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Abstract: The epidermal growth factor receptor (EGFR) has evolved over years into a 

main molecular target for the treatment of different cancer entities. In this regard, the  

anti-EGFR antibody cetuximab has been approved alone or in combination with:  

(a) chemotherapy for treatment of colorectal and head and neck squamous cell carcinoma 

and (b) with external radiotherapy for treatment of head and neck squamous cell carcinoma. 

The conjugation of radionuclides to cetuximab in combination with the specific targeting 

properties of this antibody might increase its therapeutic efficiency. This review article 

gives an overview of the preclinical studies that have been performed with radiolabeled 
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cetuximab for imaging and/or treatment of different tumor models. A particularly 

promising approach seems to be the treatment with therapeutic radionuclide-labeled 

cetuximab in combination with external radiotherapy. Present data support an important 

impact of the tumor micromilieu on treatment response that needs to be further validated in 

patients. Another important challenge is the reduction of nonspecific uptake of the 

radioactive substance in metabolic organs like liver and radiosensitive organs like bone 

marrow and kidneys. Overall, the integration of diagnosis, treatment and monitoring as a 

theranostic approach appears to be a promising strategy for improvement of individualized 

cancer treatment. 

Keywords: EGFR; radiolabeled cetuximab conjugates; radioimmunotherapy (RIT);  

cancer theranostics; external beam radiotherapy (EBRT); endoradionuclide therapy 

 

1. Introduction 

Worldwide, cancer is one of the most common causes of death. In general, patients will be treated 

with approaches comprising surgery or external beam radiotherapy (EBRT) alone, or surgery 

combined with EBRT or chemotherapy, that have been developed and improved in the last years [1–3]. 

In EBRT usually 1.8 to 2 Gy fractions are delivered from a linear accelerator over several weeks. 

Radioimmunotherapy (RIT) approaches are applying radioactive antibodies (Ab) or Ab fragments in 

patients either locally close to the tumor or systemically with the goal to bind to tumor specific targets, 

thereby inactivating cancer cells. Remarkably, the curative treatment of metastases by RIT might be a 

special chance of this method. For patients with advanced inoperable stages of cancer, particularly 

head and neck cancer, primary radiochemotherapy still offers curative potential that has increased over 

the last decades by improvement of techniques and combined radiochemotherapy treatment 

approaches. However, currently around 50%–70% of all patients with advanced head and neck squamous 

cell carcinoma (HNSCC) develop locoregional recurrences after primary radiochemotherapy [4,5]. Thus, it 

is of high importance to develop and prove novel therapeutic strategies that could improve locoregional 

tumor control. Currently, successful targeted approaches for cancer therapy focus on receptors located 

on the surface of cancer cells that are higher expressed in cancer than in normal tissue. 

Over many years the epidermal growth factor receptor (EGFR) has been investigated as a major 

target for the treatment of uncontrolled tumor growth. The EGFR, a glycosylated transmembrane 

protein, one of four members of closely related receptor tyrosine kinases (EGFR = ErbB1/HER1; 

ErbB2/HER2; ErbB3/HER3; ErbB4/HER4), is involved in regulating cell growth, differentiation and 

survival of cells. It is composed of an extracellular ligand binding region, a transmembrane region and 

an intracellular tyrosine kinase domain. The cytosine-rich extracellular domain binds endogenous 

growth factors, like epidermal growth factor (EGF), transforming growth factor alpha (TGF-α) [6], 

heparin-binding growth factor [7], amphiregulin [8]and betacellulin [9]. Binding of one of the 

endogenous ligands results in the formation of receptor homodimers (EGFR-EGFR) or receptor 

heterodimers (EGFR—homolog ErbB receptor) [10]. Dimerization causes autophoshorylation of the 

tyrosine residues that in turn initiates activation of signaling cascades. One of the main downstream 
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signaling pathways is the MAP kinase system [11]. Activation of the MAPKs via Ras is regulating 

transcription of molecules for cell proliferation, migration, adhesion and survival [12]. Another major 

target, the PI3K/Akt signaling pathway, is involved in control of biological processes like  

growth, proliferation, angiogenesis, senescence, apoptosis, and formations of genetic aberrations [13]. 

Furthermore, of particular importance is the signal transduction pathway JAK/STAT, that mediates 

motility, invasion, adhesion, immune tolerance, cell survival and also proliferation [14,15]. 

The EGFR is often overexpressed in human malignancies such as HNSCC, gastrointestinal and 

abdominal carcinomas, lung carcinomas, carcinomas of the reproductive tract, melanomas, glioblastomas 

and thyroid carcinomas [16]. Although data are heterogeneous, overexpression is often associated  

with an aggressive tumor phenotype and a poor clinical prognosis. To target tumor cell proliferation or 

growth via EGFR, monoclonal antibodies (mAb) against this receptor have been developed.  

A promising potential therapeutic possesses the chimeric human-murine IgG1 mAb cetuximab  

(C225; Erbitux®, ImClone LLC), that has been approved by the Food and Drug Administration (FDA) 

for treatment of colorectal cancer as single drug or in combination with chemotherapy and of HNSCC 

in combination with radiation therapy or as monotherapy after failure of platinum-based therapy (2004 

approval). Cetuximab, a 152 kDa molecule, is composed of two 449-amino-acid heavy chains and of 

two 214-amino-acid light chains interfaced both by covalent (disulfide) and non-covalent bonds [17]. 

The competitive binding of the mAb at the extracellular domain of the EGFR prevents binding of the 

natural ligands. On the other hand, cetuximab binding to EGFR also leads to receptor dimerization  

and internalization of the antibody-receptor-complex [18], not necessarily causing downregulation  

of membraneous EGFR expression [19]. Furthermore, cetuximab can induce antibody-dependent  

cell-mediated cytotoxicity [20]. 

