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Abstract: Plasma metabolomic profiles have been shown to be associated with age-related macular
degeneration (AMD) and its severity stages. However, all studies performed to date have been
cross-sectional and have not assessed progression of AMD. This prospective, longitudinal, pilot study
analyzes, for the first time, the association between plasma metabolomic profiles and progression
of AMD over a 3-year period. At baseline and 3 years later, subjects with AMD (n = 108 eyes) and
controls (n = 45 eyes) were imaged with color fundus photos for AMD staging and tested for retinal
function with dark adaptation (DA). Fasting plasma samples were also collected for metabolomic
profiling. AMD progression was considered present if AMD stage at 3 years was more advanced
than at baseline (n = 26 eyes, 17%). Results showed that, of the metabolites measured at baseline,
eight were associated with 3-year AMD progression (p < 0.01) and 19 (p < 0.01) with changes in
DA. Additionally, changes in the levels (i.e., between 3 years and baseline) of 6 and 17 metabolites
demonstrated significant associations (p < 0.01) with AMD progression and DA, respectively. In
conclusion, plasma metabolomic profiles are associated with clinical and functional progression of
AMD at 3 years. These findings contribute to our understanding of mechanisms of AMD progression
and the identification of potential therapeutics for this blinding disease.

Keywords: age-related macular degeneration; dark adaptation; metabolomics; plasma

1. Introduction

Age-related macular degeneration (AMD) remains the leading cause of blindness in
people over the age of 50 years in developed countries [1]. Worldwide, it ranks third, and is
expected to affect 288 million people by 2040 [1]. The hallmarks of the early phases of AMD
include macular drusen and pigmentary changes. Some patients progress to the late forms
of the disease, characterized by the presence of choroidal neovascularization (exudative
form) or geographic atrophy (non-exudative form). Rates of progression to the advanced
forms of AMD vary among individuals, with some patients remaining stable for years
and others never developing late AMD. The reasons behind this variability remain poorly
understood. Several clinical, genetic and environmental factors (such as fundus features,
risk single nucleotide polymorphisms and smoking, respectively) have been linked to risk
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of AMD progression [2]. However, their interlinks and functional consequences remain
insufficiently characterized [3]. This has important consequences for clinical care because
(i) there are currently limited strategies for halting AMD progression and for treating
non-exudative forms of AMD; [3] moreover, (ii) the current standard of care for assessment
of risk of AMD progression remains solely based on fundus appearance by examination
or imaging, and it is limited in its prediction ability. Researchers have tried to combine
AMD status at baseline with genetic variants and demographic and environmental factors
to build models of risk prediction [4], but their application remains limited [5].

Our group hypothesized that plasma metabolomics, the qualitative and quantitative
analysis of metabolites (<1–1.5 KDa), could contribute in addressing these challenges by
providing insights into the pathophysiology of AMD [6]. Metabolites are the downstream
product of cumulative effects of the genome and its interaction with environmental ex-
posures; therefore, the metabolome is thought to be closely related to disease phenotype,
especially in multifactorial diseases [7]. Indeed, we [8–10] and others [11] have described
that patients with AMD have a distinct plasma metabolomic profile than compared to
controls, and this profile changes with disease severity. To our knowledge, however, no
studies have evaluated how plasma metabolomic profiles relate to AMD progression.
This pilot study aimed to analyze the association between plasma metabolomic profiles
and progression of AMD over a three-year period. In addition to the conventional out-
come of phenotypic progression based on color fundus photographs, we also assessed
associations with rod-mediated dark adaptation, which is a promising functional AMD
biomarker [12,13].

2. Results

We included data on 153 eyes of 81 patients. Table 1 presents clinical and demographic
characteristics of the included study population. As shown, 17% of the eyes (n = 26) demon-
strated progression of AMD stage at the 3-year visit. This included nine eyes that at baseline
were classified as controls and progressed to either early (n = 5) or intermediate AMD (n = 4)
at 3 years; eight eyes with early AMD at baseline that progressed to intermediate AMD;
and nine eyes with intermediate AMD at baseline that developed late AMD during the
3-year follow-up period. Among the nine eyes that developed late AMD, eight progressed
to geographic atrophy and one developed choroidal neovascularization.

Table 1. Demographics of the included study population.

