle 27 45-109, 050021, Medellin, 
Colombia. 3EPS SURA, Calle 49A 63-55, 050034, Medellin, Colombia. 4Present address: Max Planck Institute for 
Developmental Biology—Max-Planck-Ring 5, 72076, Tübingen, Germany. 5Present address: SURA Colombia, 
Medellin, Colombia. Correspondence and requests for materials should be addressed to J.S.E. (email: jsescobar@
serviciosnutresa.com)

Received: 10 July 2017

Accepted: 17 July 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-7304-917X
mailto:jsescobar@serviciosnutresa.com
mailto:jsescobar@serviciosnutresa.com


www.nature.com/scientificreports/

2SCIEntIfIC Reports |  (2018) 8:11356  | DOI:10.1038/s41598-018-29687-x

in recent economic growth, a rapid shift from rural to urban settings11, and increasing incidences of physical 
inactivity12 and non-communicable diseases, particularly obesity and cardiovascular disease13. Furthermore, 
Colombians harbor a gut microbiota distinct from that of populations from industrialized countries14 and 
a different genetic background15. Considering this combination of Western lifestyle and non-Western diet, 
in addition to particular ancestral genetics16, we hypothesized that the composition of the gut microbiota of 
Colombians shares taxa proper of both ends of the lifestyle spectrum, making it possible to recognize Western 
and non-Western microbial configurations associated with host health. In agreement with this hypothesis, we 
show that Colombians harbor a gut microbiota that cannot be classified as Western or non-Western, composed of 
five consortia of co-abundant microorganisms (CAGs)—which are phylogenetically and/or functionally related—
that exhibit contrasting associations with obesity and cardiometabolic risk factors. Our results are important for 
understanding the emergence of associations between lifestyle-driven dysbiosis and disease risk in the context of 
broad lifestyle changes.

Results
The colombian gut microbiota is neither traditional nor western.  We enrolled 441 community- 
dwelling participants (18–62 years old, with body mass index—BMI ≥ 18.5 kg/m2) from the five largest urban 
centers in Colombia (Bogota, Medellin, Cali, Barranquilla and Bucaramanga, that make up to 30% of the 
Colombian population) who donated stool samples for 16S rRNA gene sequencing and thoroughly assessed their 
demographic, health-related and dietary parameters. Participants were enrolled in roughly similar proportions by 
the city of origin, sex, age range (18–40 and 41–62 years) and BMI (lean, overweight and obese) (Table S2). After 
bioinformatic curation of the DNA sequences, 14,750,448 reads passed the quality filters and were grouped into 
4,720 operational taxonomic units (OTUs) delimited at 97% identity.

Firmicutes, Bacteroidetes and Actinobacteria dominated the gut microbiota of Colombians. Remarkably, the 
abundances of Proteobacteria and Verrucomicrobia were highly variable, ranging from <1% up to 96% and 87%, 
respectively (Fig. 1A). This translated into high but uneven levels of OTUs classified as Akkermansia muciniphila, 
Prevotella copri, Escherichia coli, Faecalibacterium prausnitzii, Bifidobacterium adolescentis, Enterobacter hormae-
chei, Gemmiger formicilis, Ruminococcus bromii, Methanobrevibacter and Oscillospira (Fig. 1B).

Multiple studies have demonstrated marked differences in the composition of gut microbiota between indus-
trialized and rural populations4–7, and recent meta-analyses have provided a list of marker taxa for distinguish-
ing between Western and non-Western microbial communities (Prevotella and Treponema for non-Westerners; 
Bacteroides, Bifidobacterium and Barnesiella for Westerners)17. We corroborated that these marker taxa had dif-
ferent abundances between Western and non-Western microbiota through the analysis of 16 benchmark datasets 
analyzed with curatedMetagenomicData18, including 1655 subjects from 16 countries (Table S3). In Colombians, 
all OTUs classified as Prevotella (174 OTUs) had a mean (±SD) abundance of 10.7 ± 16.2% (t test for the null 
hypothesis that the mean abundance was not significantly greater than zero: p < 0.0001), while Bacteroides (101 
OTUs) and Bifidobacterium (15 OTUs) had mean abundance of 2.5 ± 5.3% (t test: p < 0.0001) and 3.5 ± 6.3%  
(t test: p < 0.0001), respectively. Furthermore, we detected positive abundances of the hunter-gatherer-associated 
Treponema (14 OTUs; 0.08 ± 0.6%; t test: p = 0.002), and of Western-associated Barnesiella (10 OTUs; 
0.001 ± 0.011%; t test: p = 0.01) (Fig. 2). The relative abundances of lifestyle markers in the Colombian cohort was 
significantly different to those in the benchmark datasets (all t tests: p < 0.01). Together, these results suggest that 
Colombians harbor a non-traditional, non-Western gut microbiota, rich in fiber-degrading microbes proper of 
non-Western communities and, simultaneously, microbes typically found in Western communities.

The gut microbiota of Colombians does not cluster into enterotypes.  We next evaluated whether 
the non-traditional, non-Western gut microbiota of Colombians structured into discrete microbial configurations 
or enterotypes19. We aimed to determine whether part of the individuals of our cohort harbored a type of micro-
biota (e.g., non-Western) and other individuals different types (e.g., Western). Alternatively, each individual could 

Figure 1.  Taxonomic profiles of the gut microbiota of Colombians. (A) Relative abundance at the phylum level. 
Phyla with a median abundance equal to zero were combined into “other phyla”. (B) Relative abundance of the 
10 OTUs with the highest mean abundance.
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have a microbiota in which both Western and non-Western microbes thrived. To this end, we used the OTU-level 
abundance profile, calculated the square root of the Jensen-Shannon divergence and the weighted UniFrac dis-
tance to obtain distance matrices which were then used to cluster samples with the partitioning around medoids 
(PAM) algorithm19,20. Then, calculated the average silhouette index (SI) for clusters between 2 to 20, taking 0.50 
and 0.75 as thresholds for moderate and strong clustering, respectively. We found poor support for the existence 
of discrete microbiota clusters (SI < 0.2 in all cases). Furthermore, the Prevotella-Bacteroides co-exclusion did not 
differentiate types of microbiota in Colombians (Supplementary Results).

To corroborate this, we selected OTUs with a median abundance ≥0.01% across participants and tested their 
correlations with the first three axes of the principal coordinate analysis (PCoA) of weighted UniFrac distances 
(which together accounted for more than 40% of the total variance), using Spearman’s correlation coefficients 
and FDR-adjusted p-values. We retained a total of 100 OTUs, which collectively represented 80.0 ± 12.5% of the 
total 16S rRNA reads. These OTUs included Western and non-Western marker taxa as well as other organisms 
not considered lifestyle biomarkers. We found more OTUs associated with these three PCoA axes than expected 
under an enterotype configuration (14 OTUs significantly correlated with PCo1, 13 with PCo2 and 11 with PCo3; 
Table S4), demonstrating that the gut microbiota of Colombians has a complex multispecies nature and is better 
described by an enterogradient (i.e., a continuum of abundances of microbial taxa).

