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Abstract: As the requirement for real-time data analysis increases, edge computing is being imple-
mented to leverage the resources of edge devices to reduce system response times and decrease
the latency. However, due to the resource constraints of edge clouds, edge servers are more prone
to failures than other systems. Therefore, guaranteeing the reliability of services in edge clouds is
critical. In this paper, we propose a fault-tolerant adaptive scheduling mechanism with dynamic
quality of service (QoS) awareness (FASDQ), which extends the primary/backup (PB) model by
applying QoS on demand to task copies. The aim of the method is to reduce the latency and achieve
reliable service for tasks by changing the execution time of task copies. This paper also proposes a
container resource-adaptive adjustment mechanism, which adjusts the timing of resources when the
available resources cannot meet the task copy requirements. Finally, this paper reports the results of
simulation experiments on the EdgeCloudSim platform to evaluate the difference in performance
between FASDQ and other methods. The results show that the mechanism effectively reduces the
execution time of task copies and outperforms other methods in terms of reliability and general
resource utilization.

Keywords: edge container; fault-tolerant scheduling; quality of service; resource management

1. Introduction

The goal of edge computing [1] is to obtain real-time responses and provide storage
and computation at the edge of the network. This process extends cloud resources to the
edge of the network and reduces the network access latency. Although edge computing has
many advantages, due to the increased functionality and real-time requirements of smart
devices, the chances of resource failures in edge computing are not low, which can reduce
the availability of resources and affect the response latency. In smart car networking, smart
manufacturing, driverless and other smart devices, and latency-sensitive applications,
delays due to reliability issues must be taken seriously. Few previous works have deeply
studied the fault tolerance of edge clouds, and tasks are often resubmitted to available
resources after they fail, which may lead to unfulfilled service level agreements (SLA) due
to the delays encountered by requests [2]. Fault-tolerant scheduling is also widely used
as an effective way to assure reliability. However, the current literature on fault-tolerant
task scheduling does not sufficiently consider the varying requirements of different tasks
for quality of service (QoS) so that edge resources can be allocated as needed. Therefore,
the ability to guarantee the reliable completion of latency-sensitive tasks within time
constraints and the effective utilization of edge resources is a key issue.

Due to the long startup time of traditional virtual machines and their tendency to
waste resources, many systems and studies have used container technology to build the
underlying technology stack of edge computing platforms based on the reliability and
bandwidth limitations of edge networks [3]. For example, Google launched “the Anthos for
Telecom” [4], which will bring Anthos to the edge network by packaging its applications
into containers that can run at the edge, providing an immersive experience to customers.
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Flynn [5] and Deis [6] are also container-based PaaS (platform as a service) projects that can
automatically build and deploy any application to a Docker container cluster. Edge Cloud
Kubernetes Engine (ECK) [7], launched by Tencent Cloud, and “ACK Edge Kubernetes” [8],
launched by AliCloud, ensure that the node’s services are still available in the case of
disconnection. Compared with cloud containers [9], edge containers have the advantages
of low latency and scalability and are suitable for real-time or latency-sensitive tasks.
Limited resources and low-latency services require more in-depth optimization in the
application of task scheduling and resource management in edge containers.

It is critical to guarantee the correctness and real-time performance of results in
the required timeframe for latency-sensitive tasks. Fault tolerance can be achieved by
scheduling multiple copies of a task on different processors. The primary/backup (PB)
model [10] and the triple-mode redundancy (TMR) approach [11] are two basic methods in
which all copies of a task must be scheduled and generate correct results before its deadline,
even if there are errors. In TMR, multiple copies are usually run, and error checking is
implemented by comparing the results after completion. With the PB approach, a backup
copy is activated if the result of the primary copy is incorrect. The PB model has the
advantage of low hardware resource requirements, but it cannot protect against faults [10].

We use the traditional PB model for edge failures and build an edge computing system
based on the characteristics of containers. Unlike the traditional cloud environment, in
the edge container context, the effective coordination of efficiency and fault tolerance is a
challenge. The main contributions of this paper are the following:

1. For latency-sensitive tasks, we propose a dynamic QoS-aware fault-tolerant task
scheduling mechanism, which extends the traditional PB model by introducing dif-
ferent reliability requirements for tasks; i.e., when scheduling task copies, their QoS
levels are dynamically adjusted according to their reliability requirements and la-
tency constraints.