AMD Progression No AMD Progression Total

Eyes, n (%) 26 (17) 127 (83) 153 (100)
Baseline AMD stage, n (%)

Control
Early AMD

Intermediate AMD

9 (34.6)
8 (30.8)
9 (34.6)

36 (28.3)
15 (11.8)
76 (59.9)

45 (29.4)
23 (15.0)
85 (55.6)

Age, mean ± SD 71.35 ± 5.75 69.30 ± 6.88 69.61 ± 6.73
Female, n (%) 19 (73.1) 95 (74.8) 114 (74.5)

BMI, mean ± SD 24.66 ± 3.21 27.23 ± 4.67 26.80 ± 4.55
Smoking, n (%)

Ex-smoker
Non-smoker

Smoker

17 (65.4)
7 (26.9)
2 (7.7)

62 (48.9)
61 (48.0)
4 (3.1)

79 (51.6)
68 (44.4)
6 (3.9)

Race, n (%)
White
Black

Hispanic

24 (92.3)
2 (7.7)
0 (0)

122 (96.1)
2 (1.6)
3 (2.4)

146 (95.4)
4 (2.6)
3 (2.0)

Legend: AMD–age-related macular degeneration, n–number, SD–standard deviation and BMI–body mass index.
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2.1. Metabolomic Profiles and AMD Progression Based on Color Fundus Photographs

Eight of the baseline metabolites showed a significant association with AMD pro-
gression at 3 years (p < 0.01)-Table 2. Among them, the most significant metabolites
(ENT80) were ribitol (ß = 7.76, p = 0.0002) and pregnenediol disulfate (C21H34O8S2)
(ß = −1.82× 1015, p = 0.0014). Pathway analysis revealed a significant enrichment of the
pentose and glucuronate interconversions pathway (p = 0.004).

Table 2. Baseline metabolites associated with progression of AMD based on color fundus photographs
(p < 0.01).

Metabolite Super Pathway Sub Pathway ß Coefficient p Value

N6,N6,N6-trimethyllysine Amino Acid Lysine Metabolism 4.929 0.0083
Phenylalanine Amino Acid Phenylalanine Metabolism −3.02 × 1015 0.0052

Methylsuccinate Amino Acid Leucine, Isoleucine and Valine Metabolism 4.938 0.0088

N-methylhydroxyproline * Amino Acid Urea cycle; Arginine and
Proline Metabolism −2.108 0.0068

Ribitol Carbohydrate Pentose Metabolism −7.755 0.0002 a

N-palmitoyl-sphingosine
(d18:1/16:0) Lipid Ceramides −9.442 0.0052

Pregnenediol disulfate
(C21H34O8S2) ** Lipid Pregnenolone Steroids −1.82 × 1015 0.0014 a

1-linoleoyl-2-linolenoyl-GPC
(18:2/18:3) * Lipid Phosphatidylcholine (PC) −3.476 0.0046

Legend: Data of 153 eyes were considered for this analysis. a Statistically significant based on ENT80, p < 0.0016.
* Metabolite with level 2 of identification [14]. ** Metabolite with level 3 identification [14].

When looking at changes in metabolite levels over the 3-year period, six metabolites
showed a significant association with AMD progression, and one of them (ascorbic acid
2-sulfate, ß = 4.58, p = 0.0016) was significant based on ENT80—Table 3.

Table 3. Changes in metabolites at 3 years and associations with progression of AMD based on color
fundus photographs (p < 0.01).

Metabolite Super Pathway Sub Pathway ß Coefficient p-Value

Methylsuccinate Amino Acid Leucine, Isoleucine and
Valine Metabolism −2.665 0.0088

Ribonate Carbohydrate Pentose Metabolism −3.652 0.0026

Ascorbic acid 2-sulfate Cofactors and Vitamins Ascorbate and
Aldarate Metabolism 4.584 0.0016 a

5alpha-androstan-3alpha,17beta-diol
monosulfate (1) Lipid Androgenic Steroids 8.381 0.0025

5alpha-androstan-3beta,17beta-diol
monosulfate (2) Lipid Androgenic Steroids 9.206 0.0099

Androstenediol (3beta,17beta)
monosulfate (1) Lipid Androgenic Steroids 13.480 0.0068

Pregnenetriol disulfate ** Lipid Pregnenolone Steroids 1.82 × 1015 0.0026

Legend: Data of 153 eyes were considered for this analysis. a Statistically significant based on ENT80, p < 0.0016.
** Metabolite with level 3 identification [14].

2.2. Metabolomic Profile and Changes in Dark Adaptation

For 38 eyes of 24 patients included in the study, we had available data on dark adapta-
tion both at baseline and at the 3-year follow-up visit. Table 4 presents their characterization.