Consortia of related microorganisms are useful for describing the gut microbiota of Colombians.  
To manage this complexity, we clustered the above 100 most abundant OTUs into five co-abundance groups 
(CAGs)21 (Fig. S1). CAGs were defined by calculating Spearman’s correlation coefficients between all the afore-
mentioned OTUs and by applying hierarchical clustering with Ward’s linkage22. OTUs with the highest median 
abundances served to name each CAG. The CAG clustering was confirmed by randomly partitioning the dataset 
(Mantel test with 10,000 permutations and 10,000 bootstrap iterations for the confidence intervals: r = 0.844; 95% 
CI [0.833, 0.855]; p = 0.0001) and by compositional network reconstruction using SparCC23. Note that CAGs rep-
resent sets of microorganisms exhibiting positive abundance correlations that thoroughly capture the continuous 
configuration of the gut microbiota (Fig. 3). Note also that CAGs are not a unique feature of our dataset; they have 
been shown in previous studies21,22 and confirmed by us in the meta-analysis of benchmark datasets mentioned 
above (Supplementary Results). The microbiota of most Colombians consisted of a variable combination of five 
CAGs (Fig. 3A), corroborating the continuous distribution in microbial composition.

The Prevotella-CAG comprised 9 OTUs that belong to the Prevotella genus and the Coriobacteriaceae family.  
The Lachnospiraceae-CAG included 32 OTUs belonging to the Lachnospiraceae family, such as Roseburia, 
Blautia, Dorea and Coprococcus, and high abundances of Faecalibacterium and Gemmiger (Ruminococcaceae). 
Most members of the Ruminococcaceae, however, clustered into the Ruminococcaceae-CAG, which 
included 21 OTUs, such as Oscillospira and Ruminococcus, but also the archaeon Methanobrevibacter. The 
Akkermansia-Bacteroidales-CAG comprised 26 OTUs, including Akkermansia muciniphila, Bacteroides, 
Parabacteroides and Alistipes (Bacteroidales). The Pathogen-CAG grouped 12 OTUs, including Escherichia coli, 
Enterobacter hormaechei and genera associated with the upper digestive tract, such as Veillonella, Haemophilus, 
Gemella, Rothia, Burkholderia, Granulicatella and Streptococcus (Table S5).

Figure 2.  Abundances of marker taxa of Western and non-Western gut microbiota extracted from previous 
studies4,17 and confirmed by the analysis of public benchmark datasets. (A) Bacteroides, (B) Bifidobacterium,  
(C) Barnesiella, (D) Prevotella, and (E) Treponema. Note the differences of scale between plots.
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The members of these CAGs were not only phylogenetically but functionally related. The Lachnospiraceae-, 
Prevotella- and Ruminococcaceae-CAGs contained taxa associated with diets rich in fiber and complex car-
bohydrates24; members of the Akkermansia-Bacteroidales-CAG are involved in the degradation of mucins25; 
and members of the Pathogen-CAG are known opportunistic, potentially pathogenic bacteria known to con-
tribute to various diseases26, including obesity and diabetes27, liver cirrhosis28, atherosclerotic cardiovascular 
disease28,29, colorectal cancer30 and anaerobic infections31. Interestingly, the species composition of the CAGs 

Figure 3.  Abundance distribution of co-abundance groups (CAGs). (A) Distribution of the relative abundance 
of each CAG in the studied population (n = 441). (B–F) Principal coordinate analysis (PCoA) based on 
weighted UniFrac distances describing the enterogradient of the studied population (n = 441). The different 
panels show the same cloud point colored by the relative abundance of each co-abundance group (CAG). (B) 
Prevotella-CAG, (C) Lachnospiraceae-CAG, (D) Pathogen-CAG, (E) Akkermansia-Bacteroidales-CAG, (F) 
Ruminococcaceae-CAG. Percentages on the axes represent the proportion of the explained variation of each 
component of the PCoA. Note the change in the relative abundance scale among panels.
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indicated that they are differentially associated with lifestyle: the Prevotella- and Ruminococcaceae-CAGs are 
enriched in species common in non-Western populations; the Lachnospiraceae-, Akkermansia-Bacteroidales- 
and Pathogen-CAGs in Western populations.

CAGs associate with host health.  A remarkable aspect of the five CAGs discussed above is that they do 
not distribute randomly along the enterogradient but tend to form foci where each of them is particularly abun-
dant (Fig. 3B–F). To single out subjects with simple, distinctive microbiota arrangements in which one and only 
one of the five CAGs dominated the entire microbial community (in opposition to configurations in which the 
five CAGs had even abundances), we selected the subset of 114 individuals located on the highest extremes of the 
abundance distribution of each CAG (see Methods). This subset guaranteed the formation of non-overlapping 
groups of individuals located in the aforementioned foci. While reducing the dataset has the disadvantage of 
diminishing the representation of the cohort, it allowed assessing associations between broadly different gut 
microbiota configurations and host characteristics. The distinct compositional nature of the gut microbiota of this 
subset of individuals was confirmed by training a Random Forest model to classify subjects belonging to the foci 
based on OTU profile; this model showed 96.5% reclassification accuracy.

Ecological analyses in these 114 individuals showed that microbiota dominated by the Pathogen-, 
Akkermansia-Bacteroidales- and Prevotella-CAGs displayed the lowest α-diversities and contained some of the 
most abundant OTUs; the Lachnospiraceae- and Ruminococcaceae-CAGs had higher α-diversities (Fig. S2). The 
latter CAGs lacked a single dominant taxon, allowing more microbial groups to thrive with more homogenous 
abundances. In terms of β-diversity, the five CAGs explained a very high proportion of the variance in this subset 
of individuals when looking at the weighted UniFrac distance (PERMANOVA: R2 = 0.55, p = 0.01; Fig. 4A) and a 
lower but significant part with the unweighted UniFrac distance (R2 = 0.10, p = 0.01; Fig. 4B). This indicates that 
gut microbiota differences were caused primarily by alterations in the abundances of the microbes present rather 
than by changes in their membership.

Unlike common approaches in which individuals are first clinically classified (e.g., healthy vs. diseased) and 
then microbial differences are looked for, we agnostically distinguished individuals exclusively by their microbiota 
and then tested for differences in demographic, health-related and dietary variables. In this way, we determined 
whether the 114 individuals with single-CAG dominated microbiota were associated with variables indicative of 
the transition from traditional to Westernized lifestyles.

PERMANOVA tests indicated that the city where the samples originated was the most important factor in 
explaining the variance in the structure of the gut microbiota (participants were recruited in five Colombian 

Figure 4.  Composition of the total microbial community within the single-CAG dominated microbiota 
(n = 114) according to co-abundance groups (CAGs) (A,B), Colombian city of origin (C), BMI (D), sex (E) and 
age range (F). All principal coordinate analyses (PCoA) were based on weighted UniFrac distances except in 
panel B (unweighted UniFrac). Ellipses encompass 75% of the variation. Percentages on the axes represent the 
proportion of explained variation of each component of the PCoA.
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cities; R2 = 0.113, p = 0.001; Fig. 4C), followed by the BMI (lean, overweight and obese; R2 = 0.034, p = 0.009; 
Fig. 4D) and the sex (R2 = 0.018, p = 0.038; Fig. 4E); no significant differences were observed by age range 
(18–40 and 41–62 years; R2 = 0.006, p = 0.69; Fig. 4F). Interestingly, anthropometric and health-related var-
iables indicated that participants whose microbiota were dominated by the Ruminococcaceae- and the 
Akkermansia-Bacteroidales-CAGs had lower risks of obesity and cardiometabolic disease, whereas individuals 
whose microbiota were dominated by the Pathogen-CAG had increased risks of these diseases. Table 1 shows that 
there were significant differences associated to the microbiota composition according to BMI, waist circumfer-
ence, blood pressure and adiponectin. Furthermore, individuals dominated by the Pathogen-CAG were charac-
terized by a high proportion of diarrheic stools, suggestive of dysbiosis.