The affinity of cetuximab toward EGFR is about tenfold higher than that of the endogenous ligands  

EGF or α-TGF (cetuximab 0.1–0.2 nM vs. EGF, α-TGF 1–2 nM) [21,22]. Blocking of the EGFR also 

affects the cell cycle by inducing upregulation of the cell cycle inhibitor p27Kip1. Consequently, 

EGFR expressing cells remain in a G1 arrest, preventing DNA synthesis [23–25]. Inhibition of tumor 

growth with cetuximab has in many cases been confirmed in vivo [18,26]. 

There are several studies about treatment of, particularly, head and neck cancer or colorectal cancer 

with cetuximab combined with chemotherapy, that show prolonged median overall survival [27–29], 

whereas similar treatment of non-small cell lung cancer remained uncertain and was not  

recommended [30]. Similarly, cetuximab paired with various chemotherapeutic regimens and/or other 

biological agents failed to improve the outcome of patients with pancreatic cancer [31]. 

2. Cetuximab Combined with Radiotherapy 

In a clinical phase III randomized trial the combination of cetuximab and radiotherapy significantly 

improved locoregional recurrence and overall survival compared to radiotherapy alone for patients 

with locoregionally advanced HNSCC. The five years survival rate for treatment with cetuximab 

combined with radiation was 45.6% compared to 36.4% after radiation treatment alone [32]. However, 

also simultaneous radiochemotherapy improves survival compared to radiotherapy alone to a similar 

extent (33.7% vs. 27.2%) [4], and a direct comparison has never been performed prospectively. Thus, 

radiotherapy combined with cetuximab can be seen as alternative treatment option for specific cases 
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but seems not superior to standard radiochemotherapy [33–35]. Some studies showed moderate 

improvements of local control and long-term survival after treatment with cetuximab plus  

radiotherapy [36,37]. Results of triple combination in randomized trials have preliminarily been 

reported and do also not support superiority over radiochemotherapy [38,39]. Concerning toxicity, 

combination of radiotherapy with cetuximab induces higher rates of mucositis, skin reactions and 

anaphylactic reactions, whereas radiochemotherapy leads to nephrotoxicity and myelosuppression [40]. 

To improve treatment outcome by pre-selection of patient subgroups that are expected to benefit 

from combined radiotherapy and cetuximab, mechanistic as well as functional pre-clinical in vivo 

studies are essential. In different HNSCC models simultaneous radiotherapy and cetuximab leads  

to heterogeneous effects on local tumor control, potentially correlating with genetic EGFR  

amplification [41] but not with EGFR expression [42]. Further, potential reasons for cetuximab 

resistance include the most frequently detected EGFR mutation class III variant (EGFRvIII) [43], or 

mutation of the EGFR tyrosine kinase domain [44], or mutation of the oncogene KRAS, BRAF or 

NRAS that can activate the EGFR even during EGFR inhibition [45–47]. However, these molecular 

features are rare or not existent in head and neck squamous cell carcinoma, so that the mechanisms of 

the functional heterogeneity of tumor response are still not well understood. 

Recently, the combination of targeted diagnostic and therapeutic applications (theranostics) is 

developing. The corresponding noninvasive imaging methods like SPECT or PET are appropriate 

methods to characterize the status of EGFR expressing tissue [48]. According to the application 

appropriate radionuclides are required. Since the majority of applied radionuclides are metals (Table 1),  

a rather extensive chelation chemistry has been developed to couple them to mAbs like cetuximab. 

3. Radiolabeled Cetuximab 

In order to estimate the status of EGFR expression, cetuximab was labeled with different 

radionuclides. Since EGFR is overexpressed in a variety of tumors, the accumulation of radiolabeled 

cetuximab in the tumor cells could serve as complementary diagnostic tool. Table 1 summarizes 

diagnostic and therapeutic radionuclides used for labeling of cetuximab conjugates.  

Due to the size of the mAb its pharmacokinetics is slow with a biological half-life of 63 to  

230 h [51]. The biological half-life of a substance in a biological organism is exclusively mediated by 

biological processes and represents the time during which the amount of the respective substance 

decreases to half of its original value. Moreover, of special importance is the effective half-life,  

the time during which the amount of a radiopharmaceutical is decreased to half of its value; that is 

altogether determined by the combination of the biological half-life of the substance and the physical 

half-life of the used radionuclide. The effective half-life for radiopharmaceuticals is predominantly 

influenced by the physical half-life of the radionuclide, which is suitable either for imaging or therapy. 

Accordingly radiolabeled cetuximab requires longer-lived radionuclides for monitoring. Furthermore, 

immunogenicity for diagnosis is unwanted, but concentrations of radiolabeled cetuximab with high 

specific activity are usually below nanomolarity (picomolar level) and do not show physiological effects. 
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Table 1. Diagnostic and therapeutic radionuclides for labeling of cetuximab conjugates a. 