Of the baseline metabolites, none presented significant associations (all p > 0.01)
with changes in RIT at 3 years. When looking at changes of metabolites at 3 years, a
sphingomyelin (hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH)), ß = 11.7, p = 0.0091)
presented a significant association.
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Table 4. Demographics of the included eyes with data available on dark adaptation.

AMD Progression No AMD Progression Total

Eyes, n (%) 9 (24) 29 (76) 38 (100)
Baseline AMD stage

Control
Early AMD

Intermediate AMD

6 (66.7)
1 (11.1)
2 (22.2)

7 (24.1)
1 (3.5)

21 (72.4)

13 (34.2)
2 (5.3)

23 (60.5)
Age 67.6 ± 3.4 67.8 ±7.0 67.7 ± 6.3

Female, n(%) 7 (77.8) 17 (58.6) 24 (63.2)
BMI 24.1 ± 3.0 26.6 ± 3.5 26.0 ± 3.5

Smoking
Ex-smoker

Non-smoker
Smoker

5 (55.6)
3 (33.3)
1 (11.1)

16 (55.2)
13 (44.8)

0 (0)

21 (55.3)
16 (42.1)
1 (2.6)

Race
White
Black

Hispanic

7 (77.8)
2 (22.2)

0 (0)

27 (93.1)
0 (0)

2 (6.9)

34 (89.5)
2 (5.3)
2 (5.3)

Legend: AMD–age-related macular degeneration; n—number; SD—standard deviation; BMI—body mass index.

As explained, an important percentage of the eyes included in this study had reached
the RIT ceiling test value at the time of inclusion (n = 9, 23.7% of the eyes with data on
DA); thus, we used AUDAC as an additional outcome. Among the baseline metabolites,
19 showed a significant association (p < 0.01, Table 5) with changes in AUDAC at 3 years.
Glutamine (ß = −0.18, p = 0.0012) and taurocholenate sulfate (ß = 0.19 p = 0.0012) reached
statistical significance based on the ENT80 cutoff. Pathway analysis of the 19 metabolites
pointed to an enrichment of three metabolomic pathways (p < 0.01, Figure 1).

Table 5. Baseline metabolites associated with changes in area under the dark adaptation curve
(AUDAC) at 3 years.

Metabolite Super Pathway Sub Pathway ß Coefficient p-Value

glutamine Amino Acid Glutamate Metabolism −0.1789 0.0012 a

3-methyl-2-oxobutyrate Amino Acid Leucine, Isoleucine and
Valine Metabolism −0.2154 0.0052

isovalerylcarnitine (C5) Amino Acid Leucine, Isoleucine and
Valine Metabolism −0.1303 0.0093

cysteine sulfinic acid Amino Acid Methionine, Cysteine, SAM and
Taurine Metabolism 0.1499 0.0046

P-cresol glucuronide * Amino Acid Tyrosine Metabolism −0.0799 0.0068

3-amino-2-piperidone Amino Acid Urea cycle; Arginine and
Proline Metabolism 0.1404 0.0025

pyruvate Carbohydrate Glycolysis, Gluconeogenesis, and
Pyruvate Metabolism −0.2190 0.0066

N-acetylneuraminate Carbohydrate Aminosugar Metabolism 0.1221 0.0053
N-acetylglucosamine/
N-acetylgalactosamine Carbohydrate Aminosugar Metabolism 0.0922 0.0080

Gulonate * Cofactors
and Vitamins Ascorbate and Aldarate Metabolism 0.1844 0.0030

citrate Energy TCA Cycle −0.2426 0.0033
5alpha-pregnan-3beta,20alpha-diol disulfate Lipid Progestin Steroids −0.2872 0.0044

taurocholenate sulfate * Lipid Secondary Bile Acid Metabolism 0.1879 0.0012 a

5alpha-pregnan-3beta,20beta-diol
monosulfate (1) Lipid Progestin Steroids −0.2761 0.0020

palmitoylcholine Lipid Fatty Acid Metabolism (Acyl Choline) −0.0827 0.0031
Linoleoylcholine * Lipid Fatty Acid Metabolism (Acyl Choline) −0.0854 0.0029

gamma-glutamylglutamine Peptide Gamma-glutamyl Amino Acid −0.1125 0.0048
gamma-glutamylhistidine Peptide Gamma-glutamyl Amino Acid −0.1711 0.0082

prolylglycine Peptide Dipeptide −0.1284 0.0092

Legend: Data of 38 eyes were considered for this analysis. a Statistically significant based on ENT80, p < 0.0016.
* Metabolite with level 2 identification [14].
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Figure 1. Pathway analysis of baseline metabolites associated with changes in area under the dark
adaptation curve (AUDAC) at 3 years (p < 0.01). X axis: pathway impact, calculated as the sum
of the importance measures of the matched metabolites normalized by the sum of the importance
measures of all metabolites in each pathway. Y axis: −log(p): logarithm of the p-value, based on the
hypergeometric pathway enrichment test. The color and size of each circle are based on its p-value
and pathway impact value, respectively. Namely, colors vary from white to red from less significant
to most significant p-values.