While eloquent, the associations between microbiota and health detected in the subset of individuals with 
single-CAG dominated microbiota were limited by the reduction in the representation of the initial cohort (from 
441 to 114 subjects). To assess whether these patterns hold when analyzing the complete cohort, we calculated 
correlations between the abundances of each CAG and health-related variables, and adjusted the p-values for 
multiple comparisons. We found similar results as those obtained in the reduced dataset, suggesting that the 
association between gut microbes and host health was not an artifact produced by the comparison of subsets of 
individuals with extreme configurations of the gut microbiota (Table 2).

The functional potential of the gut microbiota reflects its species composition.  To better under-
stand the functional potential of gut microbiota that might explain differences in disease risk, we inferred the 
metagenome of the 114 individuals with single-CAG dominated microbiota (Fig. S2D), summarized it into 
molecular function categories and determined the metabolic modules enriched in each microbial configuration 
(Table S6). These results were confirmed with the analysis of the complete dataset including 441 individuals 
(Table S7). The predicted genomic investment in various sets of biologically relevant modules was significantly 
different and clearly discriminant among CAGs, including pathways related to mucus degradation, methano-
genesis and lipopolysaccharide (LPS) biosynthesis (Fig. 5A), as well as pathways related to the production of 
short-chain fatty acids (SCFAs) (Fig. 5B). We focused on these pathways since they have been largely shown to 
be relevant to host health. Mucin degradation has been associated with improved metabolic regulation, reduced 
obesity and type 2 diabetes25; LPS has been associated with metabolic endotoxemia, inflammation, insulin resist-
ance, adiposity and hepatic fat27; methanogenesis seems to be key for ensuring complete fermentation of complex 
polysaccharides, leading to higher production and absorption of SCFAs32; and extensive evidence indicates that 
SCFAs are beneficial for the host cardiometabolic health33. In contrast, pathways related to central metabolism 
(e.g., glycolysis, pentose phosphate pathway, citric acid cycle) hardly differed among CAGs (Fig. 5C). Differences 
in functional potential reflect the compositions of the CAGs and strengthen the idea that these microbial con-
sortia are composed of functionally related organisms. At the same time, this metagenomic inference proves that 
while extensive differences in the species composition of gut microbiota are accompanied by changes in particular 
metabolic pathways highly relevant for the host health, there is a strong functional redundancy in this community 
leading to conservation of a core metagenome (e.g., functions related with central metabolism)3,34.

Discussion
We studied non-traditional, non-Western Colombians and showed that their gut microbiota forms a complex 
enterogradient, on which features of the microbiota of hunter-gatherers and citizens of industrialized coun-
tries can be identified. We detected several marker taxa distinctive in both Western and traditional microbi-
ota, previously reported in studies and meta-analyses of benchmark metagenomic datasets. Based on the high 
Prevotella counts, Colombians possess a non-Western microbiota17,35; furthermore, the presence of Treponema, 
fiber-degrading bacteria enriched in rural communities and hunter-gatherers7, in addition to the high counts of 
Ruminococcaceae and Methanobrevibacter, strengthens this classification17. However, we also found high propor-
tions of taxa that are common in Western populations but scarce in traditional communities, such as Bacteroides, 
Bifidobacterium, Escherichia and Lachnospiraceae, and a positive abundance of Barnesiella17,35. These common-
alities suggest that the ancestral–Western transition is gradual and that broad lifestyle changes leave traces recog-
nizable in the gut microbiota.

The complexity of this transitional microbiota can be comprehensively assessed through gradual changes 
in microbial consortia. We proved that our CAG clustering was robust to sampling stochasticity and clustering 
method. While the defined CAGs were composed of taxa recognized as common members of the human gut 
microbiota3, it is noticeable that the Prevotella- and Ruminococcaceae-CAGs were enriched in taxa proper of 
non-Western populations, whereas the Akkermansia-Bacteroidales- and Lachnospiraceae-CAGs enriched in 
taxa of Westerners. One of the most striking results of the CAG clustering was the detection of a consortium 
of co-occurring potentially pathogenic bacteria (Pathogen-CAG) that reached very high prevalence in some 
individuals (Fig. 3A); this CAG included Enterobacteriaceae and common members of the oral3,36 and stomach 
microbiota37. Patients with conditions such as liver cirrhosis28, atherosclerotic cardiovascular disease28,29, irrita-
ble bowel syndrome38, colorectal cancer30, anaerobic infections31 and diarrhea39 have increased counts of these 
microorganisms26. However, their presence3 and transcriptional activity40 have also been reported in the gut 
microbiota of Westernized community-dwelling individuals.

Unlike common approaches that examine the microbiota of individuals with contrasting clinical conditions, 
we exclusively distinguished members of our cohort by their gut microbiota and then tested whether micro-
bial configurations were differentially associated with variables related to host health. This approach allowed the 
discovery of well-defined consortia of microorganisms associated with obesity and cardiometabolic risk, and 
metabolic pathways through which different microbiota could have an impact on health. It is worth stressing that 
microbial communities dominated by a single CAG represent upper tails of continuous distributions, not discrete 
configurations of the microbiota (i.e., they are not equivalent to enterotypes). This method uncovered clear-cut 



www.nature.com/scientificreports/

7SCIEntIfIC Reports |  (2018) 8:11356  | DOI:10.1038/s41598-018-29687-x

CAG

q-valuePrevotella Lachnospiraceae Pathogen
Akkermansia-
Bacteroidales Ruminococcaceae

n 22 23 23 23 23

Age (years) 34.8 ± 11.7 39.2 ± 12.0 41.3 ± 12.6 41.7 ± 12.3 43.1 ± 9.2 0.142

Sex

  Male (%) 59.1 56.5 69.6 39.1 39.1
0.195

  Female (%) 40.9 43.5 30.4 60.9 60.9

City

  Barranquilla (%) 4.5 26.1 43.5 17.4 8.7

0.004

  Bogota (%) 4.5 17.4 0.0 13.0 43.5

  Bucaramanga (%) 27.3 8.7 26.1 17.4 8.7

  Cali (%) 59.1 13.0 17.4 43.5 8.7

  Medellin (%) 4.5 34.8 13.0 8.7 30.4

Anthropometric measures

  BMI (kg/m2) 28.7 ± 6.1 28.2 ± 4.4 29.5 ± 5.3 25.9 ± 4.6 25.8 ± 3.9 0.055

  Body fat (%) 36.8 ± 7.1 37.5 ± 5.8 36.8 ± 5.1 36.2 ± 4.8 37.6 ± 5.5 0.568

  Waist circumference (cm) 92.7 ± 13.9 94.9 ± 10.8 100.3 ± 15.5 86.5 ± 13.2 89.5 ± 12.2 0.069

Lipid profile

  Total cholesterol (mg/dL) 176.3 ± 31.5 183.3 ± 34.0 197.9 ± 47.1 190.7 ± 43.8 191.2 ± 39.1 0.334

  HDL (mg/dL) 44.0 ± 9.1 42.5 ± 8.7 42.0 ± 13.6 47.8 ± 10.5 49.0 ± 12.1 0.318

  LDL (mg/dL) 111.7 ± 27.4 114.7 ± 28.3 123.3 ± 42.7 113.7 ± 34.5 120.9 ± 35.1 0.521