2. After the primary succeeds, the resources and time interval occupied by the backup
are released. In order to make full use of the released resources, the start time of task
copies that are waiting in the queue will be reselected to improve resource utilization
at the container level.

3. To reduce the resource pressure exerted by the PB model at the edge, we propose a
container resource-adaptive adjustment mechanism for the resource quota of each
edge container, which replenishes resources according to their usage by the assigned
task copies, as well as the latency constraints and reliable service requirements of
unexecuted task copies.

The rest of this paper is organized as follows: Section 2 briefly analyzes the problem
and related work, and Section 3 provides a systematic analysis. Section 4 describes the
FASDQ solution, the primary/backup scheduling algorithm, and the container resource-
adaptive adjustment algorithm. Section 5 reports and analyzes the experimental results,
and conclusions are drawn at the end of the paper.

2. Related Work

Among fault-tolerant approaches, the PB model has been extended to remote clouds in
several studies, in which each task has a primary copy and backup copy, and fault-tolerant
scheduling is performed in two different computing instances [12]. Primary copies are
used when tasks are executed normally, and backup copies are executed when the primary
copies fail in order to ensure that the task requests are completed within the specified
deadline [13]: this is known as a passive backup scheme [14]. However, the passive backup
scheme requires the task to have a sufficient time delay to start the backup copy, which is
unrealistic for delay-sensitive tasks. In contrast, an active backup scheme [15] can complete
tasks with less slack. The authors of [16] proposed a backup overlay in which task copies
are overlapped in the same time slot of the same computation instance, and a release
technique, which refers to releasing the resources of the corresponding backup copy after
the primary copy succeeds. In [17], two backup schemes were analyzed, and the fault-
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tolerant elastic scheduling algorithm (FESTAL) was designed for real-time tasks in a virtual
cloud environment. This method balances fault tolerance and high resource utilization in
the cloud.

Various approaches have been proposed and studied to deal with fault tolerance
in cloud computing systems. In edge networks, unlike cloud computing environments,
the occurrence of failures may cause a large portion of edge-side resources to go offline,
resulting in delays and affecting the overall QoS level. To address the failure of edge
servers, redundancy-based replication techniques have also been studied for fault tolerance
in edge computing. The research work in [18] provided fault tolerance for the Internet of
Things (IoT) by modeling the failure behavior of the Internet grid storage area network
(SAN) to provide fault tolerance through redundancy to reduce system downtime. In [19],
the PB model was extended to the edge cloud, and a fault-tolerant based QoS-aware
scheduling algorithm (FTBQA) was proposed to improve the reliability of edge cloud
application services. DeCoRAM middleware [20] tolerates processor failures by considering
the execution time and failover order of primary and backup copies in order to meet the soft
real-time requirements of each task. To achieve fault tolerance, the authors of [21] proposed
a reliable and fault-tolerant agent-based hierarchical IoT–cloud architecture by replicating
data at the edge of the network, which redirects the backup server when the service fails to
apply. The system in [22] adaptively replicates data according to application requirements
for data loss and latency. The replication operation is deferred to some extent, and the
data loss and latency requirements are satisfied. In [23], the same input sequence was
enforced for virtual machines (VM) replicated across hosts, enabling fast multicore scalable
VM fault tolerance. NiLiCon [24] provides seamless failover from a failed container to
a backup container of another host, providing fault tolerance to protected applications
and external clients. Replication-based fault-tolerant scheduling techniques have been
extensively studied in edge cloud environments, but they can also place a burden on
resource-limited edge servers to provide timely service to task copies.

Optimizing resource utilization on a fault-tolerant basis is a challenge due to the cost
of coordinating reliability safeguards, especially since replication-based fault-tolerance
techniques suffer from relatively high resource consumption. Currently, edge computing
is still in its infancy in terms of resource management. The authors of [25] developed a
computing resource management algorithm for multi-user mobile edge computing (MEC)
systems. This algorithm minimizes the average power consumption of mobile devices and
MEC servers. Another study [26] proposed a node resource reallocation mechanism based
on the characteristics of containers; this method calculates the resource quota for each
task in the subsequent phases of task execution and reallocates CPU (central processing
unit) resources in the node, making it possible to increase the number of tasks processed
in a certain time cycle and effectively reducing the task latency. To some extent, these
resource management techniques allocate resources to tasks and effectively improve system
resource utilization, but none of them involve fault tolerance. Thus, they cannot support
fault tolerance when optimizing resource management.