Finally, when considering changes in metabolite levels at 3 years, 17 metabolites
demonstrated significant associations (p < 0.01) with changes in AUDAC at 3 years. Among
them, glutamine showed statistical significance when accounting for multiple comparisons.
These results are presented in Table 6. Pathway analysis (Figure 2) revealed a significant
enrichment of two pathways (p < 0.01): valine, leucine and isoleucine biosynthesis; and
alanine, aspartate and glutamate metabolism.

Table 6. Changes in metabolites at 3 years and associations with changes in area under the dark
adaptation curve (p < 0.01).

Metabolite Super Pathway Sub Pathway ß Coefficient p-Value

glutamine Amino Acid Glutamate Metabolism 0.1748 0.0013 a

asparagine Amino Acid Alanine and Aspartate Metabolism 0.1443 0.0079

4-methyl-2-oxopentanoate Amino Acid Leucine, Isoleucine and
Valine Metabolism 0.2286 0.0089

3-methyl-2-oxobutyrate Amino Acid Leucine, Isoleucine and
Valine Metabolism 0.1861 0.0032

hydantoin-5-propionate Amino Acid Histidine Metabolism 0.1868 0.0019

3-amino-2-piperidone Amino Acid Urea cycle; Arginine and
Proline Metabolism −0.1144 0.0088

N-acetylglucosamine/
N-acetylgalactosamine Carbohydrate Aminosugar Metabolism −0.0953 0.0043

biliverdin Cofactors
and Vitamins Hemoglobin and Porphyrin Metabolism −0.1158 0.0070

alpha-tocopherol Cofactors
and Vitamins Tocopherol Metabolism 0.2110 0.0094

sphingomyelin (d18:2/14:0, d18:1/14:1) * Lipid Sphingomyelins 0.1138 0.0076
palmitoylcholine Lipid Fatty Acid Metabolism (Acyl Choline) 0.0703 0.0047

lactosyl-N-nervonoyl-sphingosine
(d18:1/24:1) * Lipid Lactosylceramides (LCER) 0.1897 0.0057
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Table 6. Cont.

Metabolite Super Pathway Sub Pathway ß Coefficient p-Value

glycosyl ceramide (d18:2/24:1, d18:1/24:2) * Lipid Hexosylceramides (HCER) 0.2083 0.0060
Linoleoylcholine * Lipid Fatty Acid Metabolism (Acyl Choline) 0.0709 0.0020

glycosyl ceramide (d18:1/20:0, d16:1/22:0) * Lipid Hexosylceramides (HCER) 0.1065 0.0088
gamma-glutamylglutamine Peptide Gamma-glutamyl Amino Acid 0.1106 0.0094

gamma-glutamylglycine Peptide Gamma-glutamyl Amino Acid 0.1482 0.0052

Legend: Data of 38 eyes were considered for this analysis. a Statistically significant based on ENT80, p < 0.0016.
* Metabolite with level 2 identification [14].
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Figure 2. Pathway analysis of metabolite changes (p < 0.01) associated with area under the dark
adaptation curve (AUDAC) changes at 3 years. X axis: pathway impact, calculated as the sum
of the importance measures of the matched metabolites normalized by the sum of the importance
measures of all metabolites in each pathway. Y axis: −log(p): logarithm of the p-value, based on the
hypergeometric pathway enrichment test. The color and size of each circle are based on its p-value
and pathway impact value, respectively. Namely, colors vary from white to red from less significant
to most significant p-values.

3. Discussion

We present a prospective longitudinal study on the association of plasma metabolomic
profiles and progression of AMD at a structural and functional level. Despite its small
sample size and, therefore, pilot nature, to our knowledge, this is the first longitudinal
evaluation of metabolomic profiles in AMD. Our results revealed that both baseline levels
and 3-year changes of metabolites in pentose and glucoronate interconversions pathway
and pregnenolone steroids were associated with AMD progression based on color fundus
photographs. Additionally, when using dark adaptation as a functional outcome, we
observed that baseline and changes in glutamine and in alanine and aspartate and gluta-
mate pathways were associated with 3-year changes in the area under the dark adaptation
curve (AUDAC).