  Triglycerides (mg/dL) 118.8 ± 52.4 150.3 ± 83.7 180.8 ± 129.6 160.1 ± 163.7 120.8 ± 49.5 0.284

  Adiponectin (µg/ml) 5.6 ± 1.5 5.8 ± 2.8 5.2 ± 2.7 7.8 ± 4.7 7.4 ± 4.1 0.087

Glucose metabolism

  Glucose (mmol/L) 86.3 ± 8.8 85.0 ± 7.1 91.0 ± 12.9 88.3 ± 22.0 89.7 ± 11.1 0.318

  Insulin (µU/ml) 13.7 ± 8.1 14.2 ± 9.8 14.6 ± 6.9 11.0 ± 6.6 12.2 ± 8.1 0.318

  Glycated hemoglobin (%) 5.5 ± 0.3 5.4 ± 0.4 5.5 ± 0.4 5.4 ± 0.5 5.6 ± 0.4 0.318

  HOMA-IR 3.3 ± 2.2 2.5 ± 1.6 3.0 ± 1.6 2.8 ± 1.5 2.7 ± 2.0 0.323

Blood pressure (BP)

  Systolic BP (mm Hg) 124.6 ± 16.8 131.7 ± 22.4 133.9 ± 21.8 119.6 ± 14.3 115.2 ± 13.0 0.014

  Diastolic BP (mm Hg) 76.5 ± 10.8 86.6 ± 12.8 86.7 ± 14.6 77.9 ± 11.4 72.7 ± 8.8 0.002

Inflammation

  hs-CRP (mg/L) 3.0 ± 2.9 4.4 ± 8.9 3.7 ± 4.0 2.4 ± 2.0 1.8 ± 1.3 0.318

Macronutrient consumption

  Total protein (%) 15.9 ± 1.4 15.2 ± 1.2 15.8 ± 1.9 15.8 ± 1.3 15.6 ± 1.4 0.390

  Animal protein (%) 64.1 ± 5.4 61.0 ± 4.6 63.6 ± 6.0 63.4 ± 5.2 61.4 ± 6.0 0.277

  Total fat (%) 29.9 ± 2.3 27.3 ± 2.1 28.5 ± 3.2 28.2 ± 2.3 29.2 ± 2.2 0.033

  Saturated fat (%) 11.7 ± 1.3 11.0 ± 1.2 11.2 ± 2.0 11.1 ± 1.4 11.6 ± 1.4 0.284

  Monounsaturated fat (%) 10.2 ± 0.9 9.4 ± 0.9 9.8 ± 1.1 9.8 ± 1.0 10.0 ± 0.9 0.087

  Polyunsaturated fat (%) 5.9 ± 0.7 5.2 ± 0.8 5.4 ± 0.7 5.4 ± 0.9 5.5 ± 0.6 0.087

  Carbohydrates (%) 54.0 ± 3.1 57.5 ± 2.1 55.6 ± 3.7 56.0 ± 2.5 55.2 ± 3.1 0.014

  Dietary fiber (g) 19.1 ± 5.1 17.9 ± 4.3 17.8 ± 4.8 16.9 ± 4.1 16.4 ± 3.6 0.318

Stool

Consistency

  Diarrheic (%) 9.1 0.0 13.0 4.3 0.0

0.039
  Mushy (%) 4.5 21.7 30.4 13.0 8.7

  Normal (%) 81.8 73.9 34.8 52.2 73.9

  Hard (%) 4.5 4.3 21.7 30.4 17.4

Fecal occult blood test

  Positive (%) 0.0 4.3 4.3 4.3 4.3
0.580

  Negative (%) 100.0 95.7 95.7 95.7 95.7

Medicament use

  Yes (%) 18.2 65.2 47.8 47.8 43.5
0.069

  No (%) 81.8 34.8 52.2 52.2 56.5

Table 1.  General, anthropometric, health-related and dietary characteristics of the CAGs evaluated on the 114 
individuals with single-CAG dominated microbiota. Data presented as the mean ± SD. BMI: body mass index, 
HDL: high density lipoprotein cholesterol, LDL: low density lipoprotein cholesterol, hs-CRP: high-sensitivity 
C-reactive protein, HOMA-IR: homeostatic model assessment–insulin resistance. q-values from ANOVA after 
false discovery rate correction.
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associations between health-related variables and simple microbial configurations in the context of continuous 
microbiota structures. Importantly, we showed that the conclusions drawn from this reduced dataset are extrap-
olatable to the complete dataset.

Our analyses revealed that the Pathogen- and Lachnospiraceae-CAGs were clearly associated with increased 
risk of cardiometabolic disease and obesity; individuals with high abundance of these CAGs had higher BMI, 
waist circumference and blood pressure, and lower adiponectin levels. Members of the Lachnospiraceae family 
have been shown to be associated with type 2 diabetes and obesity41, and Enterobacter and Escherichia, both 
gram-negative opportunistic pathogens grouping in the Pathogen-CAG, may be pivotal in obesity as the met-
abolic endotoxemia caused by LPS may induce inflammation, obesity and insulin resistance27. Our metagen-
omic inference indicated that the metabolic pathway involved in LPS biosynthesis was most abundant in the 
Pathogen-CAG.

In contrast, individuals with high abundance of Akkermansia-Bacteroidales- and Ruminococcaceae-CAGs 
had reduced risk of cardiometabolic disease and obesity, while having a metagenome enriched in pathways for 
mucin degradation and methane production, respectively. Akkermansia muciniphila has been consistently linked 
to improved metabolic health and leanness25,42; similarly, other members of the Akkermansia-Bacteroidales-CAG, 
such as Alistipes and Bacteroides isolated from lean mice, rapidly invade the microbiota of co-housed obese 
mice43. Members of the Ruminococcaceae-CAG, such as Methanobrevibacter, Oscillospira and Dialister, have also 
been associated with lower BMI44–46. The results from these two CAGs call into question the broader idea that low 
α-diversity and a Western microbiota are inherently associated with increased disease risk47: these two CAGs had 
contrasting α-diversities and contained dissimilar taxa related to the two ends of the Westernization spectrum. 
However, both CAGs were associated with host health.

CAG

Prevotella Lachnospiraceae Pathogen
Akkermansia-
Bacteroidales Ruminococcaceae

Anthropometric measures

  BMI (kg/m2) 0.07 (0.31) 0.12 (0.05) 0.16 (0.002) −0.16 (0.002) −0.13 (0.03)

  Body fat (%) −0.02 (0.77) 0.07 (0.31) 0.00 (0.98) −0.05 (0.50) 0.01 (0.90)

  Waist circumference (cm) 0.10 (0.08) 0.09 (0.14) 0.16 (0.002) −0.21 (<0.0001) −0.12 (0.04)

Lipid profile

  Total cholesterol (mg/dL) 0.01 (0.95) 0.07 (0.28) −0.03 (0.67) 0.01 (0.93) 0.00 (0.97)

  HDL (mg/dL) −0.12 (0.04) 0.02 (0.74) −0.10 (0.09) 0.09 (0.15) 0.05 (0.43)

  LDL (mg/dL) 0.04 (0.58) 0.06 (0.37) −0.06 (0.34) 0.00 (0.97) 0.02 (0.74)

  Triglycerides (mg/dL) 0.10 (0.10) 0.07 (0.25) 0.06 (0.37) −0.07 (0.28) −0.10 (0.09)

  Adiponectin (µg/ml) −0.15 (0.004) 0.02 (0.79) −0.13 (0.02) 0.08 (0.20) 0.10 (0.11)