In summary, for resource-limited edge computing, it is crucial to realize the fault-
tolerance capability of the system while effectively utilizing the limited resources at the
edge. We find that existing research lacks studies in this area. In this paper, we propose
a fault-tolerant adaptive scheduling mechanism with dynamic QoS awareness, which
extends the PB model by determining the QoS level for task copies according to reliable
service and latency requirements. In addition, during scheduling, FASDQ adaptively
adjusts resources according to the resource usage to meet the demands of task copies. This
mechanism achieves fault tolerance, accelerates the execution time of tasks, and improves
the efficiency of resource use.
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3. Problem Analysis and System Model
3.1. Problem Analysis

Traditional cloud-based industrial Internet of Things (IIoT) architectures struggle
to meet requirements such as low latency and high reliability. For example, traditional
telecom networks are unable to meet industry-specific requirements for reliable, predictable,
and efficient communications. With low latency, scalability, and reduced bandwidth,
edge containers are suited for serving real-time or latency-sensitive applications. In 2019,
Edgegap, a disruptive gaming startup, released a gaming platform that reduced latency
by 58% using real-time telemetry and edge containers [27]. However, edge containers
are deployed close to users, their resources are constrained by the environment, and they
have higher uncertainty than traditional cloud containers, so reliability assurance for edge
containers is critical.

Fault-tolerant scheduling is an effective method to guarantee reliability and is based
on replication techniques. The PB model is widely used for fault-tolerant scheduling. In
order to reduce the extra resource consumption of backups, the authors of [16] studied a
backup overlapping technique in which backups are able to overlap in the same time slots
of the same compute instances. However, since the actual compute instances of the edge
containers are containers, it is only the primary copies of tasks that cannot be scheduled
in the same edge node, whereas their backup copies can overlap in the same container.
Another typical technique of the PB model is the reclaiming of resources for backup copies
when corresponding primary copies succeed [10]. If the time slot can be utilized after the
backup is released, it greatly reduces the latency.

In addition, to meet the strict QoS requirements imposed by latency-sensitive tasks, the
method in this paper improves the reliability of task copies by dynamically assigning them
QoS levels when task scheduling is performed. Regardless of whether the fault-tolerant
technique is based on replication or the assignment of QoS levels to tasks to guarantee
reliability, we find that: (1) while processing task requests, task copies are always gathered
in containers with higher processing capability, resulting in an uneven distribution of idle
and busy containers (in Figure 1, containers C12 and C21 have more task copies, while
container C31 is idle); and (2) the existing resources cannot meet the demand of some task
copies. Most previous studies have focused on migrating containers as a whole, which has
some effect on resource tuning in edge nodes, but they have ignored the effective utilization
of resources within individual containers.

Therefore, our method makes more adaptive adjustments to resources at the container
and node levels separately. When the resources of a task’s backup are released, the copies
waiting in that container are rescheduled so that the container can handle more task copies;
if the current resources cannot meet the task demand, nearby edge nodes that are in the
shutdown state will be assessed to determine whether they can be turned on. Furthermore,
if some resources are idle for a long time during system operation, the resource adjustment
mechanism will eliminate the idle resources and thus improve resource utilization.

Figure 1. Problem analysis in the process of task copy scheduling.
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In the method described in this paper, fault-tolerant adaptive scheduling is performed
for latency-sensitive tasks in the edge container, extending the PB model by determining
QoS levels for the reliability assurance of task copies. Then, the on-demand adjustment
of edge container resources occurs according to resource usage during task scheduling.
The approach proposed in this paper not only achieves a tradeoff between the real-time
requirement and reliability of tasks, but also avoids reducing resource utilization due to an
unbalanced load on edge container resources.

3.2. System Model

In Figure 2, edge users can access the edge cloud through wireless networks and
submit requests to it. Each edge server includes two modules: the Task Scheduler and the
Resource Manager. The Task Scheduler determines whether the edge container can satisfy
the requested latency constraint based on the arrival order of requests, and if the request is
accepted, the Task Scheduler transmits it to the Resource Manager, which receives tasks
and allocates resources for task requests.

Figure 2. Task scheduling model, where QoS is Quality of Service.

Before introducing relevant concepts, we first define the parameters and symbols that
are used in this paper, as shown in Table 1.