The association of metabolites in the pentose and glucoronate interconversions path-
way, such as ribitol, with progression of AMD is an interesting finding, and the finding
points to the role of oxidative stress in the pathogenesis of this disease. Studies in human
retinal pigment epithelium (RPE) cell lines have shown that, when the pentose phosphate
pathway is disturbed, the antioxidant capacity of the RPE cells is impaired [15]. The human
RPE is highly specialized and has essential functions to both the photoreceptors and the
choriocapillaris [16]. However, it is particularly prone to oxidative stress because of the
high levels of light exposure, oxygen supply by the choroidal vasculature and metabolic
activity of the photoreceptors [17]. Under physiologic conditions, there are efficient repair
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mechanisms in RPE to compensate for the highly oxidized environment. When these are
abnormal, however, RPE and photoreceptors cell death ensues. Indeed, oxidative stress
and reduced antioxidant capacity are considered hallmarks of the pathogenesis of AMD
progression [17,18].

Our findings on associations between levels of androgenic and pregnanediol steroids
and AMD progression at 3 years also point to the role of oxidative stress in this disease.
Sex hormones are not only produced in the gonads but also in the central nervous system
(CNS), [19] including in the retina [20]. The retinal pathway starts by the synthesis of
cholesterol, which is then converted in pregnenolone, which results in the formation of
progestin and androgen metabolites and then estrogen [21]. Sex steroid hormone receptors
(SSHRs) have also been identified in the retina, [20] where estrogens are believed to have an
antioxidant and anti-inflammatory role, [22,23] protecting against retinal degeneration [21].
Testosterone, progesterone and their metabolites also appear capable of modulating neu-
rotransmission and may participate in controlling the sex steroid milieu of the retina [21].
Additionally, sex hormones may have an influence in retinal function by modulating retinal
and choroidal blood flow [24]. While estrogens exert a vasodilatory effect, progesterone
and androgenic steroids have opposite effects [21]. Despite the current understanding of
the basic mechanisms of action of hormonal steroids in the retina, there is still important
controversy clinically, as clinical and epidemiological studies have added several dimen-
sions of complexity. For example, while some investigators have reported that exposure to
estrogens (including exogenous estrogens) can be a protective factor against developing
subretinal drusenoid deposits and neovascular AMD, [25] other studies did not confirm
these associations [21]. Additionally, a meta-analysis published by Chakravarthy et al. [26]
has shown that gender does not have a consistent association with AMD.

In this study, we also assessed associations between plasma metabolomic profiles and
changes in rod-mediated dark adaptation, which is a promising functional outcome in
AMD. Consistent data have shown that DA impairment correlates with different stages
of disease [13,27] and that more advanced baseline AMD stages are associated with more
pronounced changes in DA over time [28,29]. Thus, we were interested in assessing, in this
cohort, how plasma metabolomic profiles associate with changes in DA at 3 years. RIT is
the conventional outcome for DA testing. However, in our study, similarly to most cohorts
of patients with AMD, an important percentage of eyes had reached the RIT ceiling test
value (20 min) at baseline, thus precluding longitudinal evaluation. By focusing on area
under the dark adaptation curve, a recent alternative outcome proposed by our group, we
were able to include all eyes with DA data. Our results consistently showed that glutamine
was associated with changes in AUDAC at 3 years, with pathway analysis pointing to an
enrichment of metabolites in alanine, aspartate and glutamate pathways. Interestingly, our
group has recently published a cross-sectional study [30] that also showed that amino acids
related to glutamate are among those with the most significant associations with AUDAC
(and also RIT).

These findings are not surprising in light of the current understanding of plasma
metabolomic changes in AMD and also on the role of glutamate in rod apoptosis. Consistent
studies have shown that changes in metabolites in the glutamate pathway are observed in
AMD. Namely, both our studies using nuclear magnetic resonance spectroscopy (NMR) [8]
and mass spectrometry (MS) [10] have pointed to a dysregulation of metabolites in alanine,
aspartate and glutamate pathways in patients with AMD and across different stages of
disease. Using targeted metabolomics, Kersten et al. [31] also reported that the levels of
glutamine were different in the aqueous humor of patients with early and intermediate
AMD compared to controls. Additionally, previous literature has proposed explanations
for why dysregulations in glutamine and associated pathway metabolites may play a role
in DA impairments. Glutamine is considered the most abundant and versatile amino
acid in the human body [32]. It can be used for the synthesis of nucleotides (purines,
pyrimidines and amino sugars), nicotinamide adenine dinucleotide phosphate (NAPDH)
and antioxidants (such as glutathione) involved in the maintenance of cellular integrity
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and function [33]. Glutamate is also an important excitatory neurotransmitter for the visual
pathway, including the retina. However, through excitotoxicity, it can result in neural
cell damage or death, [34] which is thought to be mediated at least in part by oxidative
stress [35]. Indeed, Charles-Messance et al. [36] showed in a mouse model that glutamate
alone is sufficient for inducing rod photoreceptor cell death and that this is due to the
deregulation of glutamate homeostasis and glutamate excitotoxicity.