Radionuclide Half-life 
Main types of  

decay (probability) b 
Emax (MeV) Production 

Radionuclides for imaging    

64Cu 12.7 h 
β+ (17.5%) 0.653 cyclotron 
β− (38.5%) 0.579 64Ni(p,n)64Cu 
EC (43.5%) 1.675 

68Ga 1.13 h 
β+ (87.7%) 1.899 

68Ge/68Ga generator EC (8.9%) 2.921 
γ (3.2%) 1.077 

86Yc 14.7 h 
β+ (11.9/5.6%) 1.221/1.545 cyclotron 
γ (83/32.6%) 1.077/0.628 86Sr(p,n)86Y 

89Zrc 3.3 dβ+ (22.7%) 
 0.902 cyclotron 

γ(100%) 0.909 89Y(p,n)89Zr 
99mTc 6 h γ (99%) 0.141 99Mo/99mTc generator 

111In 2.8 d 
γ (100%) 0.245 cyclotron 

EC (99.99%) 0.417 111Cd(p,n)111In 

124Ic 4.2 d 
β+ (11.7/10.8%) 1.535/2.135 cyclotron 
γ (63/10.9%) 0.603/1.691 124Te(p,n)124I 

125I 59.4 d 
γ (100%) 0.035 nuclear reactor 

EC (100%) 0.150 124Xe(n,γ)125Xe→125I 
90Y 2.67 d β− (99.98%) 2.279 90Sr/90Y generator 

131I 8 d 
β− (89.4/7.4%) 0.606/0.334 nuclear reactor 
γ (83.1/7.3%) 0.364/0.637 130Te(n,γ)131Te→131I 

177Lu 6.65 d 
β− (79.3/11.6%) 0.498/0.177 nuclear reactor 
γ (20.3/11%) 0.113/0.208 176Yb(n,γ)177Yb→177Lu 

213Bi 45.6 min 
α (1.9%) 5.981 225Ac/213Bi generator 

β− (66.2/30.8%) 1.423/0.983 
a data from LNHB: http://www.nucleide.org/DDEP_WG/DDEPdata.htm [49]; b specification of the main 

transitions; c data from Lubberink Herzog 2011 [50]; EC electron capture; IC internal conversion. 

3.1. Radionuclides 

The selection of appropriate radionuclides with regard to their requested application is a crucial 

issue. It is necessary to consider different characteristics of radiation according to the requirements, 

like decay characteristics, particle range and physical half-life of the radionuclide. Anyhow, 

radionuclide selection is often done in terms of economic aspects [52]. The preferred approach for 

treatment of bulky tumors is the application of beta-emitting radionuclides and in future even of alpha 

emitters. For eradication of small clusters of cancer cells radionuclides that emit auger electrons are 

considered to be advantageous [53]. 

3.1.1. Radionuclides for C225 Conjugates Used as Imaging Probes 

64Cu. As important positron-emitting radionuclide 64Cu has the potential for application in 

diagnostic imaging and, to some extent, also for targeted radiotherapy [54] because it additionally 
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emits β− particles. By the nuclear (p,n) reaction on enriched 64Ni high specific activity of 64Cu can be 

achieved [55,56] to apply for labeling of biomolecules. Since the positron-energy of 64Cu is rather low, 

comparable with that of 18F (0.633 MeV), 64Cu PET images exhibit good resolution of high quality. 

Copper per se is participating in certain metabolic processes like binding on a series of enzymes such 

as superoxide dismutase, cytochrome c oxidase, or dopamine hydroxylase [57]. Therefore, copper ions 

should form complexes with high kinetic and thermodynamic stability. Cu(II) is forming stable chelate 

complexes, thus, in the last years there has been an active research development in this area.  

In particular, the chelators 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA),  

1,4,8,11-tetraazacyclotetradecan-1,4,8,11-tetraacetic acid (TETA) and 1,4,7-triazacyclononane-1,4,7-

triacetic acid (NOTA) have been studied. 64Cu-TETA complexes are more stable than 64Cu-DOTA 

complexes, however, it has been shown, that 64Cu-TETA-octreotide is subjected to transchelation [58]. 

Several studies have been published with 64Cu-labeled cetuximab using exclusively the DOTA 

chelator [45,59–62]. Recently, investigations of a mAb conjugated both with DOTA and NOTA, and 

labeled with 64Cu, suggested that the NOTA conjugate was superior to the DOTA conjugate by 

showing better in vivo stability [63]. 

68Ga. 68Ga is a short-lived positron emitter and can be easily and relatively cheap generated with a 
68Ge/68Ga generator. Similar to 64Cu 68Ga forms stable complexes with DOTA and NOTA. The label 

of 68Ga is more appropriate for smaller molecules with faster biokinetics and bioavailability than for 

mAb with the aim to diagnose and localize tumors. To target the EGFR 68Ga-labeled peptides [64], 

Fab fragments [65], affibodies [66] or nanobodies [67] have been applied. 68Ga might also be applied 

in pretargeting approaches, where conjugates of e.g., hapten peptide [68,69], oligonucleotide [70] or 

peptide nucleic acid [71], after achieving high accumulation in the target tissue, would bind the  
68Ga-labeled complementary parts. Furthermore, 68Ga can be replaced with the gamma emitter 67Ga 

having a longer physical half-life of 3.26 d, appropriate for SPECT, and thus can be applied for 

investigations on longer circulating biomolecules like antibodies. In the study of Engle et al. [72] the 

positron emitter 66Ga with a half-life of 9.4 h could be achieved with sufficient specific activity and 

was recommended as surrogate for 68Ga or 67Ga. Exploiting the longer half-life compared to 68Ga, 66Ga as 

label for NOTA-cetuximab was investigated in breast tumor bearing mice. However, the resolution of the 

images due to high energy positrons as well as accumulation in the tumor appeared to be not optimal. 

86Y. 86Y is a positron emitter generally produced via the nuclear (p,n) reaction from enriched 

[86Sr]SrCO3 [73]. 86Y/90Y (and 177Lu) form a matched-pair, thus the same chelators can be used. 