Relevant concepts and definitions are given below.
There is a set EN = {EN1, EN2, · · · , ENn} of edge nodes around devices, where each

edge node has fixed computing resources, including CPU, RAM (random access memory),
bandwidth, etc. The processing capability Pi (MIPS, million instructions per second) is
used to determine the type of computing resources of the edge nodes. Each node ENi
includes multiple containers denoted by a set of containers ci = {ci1, ci2, · · · , cim} with
different processing capability Pij.

We use the set T = {t1, t2, · · · , tn} of latency-sensitive tasks in end devices. Each task
has three attributes, ti = {ai, di, li}: arrival time ai, deadline di, and task size li, which is
measured in millions of instructions (MI).

Each task is replicated into two copies: tP
i and tB

i , which are available in different
nodes so that the backup can take over execution in another node if the primary fails.
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Table 1. Parameters and symbols.

Parameters and Symbols Description

ENi, cij Edge node i and container j of edge node i.
t∗i Primary copy tP

i and backup copy tB
i .

ai, di Arrival time and deadline of ti and their units are second.
li Task size (unit: MI, millions of instructions).

sP
i , f P

i Start time and finish time of tP
i

sB
i , f B

i Start time and finish time of tB
i

estP
i , lstB

i The earliest start time of tP
i and the latest start time of tB

i
state

(
tB
i
)

State of tB
i

q
(
t∗i
)

QoS level of t∗i
eqkl

(
t∗i
)

tP
i

eqkl
(
t∗i
)

The execution time of tP
i and tiB and the unit is second.

Pi, Prem
l

The processing capability and the remaining processing capability
of ENi(unit: MIPS).

Pij, Prem
kl

The processing capability and the remaining processing capability
of cij (unit: MIPS).

Pkl
(
q
(
t∗i
)) The processing capability provided to t∗i with t∗i of ckl (unit:

MIPS).

η∗ij
Indicates whether t∗i succeeds in ENj: if it succeeds, η∗ij = 1;

otherwise, η∗ij = 0
AQL Average QoS level denoting the reliable demand of t∗i .

z∗i Indicates whether t∗i is assigned to the container successfully.

Definition 1. Backup states state
(
tB
i
)
: the backup is divided into two standby states according

to its start time and the completion time of its primary (active (represented by 1) and passive
(represented by 0)), as shown in Equation (1).

state
(

tB
i

)
=

{
1 f P

i > sB
i

0 otherwise
(1)

If the completion time of the primary copy is later than the start time of its backup
copy, the backup state is set to 1; otherwise, it is set to 0. Active backups do not stop until
the primary is completed, while passive backups start only after the primary fails. As
shown in Figure 3, tB

1 is passive, but tB
2 is active, and the part that is redundant with the

primary is denoted by tBR
2 .

Figure 3. Time point of task copies.

In container ckl , the execution time ekl
(
t∗i
)

of t∗i (* denotes two copies of tasks: e.g.,
t∗i represents tP

i and tB
i ) is the ratio of its task size over the processing capability of this

container [28,29]:

ekl(t∗i ) =
li

Pkl
(2)

In this paper, Equation (2) is improved to reduce task latency (see Equations (3)
and (5)). The execution time of task copies is changed by assigning different QoS levels that
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provide different processing capability to different task copies on demand, so the primary
copy can be completed as early as possible within the time constraint. In the container
ckl , the QoS level of t∗i is denoted by q

(
t∗i
)
; Pkl

(
q
(
t∗i
))

is the processing capability of t∗i
within q

(
t∗i
)
. The two copies of a task can be assigned different QoS levels to improve task

schedulability. Their execution times and constraint conditions are described below.

Definition 2. The execution time of tP
i . This is defined as the ratio of the task copy size over the

processing capability of a container with the QoS level q
(
tP
i
)
, as shown in Equation (3).

eqkl

(
tP
i

)
=

li
Pkl
(
q
(
tP
i
)) (3)

In order to meet the delay requirements of primary copies, the following constraints
should also be met:

∀ti ∈ T, eqkl

(
tP
i

)
≤ di − estP

i (4)

Definition 3. The execution time of tB
i . According to the backup state of tasks, the execution time

of the backup copy depends on whether its primary tP
i succeeds. Assuming that the backup tB

i is
scheduled in the container cst (not in the edge node of tP

i ), then:

eqst

(
tB
i

)
=


0,

f P
i − sB

i ,
li

Pst(q(tB
i ))

,

ηP
ij = 1, state

(
tB
i
)
= 0

ηP
ij = 1, state

(
tB
i
)
= 1

ηP
ij = 0

(5)

where η∗ij denotes whether task copies succeed on ENj. If so, η∗ij = 1; otherwise, η∗ij = 0.
Equation (5) is explained as follows:

1. If tP
i succeeds and state

(
tB
i
)
= 0, then tB

i is not executed;
2. If tP

i succeeds and state
(
tB
i
)
= 1, then the execution time of tB

i is
[
sB

i , f P
i
]
;

3. If tP
i fails, then the execution time of tB

i is eqst
(
tB
i
)
= li

Pst(q(tB
i ))

.