The main limitation of this study is its small sample size, especially in analyses con-
sidering dark adaptation outcomes. However, to our knowledge, this is the first time
that a longitudinal evaluation of metabolomic profiles in AMD was performed, providing
opportunities for further research. With this relatively small sample size, we were unable to
evaluate associations with progression to the two subtypes of late AMD–choroidal neovas-
cularization and geographic atrophy—which likely have different pathogenic mechanisms.
Due to our sample size, we report p-values < 0.01, which increases the risk of false positive
results considering the number of tests performed in this study. Given this limitation, we
also provided results based on the ENT80 significance thresholds. Additionally, our follow-
up for now is limited to 3 years, while AMD is a disease characterized by progression
over 5 years to decades. Studies with longer longitudinal evaluations are needed in order
to better establish the primary mechanisms of AMD progression. In this manuscript, we
based our assessment of AMD progression on color fundus photographs, which remain
the gold-standard method for this disease. However, color photographs have important
limitations and do not reflect the wide spectrum of AMD phenotypes that is currently well
recognized and particularly well appreciated with optical coherence tomography (OCT).
In particular, specific OCT features, such as the presence of subretinal drusenoid deposits,
have been linked to AMD progression and dark adaptation, and we did not assess their
presence in this study. Finally, even though all samples used in this study were collected
after confirmed overnight fasting and we focused on endogenous metabolites, diet and
nutritional parameters are known to affect metabolomic profiles and we did not include
them in our analyses.

4. Materials and Methods

This was a prospective longitudinal observational study that took place at the Mas-
sachusetts Eye and Ear (Mass Eye and Ear), Harvard Medical School, Boston, Massachusetts.
The clinical protocol was conducted in accordance with HIPAA (Health Insurance Porta-
bility and Accountability Act) requirements and the tenets of the Declaration of Helsinki
and was approved by the Institutional Review Board of the Massachusetts Eye and
Ear/Massachusetts General Brigham (Protocol number 14–111H and 2019P002725). All
subjects enrolled in the study provided written informed consent.

4.1. Study Population

As previously reported, [9,10] from January 2015 to July 2016, we recruited sub-
jects diagnosed with AMD, as well as control subjects with no evidence of AMD and
aged ≥ 50 years from the Mass Eye and Ear Retina Service and Comprehensive Ophthal-
mology and Optometry Services. Exclusion criteria included the following: diagnosis of
any other vitreoretinal disease; active uveitis or ocular infection; significant media opacities
that precluded the observation of the ocular fundus; refractive error equal or greater than
6 diopters of spherical equivalent; past history of retinal surgery; history of any ocular
surgery or intra-ocular procedure (such as intra-ocular injections) within the 90 days prior
to enrolment; and diagnosis of diabetes mellitus. As described below, for this study, patients
with late AMD at baseline were also excluded.

Three years later (±3 months), the same individuals were invited to participate in
a follow-up visit. The same exclusion criteria applied, with the exception of a history of
recent intra-ocular procedures because we were also interested in patients that could have
developed late neovascular AMD.
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4.2. Study Protocol

The study procedures were the same for both the baseline visit and the 3-year follow-
up and have been described in detail [9,10]. Briefly, all included participants received
a complete bilateral ophthalmologic examination and were imaged with 7-field, non-
stereoscopic color fundus photographs (CFP) using either a Topcon TRC-50DX (Topcon
Corporation, Tokyo, Japan) or a Zeiss FF-450Plus (Carl Zeiss Meditec, Dublin, CA, USA)
camera. Additionally, complete medical history was obtained, which included self-reported
data on smoking habits, and patients were invited to perform dark adaptation testing
according to the protocol described below.