However, the half-life, presumably good for imaging of smaller molecules like mAb fragments and 

peptides, seems, similar to 64Cu, short for imaging of large mAbs, and, compared to 89Zr, also short 

concerning logistic aspects like transport [74]. Furthermore, 86Y emits high energy γ-photons, which 

together with the annihilation photons might result in false coincidences and thus in quantification 

artifacts [75,76] affecting the spatial resolution and imaging quality [77]. But emitting positrons 

abundantly, almost twice as much as 64Cu, the activity of 86Y required for quantitative immuno-PET 

can be kept rather low. Anyhow, with 86Y promising PET studies using tumor mouse models have 

been performed [78–82] among others also with cetuximab, that was conjugated to the bifunctional 

chelator (BFC) CHX-A′′-DTPA [83,84] under mild conditions [85]. As PET/RIT pair 86Y as surrogate 

for 90Y seems to be convenient. It might to be more suitable than the pair 89Zr/90Y since the uptake of 
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89Zr-labeled cetuximab particular in bone was higher than that of 88Y-labeled cetuximab (88Y as 

surrogate for 90Y) [74]. Also the PET/RIT surrogate pair 86Y and 177Lu can be of interest. 

89Zr. 89Zr is a long-lived positron emitter. The production of choice is the (p,n) reaction on 89Y, an 

element that does not require enrichment due to its natural abundance of 100% [86]. Since cetuximab 

has a rather long biological half-live of 63 to 230 h [87] 89Zr is an appropriate radionuclide for 

application in so-called immuno-PET and offers high sensitivity, resolution and precise quantification. 

Although it emits also γ photons those do not interfere with the PET image quality and accurate 

quantification [88]. In PET 89Zr might be used as surrogate to predict biodistribution and dosimetry of 
177Lu- and 90Y-labeled mAb conjugates [74,89]. It is coupled to cetuximab via N-succinyl 

desferrioxamine B. Biodistribution was comparable with that of 86Y- and 177Lu-radiolabeled cetuximab 

conjugates. Differences can occur due to coupling with other chelators that change the 

pharmacokinetics and in vivo stability [74], but basically 89Zr and 90Y as well as 89Zr and 177Lu appear 

to be good PET/RIT pairs. 

99mTc. Since the gamma emitter 99mTc has favorable physical properties for scintigraphic imaging 

and can be produced with low costs by the 99Mo/99mTc generator, this radionuclide has been used 

widely for labeling of radiopharmaceuticals. As stable complex with ethylenedicysteine [90] a 

conjugate to cetuximab has been formulated [91]. The uptake of this cetuximab conjugate in tumor 

tissue was still higher than the uptake of 99mTc complex only, but not convincingly high for analyzable 

imaging to achieve. Besides, an unexpected high kidney uptake was observed in human breast  

tumor-bearing rats [92]. The half-life of 6 h for 99mTc is too short for imaging of mAb like cetuximab 

when the highest accumulation of the antibody in the tumor is expected after 2 to 3 days. Moreover, in 

patient studies to visualize head and neck cancer correlations of the imaging results with clinical 

findings are missing. Furthermore, high liver uptake was observed compared with an uptake in 

HNSCC [92] that was not sufficiently high. As already discussed for 68Ga Ab conjugates with 99mTc 

are not convenient for in vivo applications. It would be more adequate to couple 99mTc complexes to 

smaller molecules which reach their target faster than mAbs. 

111In. 111In is a cyclotron-produced radiometal, and one of the most commonly used radionuclides 

for SPECT [93] especially as label for mAb due to its adequate physical half-life (2.8 d). Even it emits 

Auger and internal conversion electrons with low energy that might be interesting for therapeutic 

approaches [94], primarily γ radiation is used for diagnostic imaging. 111In-labeled mAb conjugates 

with the chelators DOTA or DTPA have been investigated in small animals [85,95,96] and human [97,98]. 

124I. 124I is a positron emitter with a complex decay scheme [99]. In addition to two positron 

emitting transitions, 124I emits γ rays at more than 90 transitions resulting in increased random 

coincidences in PET. The so-called true-coincidence γ ray background may disturb the PET imaging. 

And the high energy of the emitted positrons from 124I also contributes to a declined resolution. 

Furthermore, iodine has been described for the tendency to separate from mAb after injection, because 

of metabolic degradation, and so it might accumulate in different organs and the interpretation of PET 

images turns out to be difficult [100]. However, radioiodine can be used for direct labeling without a 

chelator. In many cases this facilitates the labeling of biomolecules. In this regard, 124I has been used 

as an imaging nuclide surrogate for 131I [101]. Moreover, the relatively long half-life justifies the use 
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of 124I-labeled mAbs [102,103]. Recently an anti-EGFR antibody has been 124I-labeled and studied 

successfully in vitro and in vivo in mice bearing glioma xenografts [104]. 

125I. Since 125I has a long half-life of 60 d and emits low-energy γ radiation, it can be detected by a 

gamma-counter. This radionuclide is often coupled to antibodies for application in radioimmunoassays 

(RIA), and also in preclinical EGFR investigations [105–107]. Furthermore, 125I-labeled cetuximab 

was applied in tumor bearing mice and showed in general lower uptake in the tumor compared with 

radiometal labeled cetuximab [74,108,109]. Due to the long half-life and its tendency to degrade faster 

than radiometal-antibody-conjugates 125I will not be introduced as label for antibodies in clinical trials. 