In order to meet the delay requirements of tasks and reduce the time redundancy
between the active backup and its primary copy, the following conditions should also
be met:

∀ti ∈ T, eqst

(
tB
i

)
≤ di − lstB

i (6)

When a task copy is successfully assigned to an edge container, the remaining process-
ing capability of the container should be calculated first.

Definition 4. Remaining processing capability. This is defined as the number of instructions
processed by the remaining resources of the edge container per second, and the unit is MIPS.
Therefore, the remaining processing capability of ckl and ENl are shown in Equations (7) and (8).

Prem
kl = Pkl −

N

∑
i=1

Pkl(q(ti)) (7)

Prem
l = Pl −

m

∑
k=1

N

∑
i=1

Pkl(q(ti)) (8)

Maximizing the average QoS level of task copies in the edge container under fault
tolerance is one of the scheduling objectives of this paper.

Definition 5. The average QoS level. This is obtained as the ratio of all QoS levels of all successful
tasks to the number of all successful tasks [30], denoted by AQL. If t∗i is successfully assigned to a
container, then z∗i = 1; otherwise, z∗i = 0.
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AQL = max
∑m

j=1 ∑n
i=1 zP

i q
(
tP
i
)
ηP

ij + ∑m
j=1 ∑n

i=1 zB
i q
(
tB
i
)
ηB

ij

∑m
j=1 ∑n

i=1

(
zP

i ηP
ij + zB

i ηB
ij

) (9)

The main goal of task scheduling in this paper is to make the edge container accommo-
date more task copies while adopting the PB model for fault tolerance. In the next section,
we provide the solution according to the system model.

4. Solution: FASDQ Framework and Key Algorithms

We designed the FASDQ framework shown in Figure 4, which consists of two main
parts: the primary/backup scheduling mechanism and the resource-adaptive adjustment
mechanism. When a task request is received at the edge, the task is first replicated into two
copies by the Copy Controller, and the task copies are assigned different QoS levels by the
QoS Controller to change their execution times according to different reliability quality
requirements to determine the optimal scheduling slot for the copies. The task copies in
the queue are rescheduled by the Resource Controller after the resources of the backups
are released so that the primary copies of the tasks can start as early as possible.

Figure 4. The framework of FASDQ (Fault-tolerant Adaptive Scheduling mechanism with Dynamic
QoS-awareness).

In addition to dynamic QoS-aware task copy scheduling, the FASDQ framework
also includes a container resource-adaptive adjustment mechanism, which adaptively
replenishes resources for tasks with insufficient processing capability during task execution
to improve resource utilization in the edge node. When task copies cannot be scheduled at
the edge, the tasks are handed over to the cloud for processing.

The following introduces the dynamic QoS-aware primary/backup scheduling mech-
anism and the container resource-adaptive adjustment mechanism at the edge.

4.1. Dynamic QoS-Aware Primary/Backup Scheduling Mechanism

In this paper, we consider a case in which the traditional PB model application is
extended at the edge container side. FASDQ uses a backup overlapping technique to
reduce redundancy in the task scheduling process and determines the schedulable interval
of tasks in the edge container with dynamic QoS-awareness to find the best time interval
for scheduling. This process is represented by the scheduling function.

According to the analysis in [17], when the primary copies of multiple tasks are not
scheduled in the same nodes, their backups in the same virtual machine can overlap. In
this paper, we also apply this rule to our scheduler mechanism. In order to ensure that no
conflicts occur during the execution of task copies and achieve fault tolerance, we allow
backup copies to overlap in time and space when scheduling two copies of a task. Task
copies in the same container are subject to the following constraints: (1) the primary copy
cannot overlap with other copies; (2) the redundant part of the active backup copy cannot
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overlap with other copies; (3) for the passive backup copy, if EN
(
tP
i
)
= EN(tP

j ), then their
backups cannot overlap.