For all participants, fasting venous blood samples were collected into a sodium-
heparin tube, which was centrifuged within 30 min (1500 rpm, 10 min, 20 ◦C) to obtain
plasma for metabolomic analysis. Plasma aliquots of 1.5 mL were then transferred into
sterile cryovials and stored at −80 ◦C. For the baseline visit, as patients were recruited
during their regular ophthalmic appointments, an additional visit had to be frequently
scheduled for blood collection in order to ensure overnight fasting. This was scheduled
within a maximum of 1 month after study inclusion. For the 3-year follow-up visit, the
patients were contacted in advance; thus, fasting blood collection usually took place on the
same day of the remaining study procedures.

4.3. Dark Adaptation Testing

Dark adaptation testing (DA) was optional because it required additional time from the
participants. In order to avoid prior light exposure, DA was performed on a separate day
than retinal imaging, within a maximum time limit of 1 month after enrollment in the study
(both for baseline and for 3-year follow-up). Our protocol has been described previously in
detail [13]. Briefly, we evaluated DA using the AdaptDx® dark adaptometer (MacuLogix,
Harrisburg, PA, USA) extended protocol (20 min) [27]. Sensitivity was estimated using
a modified staircase threshold estimate procedure, with an initial stimulus intensity of
5 scot cd/m2. The test ended when the patient’s sensitivity recovered by 3.0 log units
(corresponding to the level of 5 × 10−3 scot cd/m2) or the test duration reached 20 min,
whichever came first. The machine then estimates the slope of the second component of
rod-mediated dark adaptation and extrapolates the time required for sensitivity to recover
by 3.0 log units, which is designated as rod-intercept time (RIT). For analysis, RIT data
were exported and eyes with fixation errors ≥ 30% were excluded.

Additionally, data on successive threshold measurements were exported to calculate
the area under the dark adaptation curve (AUDAC) [37]. This is a recent alternative
outcome that our group has developed and proposed because an important percentage
of patients with AMD reached the ceiling value of DA testing (in the case of our protocol
20 min); thus, it was not possible to evaluate their changes longitudinally [37]. We used the
standard trapezoidal method, [38] considering area under the curve from the start of the
DA test (time = 0, sensitivity threshold = 0) to the time when the sensitivity threshold of
3.0 log units was achieved. Linear interpolation was used when the sensitivity threshold
was not exactly at 3.0 log units [39]. When the curve did not reach the 3.0 log unit threshold,
the 20 min testing time limit was used. In order to allow for easier interpretation and
comparison between subjects, the area computed was then normalized by the maximum
possible area between 0 and 20 min limits along the x axis and 0 to 3.0 log unit limits along
the y axis. Therefore, AUDAC was expressed as a percentage of the overall area, with larger
values indicating delays in DA, elevated sensitivity threshold or both.

4.4. AMD Staging and Definition of Progression

Field 2 CFPs were standardized by using software developed by our group [40]
and then graded on IMAGEnet 2000 software according to the Age-related Eye Disease
Study (AREDS) 2 classification system [41]. The following groups were established: [41,42]
control group (AREDS level 1)—presence of drusen maximum size < circle C0 and total
area < C1; early AMD (AREDS level 2)—drusen maximum size ≥ C0 but <C1 or presence
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of AMD characteristic pigment abnormalities in the inner or central subfields; intermediate
AMD (AREDS level 3)—presence of drusen maximum size ≥ C1 or drusen maximum
size ≥ C0 if the total area occupied is >I2 for soft indistinct drusen and >O2 for soft distinct
drusen; and late AMD (AREDS level 4)—presence of GA according to the criteria described
above or evidence of neovascular AMD. The baseline images were graded as part of our
initial study [13]. Eyes that at baseline had late AMD were not considered for analyses
(n = 43 eyes) because we were interested in those that could progress over the 3-year period.
For CFP obtained at the 3-year follow-up visit, the same protocol was followed. In cases of
disagreement, the senior author established the final categorization.

4.5. Metabolomic Profiling and Data Processing

Plasma samples were shipped to Metabolon, Inc®. in dry ice. The samples arrived
frozen in less than 24 h and were immediately stored at −80 ◦C until processing. Non-
targeted MS analysis was performed using Ultrahigh Performance Liquid Chromatography-
Tandem MS (UPLC-MS/MS) according to previously published protocols [9]. Samples were
analyzed in three batches: baseline samples from a pilot study, [9] the remaining baseline
samples [10] and three-year visit samples. Batches were then merged using bridge sample
normalization [43] based on Metabolon’s long-term reference quality control samples.
Metabolites that were not present in 50% of the quality control samples in all three batches
could not be merged; thus, they were removed.