3.1.2. Radionuclides for Cetuximab Conjugates Used as Therapeutics 

90Y. The therapeutic β− emitter 90Y is of particular interest for medical applications due to its 

suitability for irradiating primary tumor lesions. It is available at moderate costs via 90Sr/90Y-generators, 

has an appropriate half-life for RIT and a high β− emission energy with a tissue penetration range of up 

to 12 mm [110]. Thus, it is more suitable for RIT of large bulky solid tumors. Caution and good 

biodosimetry is necessary when a tumor is located adjacent to critical organs, especially if combined 

with EBRT. Yttrium in general should be applied within a stable chelate complex since in free 

condition it deposits in the bone [111]. The absence of γ emission by 90Y makes it not trivial for in vivo 

imaging [112,113]. Alternatively, for 90Y the longer lived 88Y (half-life 106.6 d, β+ 0.2%, Eβ-max 0.76 

MeV; γ 99%, Eγ 1.836 MeV) has been used as substitute to estimate biochemical properties [74,114,115]. 

However, its γ energy is too high for imaging, and the low amount of positrons might be reasonable 

only for small animal PET to prevent significant scatter of the prompt γ rays into the PET energy 

window [116]. Recently, 90Y-labeled cetuximab conjugates have been applied in RIT [117], also in 

combination with external radiation [118,119] (see Section 3.5.). 

131I. 131I is a β− emitter with concomitant γ radiation. The β−-radiation is used for internal 

radiotherapy of hyperthyroidism [120] and different tumor types, like neuroblastoma, 

pheochromocytoma [121], and thyroid cancer [122], whereby the γ radiation part is often applied for 

SPECT imaging [123]. A crucial advantage is the low cost of the radionuclide production, but a 

disadvantage the low stability resulting in corresponding deiodination reactions in vivo. Recently,  
131I-labeled cetuximab treatment has been applied in combination with irradiation on epidermoid 

cancer cells (A431). In result the combination of 131I-cetuximab with external radiation inhibited cell 

proliferation in vitro [124]. 

177Lu. 177Lu is the more favorable therapeutic radionuclide for treatment of small tumors due to its 

low energy and tissue penetration of about 1.5 mm [110]. The physical half-life is sufficient for 

preparation, transport and delivery of therapeutic doses to tumors applied as immunoconjugates like 

mAbs. Due to its low energy γ-lines it is possible to perform imaging. The chemistry of 177Lu 

resembles the metallic radionuclide 90Y forming also stable complexes with DOTA and cysteine-based 

DTPA. Several 177Lu-labeled Ab conjugates have been studied [125–127], including cetuximab 

conjugates [74,109,128]. 

213Bi. Recently, mAb have also been labeled with α emitters like 213Bi that as therapeutic 

radionuclide might be more efficient in killing tumor cells with less damage in the surrounded healthy 
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tissue in targeted therapy [129,130]. The production with a 225Ac/213Bi generator has been developed 

even for application in clinical use [131]. The range of α-particles is rather short in tissue in 

comparison to beta particles (50–80 µm vs. 0.8–12 mm); they have a much higher linear energy 

transfer (100 keV/µm vs. 0.2 keV/µm) [129]. Currently, there are clinical trials for different types of 

cancer with targeted high potent α-emitters [132–134]. In an in vitro study 213Bi-labeled  

CHX-A′′DTPA-cetuximab showed effective double-strand breaks on different human breast cancer 

cells, but for an approach in patients the safety of targeted α-emitter-labeled radioconjugates has to be 

evaluated [135]. However, due to the short half-life of only 46 min an application of 213Bi-labeled to 

CHX-A′′DTPA-cetuximab would be rather questionable and likely will not enter the clinics. 

3.2. Linking Chelating Units 

Almost all radionuclides for diagnostics and therapy of different types of cancer coupled to 

antibodies, antibody fragments or peptides are radiometals. That requires chelation chemistry for the 

attachment to the ligands. Several chelators have been conjugated to cetuximab. Hereby it is necessary 

to find the balance between the required coupling conditions to obtain a stable conjugate preferably 

without degradation, loss of affinity and immunoreactivity. For stable coupling of radiometals to 

antibodies and preservation of their special features, mild conjugation procedures have to be 

established. The chelating agents of choice should form stable metal complexes as well as provide 

specific functional groups to enable the conjugation to a protein. Such bifunctional chelators (BFC) 

have to be characterized for several properties: thermodynamic and kinetic stability, pH-dependent 

dissociation and serum stability [136]. To determine in vivo stability of any labeled conjugate only 

suitable in vivo models can provide such information. Figure 1 illustrates the bifunctional chelators 

used in cetuximab conjugates. 

One of the first used bifunctional chelating agents was desferrioxamine B that, conjugated to an 

antibody, has been radiolabeled with 111In [137]. Derivatives of desferrioxamine, originally developed 

as chelators for Fe(III), form stable complexes with In(III), Ga(III) and Zr(IV). Thus, desferrioxamine 

antibody conjugates labeled with 67Ga have earlier been investigated [138]. Recently, desferrioxamine 

derivatives were conjugated to mAb [86,139,140]. Labeled with 89Zr the conjugates showed promising 

results with regard to radiochemical purity, integrity, preservation of immunoreactivity and stability [86]. 

Moreover, with 89Zr-desferrioxamine-cetuximab-conjugates small animal PET studies revealed 

convincing results with good resolution showing high accumulation in different tumors [141,142]. 

Particularly, high uptake was demonstrated in FaDu tumors, a model for HNSCC [140]. 

Starting from DTPA several bifunctional derivatives have been developed and investigated [143,144]. 