The goal of the function scheduler schedulable
(

tP
i , cjk

)
is to designate schedulable

time slots for tP
i in cjk. The schedulable time slots need to be chosen so that tP

i starts as
early as possible before its deadline in [ai, di]; the unschedulable time slots are those that
are occupied by other primary/backup copies. Therefore, we traverse the schedulable time
slot in [ai, di] from left to right to find the earliest start time eqjk

(
tP
i
)

of tP
i on cjk that satisfies

Equation (4); otherwise, return +∞.
The goal of the function scheduler schedulable

(
tB
i , cst

)
is to designate schedulable time

slots for tB
i in cst. If tP

i is scheduled successfully, then the scheduling of tB
i will start. The

schedulable time slots need to be chosen so that tB
i starts as late as possible within its

deadline in [ai, di], and this slot is not part of EN
(
tP
i
)
; the unschedulable time slots of tB

i are
the time slots occupied by its primary copies, the time slot occupied by the backup copy
before f P

i , and the redundant parts of active backup copies. As shown in Figure 5, tB
1 and

tB
5 are passive backups, tB

2 and tB
3 are active backups, and tp

4 is the primary copy. In other
words, the unschedulable time slots of tB

i in c21 are
[
sB

1 , f B
1
]
,
[
sB

2 , f P
i
]
,
[
sB

3 , f P
3 ], and [sB

4 , f P
4
]
.

Therefore, the schedulable time slot in [ai, di] is traversed from right to left to find the latest
start time eqlk

(
tB
i
)

of tB
i in clk that satisfies Equation (6); otherwise, return −∞.

Figure 5. Unschedulable time slot for backup copies.

Algorithm 1 describes the process of dynamic QoS-aware task scheduling for the
primary copies in order to assign QoS levels to primary copies on demand to guarantee
reliability. The main function of Algorithm 1 is arranging the processing capability of the
edge nodes in descending order so that the primary copies are first assigned to the edge
container with a higher processing capacity (lines 1–3). Then, it finds the earliest start time
of tP

i by schedulable
(

tP
i , cjk

)
and a container satisfied time constraint in Equation (4); if tP

i
is successfully scheduled, the label flag is set to be 1, otherwise, it is set to 0 (lines 5–14); if
failed, the QoS level will be degraded by 1 until it becomes q1, and the above operation
will be repeated (line 15). If it is still not found, then the function resAdapt() is called (see
Algorithm 3) (lines 17–23).

The time complexity of Algorithm 1 depends on the number of tasks K. Suppose
initially that there are L active nodes with N containers of each node in the neighborhood of
the user, and let the QoS level of the task copies be a random integer in (1, m). m and L are
negligible in comparison with N and K. Thus, the time complexity of schedulable

(
tP
i , cjk

)
is O(NK). Then, Algorithm 1 comes to the function resAdapt(). We will analyze its time
complexity in Section 4.2.

If tP
i is successfully scheduled, the scheduling of tB

i starts. Algorithm 2 describes
the process of dynamic QoS-aware task scheduling for the backup. The main function
of Algorithm 2 is sorting the edge nodes in descending order of remaining processing
capability, except for the nodes in which its primary copy is located (lines 1–3). Then,
the latest start time of tB

i that satisfies the time constraint in Equation (6) is found by
schedulable

(
tB
i , clk

)
in a container and the backup states are marked. If a container is

successfully selected, the label flag is set to 1, otherwise, it is set to 0 (lines 5–18). If failed,
the QoS level will be degraded by 1 until it becomes q1, and the above operation will
be repeated (line 19); if it is still not found, then the function resAdapt() is called (see
Algorithm 3) (lines 22–28).
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Algorithm 1. Primary Scheduling in FASDQ

Input: The set of tasks: T; QoS level: Q = {q1, q2, · · · , qm}; the set of ENs:
EN = {EN1, EN2, · · · ENn}.
Output:

{
c
(
tP
i
)}

// The container that can be scheduled for tP
i with the earliest start time.

Begin:
1 for each new task ti ∈ T, do
2 f lag = 0; estP = +∞;c

(
tP
i
)
= null;q

(
tP
i
)
= qm;

3 Sort ENs in descending order of processing capability;
4 while q

(
tP
i
)
6= q1, do

// The QoS level of tP
i is initialized to the maximum value within time constraints.