Glucose metabolism

  Glucose (mmol/L) 0.12 (0.04) 0.05 (0.47) 0.10 (0.08) −0.11 (0.06) −0.05 (0.48)

  Insulin (µU/ml) 0.03 (0.71) 0.00 (0.95) 0.09 (0.16) −0.08 (0.24) −0.07 (0.25)

  Glycated hemoglobin (%) 0.06 (0.37) −0.08 (0.21) −0.01 (0.88) −0.02 (0.78) 0.07 (0.31)

  HOMA-IR 0.08 (0.19) −0.03 (0.67) 0.03 (0.65) −0.05 (0.47) −0.05 (0.42)

Blood pressure (BP)

  Systolic BP (mm Hg) 0.13 (0.02) 0.12 (0.04) 0.17 (0.002) −0.18 (0.0008) −0.22 (<0.0001)

  Diastolic BP (mm Hg) 0.09 (0.12) 0.11 (0.06) 0.17 (0.001) −0.16 (0.003) −0.21 (<0.0001)

Inflammation

  hs-CRP (mg/L) 0.05 (0.47) 0.09 (0.16) 0.11 (0.05) −0.08 (0.24) −0.09 (0.12)

Macronutrient consumption

  Total protein (%) −0.08 (0.21) 0.00 (0.95) 0.06 (0.37) 0.10 (0.11) 0.00 (0.97)

  Animal protein (%) −0.01 (0.93) −0.07 (0.32) 0.09 (0.14) 0.03 (0.71) −0.09 (0.13)

  Total fat (%) 0.09 (0.16) −0.03 (0.65) 0.03 (0.67) 0.01 (0.85) −0.04 (0.62)

  Saturated fat (%) 0.12 (0.05) 0.01 (0.88) 0.02 (0.84) 0.00 (0.95) −0.06 (0.35)

  Monounsaturated fat (%) 0.09 (0.18) −0.05 (0.43) −0.02 (0.80) 0.03 (0.70) −0.03 (0.72)

  Polyunsaturated fat (%) 0.07 (0.26) −0.05 (0.51) −0.01 (0.87) 0.01 (0.87) −0.04 (0.64)

  Carbohydrates (%) −0.05 (0.42) 0.03 (0.65) −0.05 (0.44) −0.06 (0.35) 0.01 (0.88)

  Dietary fiber (g) 0.06 (0.40) 0.04 (0.64) −0.07 (0.25) −0.04 (0.62) 0.04 (0.62)

Alpha diversity

  Species richness 0.02 (0.83) −0.13 (0.03) −0.29 (<0.0001) 0.13 (0.02) 0.71 (<0.0001)

  Shannon index 0.11 (0.08) 0.18 (0.0008) −0.23 (<0.0001) −0.01 (0.88) 0.61 (<0.0001)

  Pielou’s J 0.12 (0.04) 0.27 (<0.0001) −0.18 (0.0006) −0.05 (0.49) 0.52 (<0.0001)

Table 2.  Correlations between α-diversity, health-related variables and CAG-abundance in the complete dataset 
(n = 441). Spearman’s rho and FDR-adjusted p-values (in parenthesis) are shown. Abbreviations as in Table 1.
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The fact that distinct microbial consortia are associated with varying levels of disease risk illustrates that 
there are multiple ways through which the microbiota can affect health and disease. Strategies to promote the 
establishment and persistence of ‘healthy’ CAGs (e.g., Akkermansia-Bacteroidales- and Ruminococcaceae-CAGs) 
would be of great value in personalized nutrition and medicine, as they represent an intermediate state between 
the overwhelming complexity of modulating the whole microbial community and the reductionist approach of 
considering individual microbes; it could be a way to ameliorate conditions contributing to the burden of disease 
in Western societies.

Methods
Ethical approval.  This study was conducted in accordance with the principles of the Declaration of Helsinki 
as revised in 2008 and had minimal risk according to the Colombian Ministry of Health (Resolution 8430 of 
1993). All the participants were thoroughly informed about the study and procedures before signing consent 
forms. Participants were assured of anonymity and confidentiality. Written informed consent was obtained 
from all the participants before beginning the study. The Bioethics Committee of SIU—University of Antioquia 
reviewed the protocol and the consent forms and approved the procedures described here (approbation act 14-24-
588 dated 28 May 2014).

Study population.  Between July and November 2014, we enrolled 441 men and women 18–62 years old, 
with BMI ≥ 18.5 kg/m2, living in the Colombian cities of Bogota, Medellin, Cali, Barranquilla and Bucaramanga, 
the country’s largest urban centers. All participants included in the study were insured by the health insurance 
provider EPS SURA. We excluded underweight participants (i.e., BMI < 18.5 kg/m2), pregnant women, individu-
als who had consumed antibiotics or antiparasitics in the three months prior to enrollment, and individuals diag-
nosed with any of the following diseases: Alzheimer’s disease, Parkinson disease or any other neurodegenerative 
disease; current or recent cancer (less than one year); and gastrointestinal diseases (Crohn’s disease, ulcerative 
colitis, short bowel syndrome, diverticulosis or celiac disease).

Figure 5.  Predicted potential genomic investment of co-abundance groups (CAGs) within the subset of 
participants with single-CAG dominated microbiota (n = 114) in various relevant metabolic pathways. (A) 
Methane production, lipopolysaccharide biosynthesis and mucus degradation, (B) short-chain fatty acid 
production, (C) macronutrient degradation. Each point shows the relative abundance of the three metabolic 
processes depicted for a given individual. Dotted lines in panel (A) help in interpreting the figures by indicating 
how the values of a point project on the three axes. Note that for each point the values add up to one.
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Participants were enrolled in roughly similar proportions by the city of origin, sex, age range (18–40 and 
41–62 years) and BMI (lean, overweight and obese) (Table S2). In addition, individuals were randomly enrolled 
from two health-service-providing institutions (Instituciones Prestadoras de Servicios–IPS: residence proxim-
ity centers, clinics or hospitals where medical consultation services are rendered) of EPS SURA in four of the 
five cities (there was a unique IPS in Bucaramanga), with the aim of including intra-city variation in the study 
population.

Blood biochemical parameters.  For the measurement of clinical variables in blood serum, we collected 
fasting peripheral venous blood from all the participants and isolated the serum by centrifugation. Total cho-
lesterol, high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, triglycerides 
and fasting glucose were measured by colorimetric enzymatic assays (cobas 701; Roche, Mannheim, Germany); 
fasting insulin by a chemiluminescence immunoassay (cobas E411); glycated hemoglobin (HbA1C) by 
high-performance liquid chromatography (Premier Hb9210; Lab Care, England); adiponectin by the lanthanide 
chelate excite ultra assay (LANCE; Perkin Elmer, Waltham, MA), and high-sensitive C-reactive protein (hs-CRP) 
by a particle-enhanced immunoturbidimetric assay (cobas 502). Blood insulin was used to calculate the insulin 
resistance index using the homeostasis model assessment (HOMA-IR).

Anthropometric evaluation and blood pressure.  Weight, height, waist circumference and four skin 
folds (biceps, triceps, subscapular and ileocrestal) were measured with internationally recognized techniques 
after training and standardizing evaluators. Weight was measured with Cardinal Detecto DR400C digital scales 
(Webb City, MO) and height with Seca portable measuring rods (Hamburg, Germany). We calculated BMI as 
weight (kg)/height squared (m2) to classify participants as lean, overweight or obese. Waist circumference was 
measured with Mabis measuring tapes (Waukegan, IL) and skinfolds with Guide Slim adipometers (Plymouth, 
MI); skinfold measurements were used to calculate the fat percentage (the logarithm of the sum of the four folds 
allowed for a calculation of body density which was then used to estimate the body fat percentage using a vali-
dated equation48).