Recently, CHX-A′′-DTPA (correct: p-SCN-Bn-CHX-A′′-DTPA) has been used for conjugation with 

antibodies to form sufficiently stable 86Y, 90Y, and 111In immunoconjugates, which could successfully 

be applied in vivo [83,145–147]. Among the backbone-substituted DTPA derivatives CHX-A′′-DTPA 

showed very good in vitro and in vivo stability [143,144] and it can be conjugated and radiolabeled 

under mild conditions to preserve the immunoreactivity of the resulting conjugate.  
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Figure 1. Bifunctional chelators (BFC) used in cetuximab conjugates: succinylated 

desferoxamine (N-sucDf, 1a), desferoxamine-p-SCN (Df–Bz–NCS, 1b), p-SCN-Bn-DTPA 

(2a), CHX-A′′-DTPA (2b), DOTA-NHS-ester (3a), p-SCN-Bn-DOTA (3b), p-SCN-Bn-

NOTA (4). 

 

The kinetic stability of a radiometal complex plays a more important role for in vivo stability than 

the thermodynamic stability [148], but still, possible predictions can be just assumed. For example the 

complex [111In-DOTA]- is kinetically more stable than [111In-DTPA]2−, but thermodynamic stability of 

In(III)-DTPA is about 5 orders higher than the appropriate In(III)-DOTA complex [96].  

It was shown that CHX-A′′-DTPA, conjugated to a HER2-specific affibody, provides better cellular 

retention of the radiolabeled Ab, better tumor accumulation and better tumor-to-organ dose ratios in 

comparison with DOTA [149]. DTPA antibody conjugates have a satisfactory labeling efficiency [150]. 

Bifunctional chelating units based on DOTA are the chelators of choice for yttrium isotopes and 
177Lu [74,125]. DOTA derivatives are also often used for chelating 64Cu [59,151], although it has been 

claimed that DOTA is not the optimal chelator for 64Cu, because 64Cu-DOTA shows a certain 

instability in vivo [58,148]. However, stability constants measured in an in vitro chemical system [152] 

cannot represent in vivo conditions. For instance, it has been described that transchelation for a  
64Cu-DOTA antibody was much higher than for the same 64Cu-NOTA antibody [63]. Cross-bridged 
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macrocycles show greater stability with 64Cu. However, there is the need for harsh labeling conditions 

(95 °C for 2 h) [153] which are incompatible for protein labeling. But still, the tumor uptake of  
64Cu-DOTA-cetuximab is relatively high [59–61,117,151]. 

Particular importance has attained the preservation of the immunoreactivity of the antibody after 

conjugation reactions. A flow cytometry study showed still high binding capacity after conjugation of 

CHX-A′′-DTPA to cetuximab [154]. Other studies present a preserved immunoreactivity [83,85], and 

the high affinity of cetuximab to EGFR was kept [119]. 

The uptake of radiolabeled cetuximab in EGFR expressing model tumors in mice was, in general, 

significantly higher compared with the uptake in the main body parts, except the liver (Table 2). The 

decline from the blood appeared to be faster than from the tumor and, unfortunately, also from the 

liver. Anyhow, the outcome was a high tumor-to-muscle or tumor-to-background ratio. Of note, the 

data were comparable for most conjugates applied, excepting those using non-appropriate chelating 

units [91] or those using non-appropriate radionuclides [72]. These are data from rodent models 

naturally not expressing human EGFR. Therefore, an extrapolation of the biodistribution to human 

pharmacological characteristics might be difficult, reflecting not the true relations (see below). 

Table 2. Radiolabeled cetuximab conjugates studied in tumor-bearing mice. 

Radionuclide Chelator Tumor type Application

Tumor 
uptake 

Tumor/muscle 
ratio 

Liver 
uptake Reference

(%ID/g, 24 h post-injection) 
64Cu DOTA h GB i.v. 12.5 5 15 [59] 

  h PC  11 4.5 6 (rat)  
  h CRC  ~5  2  
  m CRC  10  4  
  h M      

64Cu DOTA h CC i.v. 14  3.5 16 [60] 
64Cu DOTA PC-3 i.v. 15 15 17 [151] 
64Cu  DOTA A431 i.v. 18.5 8.5 13 [61] 

  h M  2.6  1.3 10  

64Cu DOTA 
h HNSCC 

(UMSCC22B) 
i.v. 19 6 11 [117] a 

64Cu DOTA 
h HNSCC 

(UMSCC1) 
i.v. 6 2.5 13 [117] 

a 

64Cu NOTA m BC i.v. 4 4 19 [155] 
64Cu NOTA m BC i.v. 20 10 19 [54]  
66Ga NOTA h BC i.v. 4 5 6 [72] b 
86Y DTPA h CRC i.v. 21 11 10 [83]  
88Y DTPA A431 i.p. 21 14 11 [74]  
88Y DOTA A431 i.p. 17 11 10 [74]  
89Zr Df h GB i.v. 15 15 10-12 [141]  

  h CRC  10  10  
  A431  8  8  
  h BC  3  3  

89Zr Df A431 i.v. 3.5c 10d 11c [142] 
89Zr Df A431 i.p. 21 17 10 [74]  
89Zr Df A431 i.v. 15 8 9 [139]  
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Table 2. Cont. 