5 for each cjk ∈ ENj, do
6 Set the processing capability Pjk

(
q
(
tP
i
))

;
7 eqkl

(
tP
i
)
= li

Pkl(q(tP
i ))

;

8 estP
i = schedulable

(
tP
i , cjk

)
;

9 if estP
i ≤ estPand eqjk

(
tP
i
)
≤ di − estP

i , then
10 //Select the container with the earliest completion time of the primary.
11 c

(
tP
i
)
= cjk; estP = estP

i ; f lag = 1;
12 Calculate the remaining processing capability of cjk and ENj;
13 end if
14 end for
15 if f lag == 0, then qt = qm−1; // The QoS level is degraded.
16 end while
17 if f lag == 0, then

//The existing container resources cannot meet the scheduling requirements.
18 cnew = resAdapt

(
tP
i
)
;

19 if cnew 6= null, then
20 c

(
tP
i
)
= cnew; // Create a new container.

21 return c
(
tP
i
)
;

22 end if
23 else Reject ti;
24 end for

END

Assuming that the number of the successfully scheduled primary is X, the time
complexity of schedulable

(
tB
i , clk

)
, in the worst case, is O(NX). Then, Algorithm 2 comes to

the function resAdapt(). We will analyze its time complexity in Section 4.2.
When the primary copy of the task succeeds and the corresponding backup copy is

released, the vacant time slot can be used by other copies in the same container. If the
primary can start earlier and the backup can start later within the time constraint, the
redundant part of the active backup can be reduced, and the time performance of the
primary copy that has not yet been executed is improved. Therefore, a new start time
is chosen for the other copies in that edge container. The selection process is shown in
Figure 6, where σB

i is defined as the time required to release the backup.
Figure 6a shows the arrangement of each task copy in the container before tp

1 succeeds.
Figure 6b: After tp

1 succeeds and tB
1 is released, then schedulable

(
tP
3 , c21

)
determines whether

tp
3 can be scheduled in

[
f P
1 − σB

1 , sB
2
]
. If so, the new earliest start time nestP

3 of tP
3 is returned,

and state
(
tB
3
)

is changed. In this example, state
(
tB
3
)

is changed from 1 to 0, reducing energy
consumption. Figure 6c: schedulable

(
tB
2 , c21

)
determines whether tB

2 can be scheduled in[
sB

2 , f P
3
]
, and then the new latest start time nlstp

3 of tB
2 is updated; this can also change

state
(
tB
2
)

from 1 to 0, which can effectively reduce the redundancy.
After the primary succeeds, the resources and time interval occupied by the backup

are released. The rescheduling of task copies can result in the earlier completion of the
primary copy within the time constraints, and the backup can start later, which effectively
reduces the task delay.
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Algorithm 2. Backup Scheduling in FASDQ

Input: The set of tasks Tp whose primary copy is successfully assigned to a container,
{

c
(
tP
i
)}

;
Q = {q1, q2, · · · , qm}; the neighboring edge nodes of task ti: EN(ti) ⊆ EN.
Output:

{
c
(
tB
i
)}

//After the primary is successfully scheduled in a container, output the
container for which the backup is scheduled.
Begin:

1 for each backup task tB
i ∈ Tp, do

2 f lag = 0; lstB = 0; c
(
tB
i
)
= null; q

(
tB
i
)
= qm;

3 Sort
{

EN − EN
(
tP
i
)}

in descending order of the remaining processing capability;
4 while q

(
tB
i
)
6= q1, do //The QoS level of tB

i is initialized to the maximum value within
time constraints.

5 for each ENl ⊆ EN − EN
(
tP
i
)
, do

6 for each clk ∈ ENl, do
7 Set the processing capability Plk

(
q
(
tB
i
))

;
8 Calculate eqlk

(
tB
i
)

using Equation (5);
9 lstB

i = schedulable
(
tB
i , clk

)
;

10 if lstB
i ≥ lstBand eqst

(
tB
i
)
≤ di − lstB

i , then
11 //Select the container for the backup copy with the latest start time.
12 c

(
tB
i
)
= clk; lstB = lstB

i ; f lag = 1;
13 Calculate the remaining processing capability of clk and ENl;
14 if f P

i ≤ lstB
i , then state

(
tB
i
)
= 0; //Mark the backup state.

15 else state
(
tB
i
)
= 1;

16 end if
17 end for
18 end for
19 if f lag == 0, then qt = qm−1; // The QoS level is degraded.
20 end while
21 if f lag == 0, then cnew = resAdapt

(
tP
i
)
;

//The existing container resources cannot meet the scheduling requirements.
22 if cnew 6= null, then
23 c

(
tB
i
)
= cnew; // Create a new container.