Metabolite data were subsequently run through our standard quality control and
data processing pipeline [6]. Missing values were imputed with half the minimum ob-
served value in all samples for each metabolite [44]. Metabolites features were then
log-transformed to reduce heteroscedasticity (obtained approximately normal distribu-
tions) [45] and then pareto scaled to reduce the influence of metabolites with very high
levels while keeping data structure partially intact. These steps are important to allow for a
standardized comparison of metabolite levels [45]. In order to ensure that only the most
informative metabolites were included in the analyses, metabolites with interquartile range
levels of zero were excluded [6]. Additionally, we excluded metabolites that are exoge-
nous to humans (e.g., medications, food additives and buffering agents) from subsequent
analyses, as we were interested in investigating endogenous metabolites that could be
driving systemic biology. Finally, we only considered subjects with missing or undetected
metabolite percentages less than 30%. Based on this criterion, however, no participants
were excluded, as the highest percentage of missing values by subject was 10.4%. Thus,
the final analyses included 643 endogenous metabolites, among which the majority had
either zero (n = 418) or a low proportion (<10%) of missing values (n = 176). By using
principal component analysis (PCA), we identified one sample as a possible outlier, which
was then excluded.

4.6. Statistical Analysis

Descriptive statistics were used to summarize clinical and demographic characteristics
of the included study population, including mean and standard deviation for continuous
variables and percentages for dichotomous/categorical variables.

In order to analyze the association between plasma metabolite levels and AMD pro-
gression, we used multilevel mixed-effect logistic models to account for the inclusion of
both eyes of the same patient. By definition, these models are appropriate for research
designs where data for participants are organized at more than one level (i.e., nested data).
In this study, the units of analysis were considered the eyes (at a lower level), which are
nested within patients’ contextual/aggregate units (at a higher level) [46]. In these mod-
els, AMD progression was defined as any change at three-years in AMD status based on
color fundus photographs (i.e., control to any AMD stage, early AMD to intermediate or
late AMD or intermediate to late AMD). By using AMD progression as the outcome, we
performed two analyses: (i) baseline metabolite levels as the exposure and (ii) change in
metabolite levels between three years and baseline as the exposure.
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As we were also interested in the association between plasma metabolite levels and
changes in dark adaptation over three years, we used multilevel mixed-effect linear regres-
sion by using the previous approach with RIT change and AUDAC change at three years
as the outcome. For the models with RIT changes as the outcome, only eyes that at baseline
were able to reach RIT within the 20 min of testing were considered, as it was not possible
to demonstrate gradual worsening relative to eyes that at baseline had already reached the
ceiling test value. All reported models accounted for age, gender, smoking, BMI and AMD
stage as covariates.

For all analyses, we report p-values at two thresholds: p-values < 0.01 to denote a trend
towards significance, and p-values < 0.0016 to denote statistically significant findings after
accounting for multiple testing. The statistically significant threshold (p-value < 0.0016) was
calculated based on the effective number of independent tests accounting for 80% variance
(ENT80) [47,48]. Additionally, for all reported p-values we provide beta coefficients. Beta
coefficients represent change in the outcome variable for AMD progression or changes
in RIT/AUDAC for one unit of change in the predictor variable (while holding other
predictors in the model constant, such as the confounding variables we accounted for) [49].
For example, this means that, for the models with AMD progression as outcome, for one
unit change in metabolite levels, the odds of AMD progressing increase by the value of the
beta coefficient. For the models with RIT/AUDAC as outcomes (continuous variables),
beta coefficients refer to change in RIT/AUDAC per change in levels of metabolites. All
analyses were conducted in R, version 4.0.3.

When possible, pathway analyses on the significant metabolites identified was per-
formed to further interpret the biological relevance of our findings. This was achieved by
using Metaboanalyst 4.0 [50], which combines overrepresentation analysis with topology
analysis to identify pathways that are dysregulated based on (i) the number of metabolites
from our significant metabolites that fall within KEGG-defined metabolic pathways and
(ii) the positional importance of our metabolites within these pathways. These analyses
generate a pathway impact score and associated p-value.

5. Conclusions

In conclusion, this pilot study suggests that baseline plasma metabolites and changes
in plasma metabolites are associated with AMD progression at 3 years. In particular, while
several metabolites and metabolomic pathways were identified in this study, and all of
them have a converging biological link to oxidative stress. This suggests that oxidative
stress may play a particularly important role in the progression of AMD both at a structural
and functional level. Further studies with larger sample sizes and longer follow-up periods
are required to clarify the results of this pilot study and, hopefully, to help identify potential
druggable targets for this blinding disease.
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