Radionuclide Chelator Tumor type Application
Tumor 
uptake 

Tumor/muscle 
ratio 

Liver 
uptake Reference

(%ID/g, 24 h post-injection) 
89Zr + Df A431 i.v. 22 19 20 [156] 

89Zr + ½ dye e Df   20 19 22  
89Zr + 1 dye Df   20 19 25  
89Zr + 2 dye Df   13 16 40  

99mTc  EC h BC i.v. 0.3 8.5 0.6 [91]  
86Y DTPA h CRC i.v. 21 11 10 [83]  
88Y DTPA A431 i.p. 21 14 11 [74]  
88Y DOTA A431 i.p. 17 11 10 [74]  
90Y DOTA normal rats i.v.   2 [157] 

177Lu DOTA A431 i.p. 18 12 13 [109]  
177Lu DOTA A431 i.p. 17.5 12 8-13 [74]  
177Lu DTPA A431 i.p. 17.5  12 7 [74]  
111In DTPA A431 i.v. 11 29 47 [158] f 

 DTPA-

PEG 
A431  8.7 13 25  

111In DTPA h OC i.v. 8.8 11 4 [95] f 
111In DTPA h CRC i.v. 28/24g 28/24g 9/16g [85]  

  h PC  16 16 6  
  h PancC  10 10 10  
  h OC  13 13 10  
  h M  3 3 9  

111In DTPA h HNSCC i.v. 20 14 11 [108]  
111In DTPA h BC i.v. 18/40f 13 11/15f [135]  
111In DTPA h HNSCC (FaDu) i.v. 27 13 8 [159] 
125I  h HNSCC i.v. 11 8 7 [108]  
125I  A431 i.p. 8.4 5.6 4 [109]  
125I  A431 i.p. 8 5 4 [74]  

 

Df desferrioxamine chelating unit; EC ethylenedicysteine; h human; m murine; GB glioblastoma; CRC 

colorectal carcinoma; A431 human epidermoid carcinoma; BC breast carcinoma; PC prostate carcinoma; 

CRC colorectal carcinoma; CC cervical cancer; M melanoma (MDA-MB-435); HNSCC head and neck 

squamous cell carcinoma; UMSCC22B cells of the lymph node the oropharynx; UMSCC1 cells of the oral 

cavity; OC ovarian carcinoma; PancC pancreas carcinoma; FaDu hypopharyngeal carcinoma cell line; a 20 h 

after radiotracer injection; b 36 h after radiotracer injection; c %ID/mL tumor PET analysis; d tumor to 

background (pelvic); e different equivalents of the dye IRDye800CW; f 48 h after radiotracer injection;  
g value from two different types of h CRC xenografts. 

3.3. Liver Accumulation 

Liver accumulation appears to be a general problem using mAb-based immunoimaging and 

immunotherapeutics in animal studies, Table 2. Overall, the liver uptake of 90Y-DOTA- and  
64Cu-DOTA cetuximab in rats appears to be proportionally lower as compared to mice. Biodistribution 

studies revealed that cetuximab is eliminated partly via the reticuloendothelial system, binding on fc 

receptors of lymphocytes, macrophages etc. passing sinusoid capillaries especially into the liver. Thus, 

a considerable part is accumulating in this organ. Table 2 shows only the values for 24 h post injection, 
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since the accumulation in the liver did not increase after 24 h and declined only slowly thereafter, 

whereas the highest tumor uptake of a cetuximab conjugate was measured after 72 h. In an 89Zr-labeled 

cetuximab study a multimodal imaging approach was investigated where a dye, emitting fluorescence 

in the near-infrared region, was conjugated additionally to the Ab [156]. In this study, the more dye 

units the Ab received the lower was the tumor uptake and the higher the liver uptake. 

In general, accumulation of 125I-labeled cetuximab in the liver was lower compared to the 

radiometal-labeled cetuximab studies, but also in tumor this conjugate accumulated considerably less. 

Thus, the question arises to what extent metal chelate complexes influence the uptake of the 

conjugates. As noted above, radioiodine labeled antibodies are subject to degradation and deiodination 

due to their in vivo instability to proteolysis. A faster degradation of iodine labeled antibodies after 

internalization causes faster clearance from the target cells and results in images with lower tumor 

contrast, thus not reflecting the real distribution of the Ab [160]. Moreover, the risk of radioiodine 

accumulation in the thyroid contributes to the inappropriateness of radioiodine as a therapeutic tracer 

outside the thyroid. 

A dimension independent from the weight of the organs and the body weight is the standard uptake 

value (SUV). Considering the SUV of 1.6 for liver and 4.2 for FaDu tumor in the biodistribution with 
90Y-CHX-A′′-DTPA-cetuximab, liver accumulation appears to be justifiable. PET studies with  
86Y-CHX-A′′-DTPA-cetuximab using FaDu bearing mice showed similar accumulation distribution [83]. 

With 111In-labeled CHX-A′′-DTPA-cetuximab in tumor bearing mice higher liver uptake was  

observed [85,108,158]. The liver accumulation might partly be due to nonspecific uptake of labeled 

yttrium caused by transchelation [161]. Since applications with radiolabeled mAbs have been limited 

by liver uptake, an approach for reduction was the modification of the conjugate with PEG, or also the 

pretreatment with cetuximab [158]. Recently, the biodistribution of 111In-DTPA-cetuximab-fragments 

have been compared with 111In-DTPA-cetuximab in FaDu tumor bearing mice. In this study the 

fragments showed significantly lower uptake in the tumor, but lower uptake in the liver could not be 

observed, it was even higher within the first 4 h after administration. In addition, more radioactivity 

was measured in the kidney [159]. In a first clinical imaging study in patients with lung squamous cell 

carcinoma 111In-DTPA-MAb225, the murine forerunner of cetuximab, also showed a high liver 

accumulation [98]. The uptake of DTPA-cetuximab conjugates in the liver appears to be somewhat 

lower compared to the liver uptake of 64Cu-DOTA-cetuximab. 89Zr-desferrioxamine-cetuximab 

conjugates revealed a similar liver uptake as the yttrium-labeled conjugates. Histological assays of 

liver tissue have been performed after RIT, whereby no changes were observed [118]. However, a 

conclusion on potential normal organ toxicity is restricted to the experimental animals [162], because 

the antibody cetuximab is specific to human EGFR and thus is expected to show a differential organ 

distribution in humans compared to animals. 