Blood pressure was measured using a Rossmax AF701f digital blood pressure monitor (Berneck, Switzerland); 
systolic and diastolic pressures were recorded in mm Hg. Each measure was evaluated twice, and the average of 
the two measures was reported.

Diet assessment and medicament use.  We carried out 24-hour dietary recall interviews to quantify 
calories and macronutrient intake in the habitual diet of participants. This method inquired about complete food 
and beverage descriptions, detailed preparation methods and portion sizes. Each participant was personally inter-
viewed at least once by a trained member of the research team. Interviews were randomly distributed on different 
days of the week; ten percent of the participants were interviewed a second time on a different day of the week to 
assess intra-subject variability. Estimation of energy intake and macronutrients was obtained for each participant 
using the EVINDI 4.0 and PC-SIDE 1.0 software.

Pharmacological treatments were registered in specific questionnaires. By medicament use, we considered all 
drugs taken by participants on a regular basis during the three months prior to enrollment, to the exception of 
over-the-counter vitamin and mineral supplements, phytotherapeutics and contraceptives.

Stool characterization, 16S rRNA PCR amplification and sequencing.  Each participant collected a 
fecal sample in a hermetically sealed sterile receptacle provided by the research team. Samples were immediately 
refrigerated in household freezers and brought to an EPS SURA facility in each city within 12 hours, where they 
were stored in dry ice and sent to a central laboratory via next-day delivery. Stool consistency and the immuno-
logic fecal occult blood test were performed on each sample.

Total microbial DNA was extracted using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany) 
following the manufacturer’s instructions with a slight modification consisting of a bead-beating step 
with the lysis buffer (20 seconds at 15 Hz). After extraction, we quantified the DNA concentration using a 
Nanodrop spectrophotometer (Nyxor Biotech, Paris, France), and sent the DNA samples to the University of 
Michigan Medical School Host Microbiome Initiative (Ann Arbor, MI) for library construction and sequenc-
ing. The V4 hypervariable region of the 16S rRNA gene from each sample was amplified using primers F515 
(5′-GTGCCAGCMGCCGCGGTAA-3′) and R806 (5′-GGACTACHVGGGTWTCTAAT-3′) and sequenced 
using the Illumina MiSeq sequencing platform with v2 chemistry and the dual-index sequencing strategy49.

Sequence processing.  We processed the 16S amplicon sequences using Mothur v.1.36 following its 
Illumina MiSeq standard operating procedure49. Briefly, we first extracted the sequence and quality score data 
from the paired fastq files and assembled the reads to form contigs. We eliminated sequences containing bases 
with a quality score below 20, sequences containing ambiguous bases, and sequences shorter than 275 bp. Next, 
we aligned the sequences using Silva reference alignment v.12350, which takes the secondary structure of the 16S 
rRNA into account, and removed sequences with a homopolymer run ≥8 nucleotides and sequences that did 
not overlap with the region of the alignment spanning the V4 hypervariable region. Then, we performed a pre-
clustering step in which sequences with an identity ≥99% (i.e., sequences differing in 2 nucleotides or less) were 
merged. The chimeric sequences were detected and discarded by UCHIME51. After that, we assigned taxonomic 
classifications to the sequences using Greengenes52 13_8_99 and removed sequences classified as mitochondria, 
eukaryota or unknown. Using the average neighbor algorithm, we generated operational taxonomic units (OTUs) 
delimited at 97% identity, which were taxonomically classified by consensus using Greengenes 13_8_99. A relaxed 
neighbor-joining tree with one representative sequence per OTU was finally obtained with Clearcut53 after calcu-
lating uncorrected pairwise distances between aligned reads.
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Quality control of microbial analysis.  To examine and minimize the possible influence of reagent con-
tamination, for each sequencing run, we included several technical controls, namely, a negative control (ultrapure 
water), a DNA extraction blank and a mock community (HM-782D, BEI Resources, Manassas, VA). In addition, 
we included the batch of the DNA extraction kit used with each sample as extra metadata and randomized the 
sequencing order of samples. To assess the reproducibility between sequencing runs, we included 5 replicate 
samples and determined the differences in the relative abundance of all OTUs (average difference between rep-
licates ± SD: 0.01 ± 0.004%). Last, we calculated the Matthew’s Correlation Coefficient (MCC) to assess the sta-
bility and quality of the OTU assignments. MCC can be interpreted as representing the correlation between the 
observed and expected classifications, and it ranges from −1 to 1, where −1 represents total misclassification and 
1 represents perfect classification. We obtained an MCC of 0.79, indicating high-quality OTU clustering.

Analysis of Western and non-Western marker taxa.  To verify the results found in the meta-analyses 
looking into the microbiota in the extremes of the Westernization spectrum, we performed an analysis using 
the curatedMetagenomicData18 package implemented in Bioconductor. This package provides uniformly pro-
cessed and manually annotated human-microbiome profiles for thousands of subjects from benchmark studies. 
We downloaded gut microbiota taxonomic profiles of 16 publicly available studies and restricted this dataset to 
adult individuals with no report of disease or antibiotic consumption at the time of sampling. The final dataset 
comprised 1655 subjects from 16 countries, of which 1441 (87%) were considered Westernized and 214 (13%) 
non-Westernized (Table S3).

We obtained the relative abundances of taxa that can be used as markers of geographical origin and lifestyle 
in both the Colombian dataset and the 16 public datasets of curatedMetagenomicData. These included Prevotella 
and Treponema (markers of non-Western populations), and Bacteroides, Bifidobacterium and Barnesiella (mark-
ers of Western populations). Student’s t tests were implemented to test the null hypothesis that the mean abun-
dance of each marker taxa was not significantly greater than zero; t tests were also employed to compare the 
abundances of marker taxa in the Colombian and public datasets.

Evaluation of enterotypes and of an enterogradient.  We determined whether the gut microbiota 
of Colombians clustered into enterotypes using the protocol proposed by Arumugam et al.19. (R code availa-
ble at http://enterotype.embl.de/), incorporating the modifications suggested by Koren et al.20. Briefly, using the 
OTU-level abundance profile, we calculated the square root of the Jensen-Shannon divergence and the weighted 
UniFrac distance, computed with the GUniFrac package of R54, to obtain distance matrices which were then 
used to cluster samples with the partitioning around medoids (PAM) algorithm. Next, we calculated the average 
silhouette index (SI) for all possible clusters from 2 to 20, taking 0.50 and 0.75 as thresholds for moderate and 
strong clustering, respectively.

Since SI < 0.2 (i.e., low clustering) was seen in all cases, we next assessed changes in the gut microbiota of 
Colombians along an enterogradient. Analyses were restricted to weighted UniFrac distances, as this metric incor-
porates phylogenetic and abundance information of the sampled microorganisms into the comparison of commu-
nities. We carried out a principal coordinate analysis (PCoA) and evaluated the correlation of each OTU that had 
a median abundance ≥0.01% across all samples (100 OTUs), with the first three axes of PCoA, using Spearman’s 
rank correlations. Among these most-abundant OTUs, we selected those that moderately correlated (rho < −0.3 
or rho > 0.3) with at least one of the first three axes of PCoA. These axes were selected because together they 
accounted for more than 40% of the total variance; in addition, this representation was convenient as the visualiza-
tion of the three enterotypes originally reported by Arumugam et al.19 was evidenced in the first three axes of the 
PCoA analysis. P-values were FDR-adjusted for multiple comparisons using the qvalue package of R.

Definition of co-abundance groups of microbes (CAGs).  To consider the network aspect of the gut 
microbiota and to detect robust compositional patterns, we defined CAGs of microbes, that is, OTUs that are 
found together more frequently and that reflect the underlying structure shaping the microbiota. CAGs were 
defined by calculating Spearman’s correlation coefficients between the 100 OTUs that had median abundances 
≥0.01% across all samples and by applying hierarchical clustering with Ward’s linkage. OTUs with the highest 
median abundances served to name each CAG. This grouping was validated by randomly splitting the OTU table 
and computing two separate correlation matrices; the correlation between these matrices was obtained using the 
Mantel test as implemented in the ecodist package of R, with 10,000 permutations and 10,000 bootstrap iterations 
for the confidence intervals. In addition, we inferred correlation networks using SparCC23, an alternative method 
for computing correlations in compositional data. SparCC correlations were computed in 20 iterations of the 
dataset of the 100 most abundant OTUs, and the median value of each pairwise correlation was obtained.

Characterization of single-CAG dominated microbiota.  To identify the factors that were significantly 
associated with particular configurations of the gut microbiota, we selected a subset of individuals located on the 
extremes of the abundance distribution of each CAG, that is, participants that had a microbiota composed of a 
single CAG at an abundance ≥95th percentile of that CAG distribution. Therefore, when analyzing individuals 
whose microbiota were dominated by a single CAG (in opposition to configurations in which the five CAGs had 
even abundances), we reduced the dataset from 441 to 114 individuals.

We trained the Random Forest machine-learning algorithm, as implemented in Mothur v.1.37, to reclassify 
the microbiota of these 114 individuals with extreme microbial configurations. For this, we used the classify.rf 
function with 1,000 trees, with the parameter controlling the aggressiveness of the reduced error pruning algo-
rithm set to 0.9 and an error threshold of 0.4 to discard erroneous trees.

To characterize the microbial communities of the single-CAG dominated microbiota, α-diversity metrics 
were compared using the Shannon index, species richness, and Pielou’s J (evenness estimator), as implemented 

http://enterotype.embl.de/
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in the BiodiversityR R package. We tested for differences among CAGs using ANOVA and Tukey’s honest sig-
nificance test for multiple comparisons. Next, we assessed differences in β-diversity estimates using the adonis 
function (analysis of variance using distance matrices) of the permutational multivariate analysis of variance 
(PERMANOVA) on the weighted and unweighted UniFrac matrices, as implemented in the Vegan package of 
R. In addition, to assess the effect of the Colombian city of origin (Bogota, Medellin, Cali, Barranquilla and 
Bucaramanga), sex (male, female), age range (18–40, 41–62 years), and BMI (lean, overweight, obese) on the 
overall microbial community of these 114 individuals, we compared β-diversity estimates among groups of par-
ticipants using PERMANOVA. Next, we determined the biochemical, health-related and dietary profiles of these 
114 individuals whose microbiota was dominated by a single CAG. We contrasted several parameters among 
these groups using one-way ANOVA on log-transformed data and chi-squared tests; p-values were FDR-adjusted 
using the qvalue package of R. To corroborate the above results, we performed a correlation analysis between 
CAG abundance, on one hand, and α-diversity and health-related variables, on the other hand, using all indi-
viduals of the studied cohort (441 individuals). Spearman’s correlations were obtained, and p-values were 
FDR-adjusted using the psych package of R.

Metagenomic inference.  The functional potential of the gut microbiota was inferred with the Tax4Fun 
R package55 using the SILVA database v.123 as a reference. In this way, we obtained a prediction of the relative 
abundance of each Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog (KO). KOs were subsequently 
collapsed into metabolic modules (i.e., sets of tightly related enzymatic functions that represent cellular pro-
cesses with defined input and output metabolites)56 using GOmixer v.1.7.3 (http://www.raeslab.org/omixer/). 
Differences among groups of individuals for each metabolic module and correlations between module and CAG 
abundances were determined using Kruskal-Wallis tests and Spearman’s correlations, respectively; p-values were 
FDR-adjusted. Triplots of some biologically relevant functions were obtained with the dedicated tool imple-
mented by GOmixer.

Data Availability.  Raw DNA reads were deposited at the SRA-NCBI under BioProject PRJNA417579. The R 
code to reproduce statistical analyses is available at https://github.com/jsescobar/westernization.

References
	 1.	 de Vos, W. M. & De Vos, E. A. J. J. Role of the intestinal microbiome in health and disease: From correlation to causation. Nutr. Rev. 

70, 45–56 (2012).
	 2.	 Zmora, N., Zeevi, D., Korem, T., Segal, E. & Elinav, E. Perspective Taking it Personally: Personalized Utilization of the Human 

Microbiome in Health and Disease. Cell Host Microbe 19, 12–20 (2015).
	 3.	 The Human Microbiome Project Consortium et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 

207–214 (2012).
	 4.	 De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and 

ruralAfrica. Proc. Natl. Acad. Sci. 107, 14691–14696 (2010).
	 5.	 Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
	 6.	 Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).
	 7.	 Obregon-Tito, A. J. et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 6, 1–9 (2015).
	 8.	 Dugas, L. R., Fuller, M., Gilbert, J. & Layden, B. T. The obese gut microbiome across the epidemiologic transition. Emerg. Themes 

Epidemiol. 13, 2 (2016).
	 9.	 Popkin, B. M. The nutrition transition and its health implications in lower-income countries. Public health nutrition 1, 5–21 (1998).
	10.	 Instituto Colombiano de Bienestar Familiar et al. Encuesta Nacional de la Situación Nutricional en Colombia 2010 ENSIN (2011).
	11.	 Silva-Arias, A. C. & González-Román, P. A Spatial Analysis Of Internal Migrations In Colombia (2000–2005). Rev. Fac. Ciencias 

Económicas Investig. y Reflexión 17, 123–144 (2009).
	12.	 Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380, 247–257 (2012).
	13.	 Martínez, J. C. Factores asociados a la mortalidad por enfermedades no transmisibles en Colombia, 2008–2012. Biomédica 36 

(2016).
	14.	 Escobar, J. S., Klotz, B., Valdes, B. E. & Agudelo, G. M. The gut microbiota of Colombians differs from that of Americans, Europeans 

and Asians. BMC Microbiol. 14, 311 (2014).
	15.	 Wang, S. et al. Geographic patterns of genome admixture in Latin American Mestizos. PLoS Genet. 4, e1000037 (2008).
	16.	 Rishishwar, L. et al. Ancestry, admixture and fitness in Colombian genomes. Sci. Rep. 5, 12376 (2015).
	17.	 Mancabelli, L. et al. Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations. Environ. 

Microbiol. 19, 1379–1390 (2017).
	18.	 Pasolli, E. et al. Accessible, curated metagenomic data through Experiment Hub. Nature Methods 14, 1023–1024 (2017).
	19.	 Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).
	20.	 Koren, O. et al. A Guide to Enterotypes across the Human Body: Meta-Analysis of Microbial Community Structures in Human 

Microbiome Datasets. PLoS Comput. Biol. 9, e1002863 (2013).
	21.	 Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).
	22.	 Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66, 633–643 (2017).
	23.	 Friedman, J. & Alm, E. J. Inferring Correlation Networks from Genomic Survey Data. PLoS Comput. Biol. 8, e1002687 (2012).
	24.	 O’Keefe, S. J. D. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6 (2015).
	25.	 Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. 