Specifically for cetuximab no binding to EGFR in frozen liver sections of mice and rats could be 

detected, whereas strong cross-reactivity was observed with EGFR expressed on the cell surface of 

various types of human tissue including skin, lung, and liver [163]. Thus, it is important to consider 

that the elimination of cetuximab, also in the radiolabeled state, needs to be evaluated separately in 

humans and cannot be extrapolated from rodent studies. 
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3.4. The Enhanced Permeability and Retention Effect 

Non-specific tumor uptake of radiolabeled Ab often is caused by the enhanced permeability and 

retention (EPR) effect. Aberrant defective membrane formations of tumor blood vessels with wide 

fenestrations are leading to an enhanced vascular permeability. Besides, a malfunction of lymphatic 

vessels in tumor tissue impairs the clearance of macromolecules and lipids, so that they remain in the 

tumor interstitium for longer time. The EPR effect [164,165] has also been described when labeled 

antibodies have been used in studies for tumor diagnostics or treatment [166,167]. In a phase I imaging 

trial with 111In-labeled murine DTPA-MAb225 in patients with lung cancer several patients received 

the isotope-matched 111In-labeled control mAb [98]. Presumably, due to the EPR effect half of this 

control group did not show significant differences to the specific Ab. A number of studies used this 

labeled isotype of IgG1 as negative control to determine nonspecific tumor uptake [54,151,168,169]. 

Vascular endothelium in tumors also can be perturbed by hypoxic areas [170]. Thus, beside aberrant 

vessels in the tumor tissue also hypoxia seems to contribute to the EPR effect. 

3.5. Therapeutic Approaches with Labeled Cetuximab 

Combination of radioimmunotherapeutic approaches, e.g., radiolabeled cetuximab, with curatively 

intended radio(chemo)therapy are a promising research strategy to improve locoregional tumor control 

in head and neck or other cancer entities. The therapeutic success depends on the radioligand 

concentration in the tumor which, in addition to the target expression, seems to depend on tumor 

microenvironmental parameters [118]. 

After binding to the EGFR, radiolabeled cetuximab internalizes into the cell [60,107,108] and can 

cause there, additional damage of the cell as well as to neighbor cells. The combination of 90Y-labeled 

cetuximab (90Y-CHX-A′′-DTPA) treatment with subsequent irradiation reduced clonogenic cell 

survival more compared to external irradiation alone [119]. Unlabeled cetuximab caused a 

radiosensitizing effect [171,172] in one out of three cell lines [119]. Recently, an EGFR expression 

depending number of DNA double strand breaks (DSB) caused by 90Y-CHX-A′′-DTPA was 

demonstrated in vitro [173]. Furthermore, also in different breast cancer cells, which were sensitized 

with an inhibitor of DNA-dependent-protein-kinase, DNA DSB have been assessed after treatment of 
213Bi-labeled cetuximab [135]. Rades et al. [124] showed that the highest antiproliferative effect in 

epidermoid cancer cells (A431) occurred after combined treatment with therapeutic 131I-labeled 

cetuximab and irradiation. These data suggest that higher radiation dose promotes and increases the 

uptake of the radiolabeled conjugate into the tumor cells. 

In vivo, three different human squamous cell carcinoma models have been evaluated in nude mice. 

Two to 4 days after external beam single dose irradiation either unlabeled or 90Y-labeled cetuximab 

was applied. While one out of three tumor models did not respond, tumor growth delay could 

significantly be prolonged in two other HNSCC xenograft models [118]. Permanent local tumor 

control was evaluated for the non-responder and one responder-model, confirming non-response in 

UT-SCC5 but a significant improvement of local tumor control in FaDu, the latter being a non- or 

minimal-responder to radiotherapy with unlabeled cetuximab [41,118,174]. A combined parameter on 

tumor micromilieu, specifically perfusion, and EGFR expression, appeared as a candidate biomarker 
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for tumor response—this parameter can be measured using PET imaging with 86Y-cetuximab as a 

tracer. In another study colon tumor-bearing mice showed higher survival after treatment combination 

of the cytostatic drug cisplatin followed by 64Cu-DOTA-cetuximab and suggested a role of the tumor 

suppressor protein p53 for the transport of 64Cu into the cell nucleus [175]. Here, even a KRAS 

mutated cetuximab-resistant tumor model was responding [54]. In a recent case report a patient with 

brain metastases from non-small cell lung cancer was treated with low concentrations of 131I-labeled 

cetuximab in addition to therapeutic cetuximab treatment and whole brain irradiation. SPECT was 

applied to monitor the treatment and showed accumulation of 131I-labeled cetuximab in the brain 

metastases which showed a decrease in size during the treatment. It remains to be elucidated whether 

cetuximab generally passes the blood-brain-barrier or only in specific patients [176]. 

4. Conclusions 

Radiolabeled cetuximab derivatives in combination with external radiotherapy or established 

chemotherapy appear to be a promising theranostic approach for treatment of epithelial tumors, thus 

fostering more individualized treatment strategies. Since considerable heterogeneity of the functional 

response to labeled or unlabeled targeted treatments is obvious also within one histological tumor type, 

there is a clear need to establish predictive biomarkers for the curative effect of such treatments. One 

good candidate that needs to be validated in patients is PET imaging using labeled cetuximab as a 

diagnostic tracer. So far, treatment of patients with therapeutic radionuclide-labeled cetuximab has not 

yet entered into the clinics. Important open questions include the distribution and accumulation of the 

tracer in healthy organs in humans as well as the feasibility of the combined high-dose EBRT and RIT 

approach in patients. 
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