Acad. Sci. USA 110, 9066–9071 (2013).
	26.	 Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 

496–503 (2015).
	27.	 Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).
	28.	 Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).
	29.	 Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. USA 108, 4592–8 

(2011).
	30.	 Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 

320–329 (2011).
	31.	 Brook, I. Anaerobic Infections Diagnosis and Management. (CRC Press, Inc., 2007).

http://www.raeslab.org/omixer/
https://github.com/jsescobar/westernization


www.nature.com/scientificreports/

13SCIEntIfIC Reports |  (2018) 8:11356  | DOI:10.1038/s41598-018-29687-x

	32.	 Pimentel, M., Gunsalus, R. P., Rao, S. S. & Zhang, H. Methanogens in Human Health and Disease. Am. J. Gastroenterol. Suppl. 1, 
28–33 (2012).

	33.	 Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut 
Microbes 7, 189–200 (2016).

	34.	 Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–487 (2009).
	35.	 Gorvitovskaia, A., Holmes, S. P. & Huse, S. M. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 

4, 15 (2016).
	36.	 Avila, M., Ojcius, D. M., Yilmaz, Ö. & Yilmaz, O. The oral microbiota: living with a permanent guest. DNA Cell Biol. 28, 405–11 

(2009).
	37.	 Nardone, G. & Compare, D. The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United Eur. 

Gastroenterol. J. 3, 255–260 (2015).
	38.	 Guinane, C. M. & Cotter, P. D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden 

metabolic organ. Therap. Adv. Gastroenterol. 6, 295–308 (2013).
	39.	 Rigsbee, L. et al. Quantitative Profiling of Gut Microbiota of Children With Diarrhea-Predominant Irritable Bowel Syndrome. Am. 

J. Gastroenterol. 107, 1740–1751 (2012).
	40.	 Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl. Acad. Sci. USA 111, E2329–38 

(2014).
	41.	 Meehan, C. J. & Beiko, R. G. A Phylogenomic View of Ecological Specialization in the Lachnospiraceae, a Family of Digestive Tract-

Associated Bacteria. Genome Biol. Evol. 6, 703–713 (2014).
	42.	 Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship 

with gut microbiome richness and ecology. Gut 65, 426–436 (2016).
	43.	 Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science (80-.). 341, 1241214 

(2013).
	44.	 Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010).
	45.	 Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).
	46.	 Konikoff, T. & Gophna, U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol. 24, 523–524 

(2016).
	47.	 Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut 

microbiota. Nature 489, 220–230 (2012).
	48.	 Siri, W. Body composition from fluid spaces and density: Analysis of methods. Techniques for Measuring Body Composition 1, 

(Washington, DC: National Academy of Sciences, 1961).
	49.	 Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and 

curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 
5112–5120 (2013).

	50.	 Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 
41 (2013).

	51.	 Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. 
Bioinformatics 27, 2194–2200 (2011).

	52.	 DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. 
Microbiol. 72, 5069–5072 (2006).

	53.	 Evans, J., Sheneman, L. & Foster, J. Relaxed neighbor joining: A fast distance-based phylogenetic tree construction method. J. Mol. 
Evol. 62, 785–792 (2006).

	54.	 Chen, J. et al. Associating microbiome composition with environmental covariates using generalized UniFrac distances. 
Bioinformatics 28, 2106–2113 (2012).

	55.	 Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. 
Bioinformatics 31, 2882–2884 (2015).

	56.	 Darzi, Y., Falony, G., Vieira-Silva, S. & Raes, J. Towards biome-specific analysis of meta-omics data. ISME J. 10, 1025–1028 (2016).

Acknowledgements
We are indebted to the participants who took part in the study. N. Zuluaga, L.G. Betancur, N. Guarín, E.M. 
Loaiza, N. Pareja, D.T. García, Y. Franco and the EPS SURA and Dinámica IPS staff helped with recruitment and 
field work; the APOLO Scientific Computing Center at EAFIT University hosted bioinformatics resources and 
the University of Michigan Medical School Host Microbiome Initiative supported sequencing. The authors of this 
work collaborate through the Microbiome & Health Network.

Author Contributions
J.d.l.C.Z. processed samples, performed analyses and wrote the manuscript; V.C.A. designed the cohort study, 
coordinated field activities, collected samples, measured anthropometric variables and performed analyses; 
E.P.V.M. processed samples; J.A.C. coordinated field and laboratory activities, transport and treatment of 
samples; J.M.A. coordinated participant recruitment and field activities; J.S.E. designed the study, supervised field 
activities, transport and treatment of samples, performed analyses, and wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-29687-x.
Competing Interests: While engaged in the research project, J.d.l.C.Z., V.C.A., E.P.V.M. and J.S.E. were 
employed by a food company. J.A.C. and J.M.A. were employed by health provider companies. This study 
was funded by Grupo Empresarial Nutresa, Dinámica IPS and EPS SURA. The funders of this work have not 
had any role in the study design; in the collection, analysis or interpretation of the data; in the writing of the 
manuscript; and in the decision to submit the paper for publication.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/s41598-018-29687-x


www.nature.com/scientificreports/

1 4SCIEntIfIC Reports |  (2018) 8:11356  | DOI:10.1038/s41598-018-29687-x

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of Westernization

	Results

	The colombian gut microbiota is neither traditional nor western. 
	The gut microbiota of Colombians does not cluster into enterotypes. 
	Consortia of related microorganisms are useful for describing the gut microbiota of Colombians. 
	CAGs associate with host health. 
	The functional potential of the gut microbiota reflects its species composition. 

	Discussion

	Methods

	Ethical approval. 
	Study population. 
	Blood biochemical parameters. 
	Anthropometric evaluation and blood pressure. 
	Diet assessment and medicament use. 
	Stool characterization, 16S rRNA PCR amplification and sequencing. 
	Sequence processing. 
	Quality control of microbial analysis. 
	Analysis of Western and non-Western marker taxa. 
	Evaluation of enterotypes and of an enterogradient. 
	Definition of co-abundance groups of microbes (CAGs). 
	Characterization of single-CAG dominated microbiota. 
	Metagenomic inference. 
	Data Availability. 

	Acknowledgements

	Figure 1 Taxonomic profiles of the gut microbiota of Colombians.
	Figure 2 Abundances of marker taxa of Western and non-Western gut microbiota extracted from previous studies4,17 and confirmed by the analysis of public benchmark datasets.
	﻿Figure 3 Abundance distribution of co-abundance groups (CAGs).
	Figure 4 Composition of the total microbial community within the single-CAG dominated microbiota (n = 114) according to co-abundance groups (CAGs) (A,B), Colombian city of origin (C), BMI (D), sex (E) and age range (F).
	Figure 5 Predicted potential genomic investment of co-abundance groups (CAGs) within the subset of participants with single-CAG dominated microbiota (n = 114) in various relevant metabolic pathways.
	Table 1 General, anthropometric, health-related and dietary characteristics of the CAGs evaluated on the 114 individuals with single-CAG dominated microbiota.
	Table 2 Correlations between α-diversity, health-related variables and CAG-abundance in the complete dataset (n = 441).