24 return c
(
tB
i
)
;

25 end if
26 else reject ti;
27 end for

END

Figure 6. Task rescheduling process, is finished; (b) tB
1 is released and tp

3 is performed in advance; (c) state
(
tB
2
)

is changed
from active to passive.

4.2. Container Resource-Adaptive Adjustment Mechanism

In the above fault-tolerant scheduling process, the copy rescheduling mechanism eases
the resource utilization of one container. In this subsection, we present the optimization
of resource utilization across edge nodes, which means that edge containers can accept as
many tasks as possible. However, if the edge container accepts multiple tasks over a period
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of time, which may lead to insufficient available resources for some tasks, then it will not
be able to meet the latency constraint of task requests. To address the above situation, this
paper proposes an elastic adjustment mechanism for container resources: i.e., when the
current computational resources cannot meet the demand of task copies, the mechanism
can: (1) add containers dynamically, (2) balance their workload with other containers, and
(3) migrate containers to another edge node with sufficient processing capability. This
process is shown by resAdapt().

Migration constraints. To ensure fault tolerance when migrating containers across
edge nodes, the following constraints need to be satisfied during container migration:

(1) c
(
tB
i
)

cannot be migrated to the edge node of tP
i , nor can c

(
tP
i
)

be migrated to the
same edge node of tB

i . Otherwise, two copies of the task are in the same edge node
and it cannot be fault-tolerant.

(2) If there is overlap between tB
i and tB

j , c
(
tP
i
)

cannot be migrated to EN
(

tP
j

)
.

The newly created container has a different processing capability and should meet
conditions in terms of time:

ai + t(cnew) + θnew + eqnew(t∗i ) ≤ di (10)

where t(cnew) denotes the creation time of the new container, and θnew is the ready time of
the task in the new container.

resAdapt() is a container resource-adaptive adjustment algorithm, as shown in Algo-
rithm 3.

1. The set {EN(ti)} of running edge nodes near the user is sorted in ascending order
of remaining processing capability prem

i , and these nodes are traversed in turn and
judged to be able to create new containers (processing capacity is denoted by p(cnew))
to accommodate the task copy (lines 1–7). If there is no suitable running node, some
containers are migrated to a nearby running node to make space to create a new
container (lines 8–11).

2. If the creation of containers in the running node still cannot meet the scheduling
demand of task copies, an unpowered node near the task copy (processing capacity is
indicated by p(ENnew)) starts up, and a new suitable container in this node is created
(lines 13–18).

We now evaluate the time complexity of Algorithm 3. Firstly, it takes O(L) to create
a new container to an active node, and it takes O(L) to migrate a container to another
destination node. Hence, the time complexity of adding a new container by migration (see
lines 8–12) is O(L2). For creating a new container to ENnew, the time complexity is O(1).
Therefore, the complexity of resAdapt() is O(L + L2 + 1) = O(L2).

In conclusion, the time complexity of primary scheduling in FASDQ is O(NK + L2),
and the time complexity of backup scheduling in FASDQ is O(NX + L2).
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Algorithm 3. Container resource-adaptive adjustment algorithm resAdapt()

Begin:
1 for each ENi ⊆ {EN(ti)}, do

//Create a new container in the running neighboring node.
2 Sort active nodes ENi in ascending order by the remaining processing power;
3 Select a new container cnew satisfying Equation (10);
4 if prem

i > p(cnew), then //Determine whether the remaining processing power of ENi
can accommodate the new container.

5 Create cnew in ENk;
6 return cnew;
7 else
8 Migrate c(pmin) in ENk to other nearby nodes with migration constraints;

//Migrate the container with the least processing power in the target node to another
neighboring node to accommodate the new container.

9 if ENk can accommodate cnew, then
10 Create cnew on ENk;
11 return cnew;
12 end if
13 end if
14 end for
15 for each ENnew in nearby nodes, do //Enable a neighboring node in shutdown mode.
16 If p(ENnew) > p(cnew)&&ai + θnew + t(ENnew) + t(cnew) + eqnew

(
t∗i
)
≤ di, then

17 Create cnew in ENnew;
18 returncnew;
19 else return null;
20 end for

END

5. Experiments
5.1. Formatting of Mathematical Components

This section describes simulation experiments for latency-sensitive tasks in FASDQ on
the EdgeCloudSim [31] platform, which is capable of modeling edge computing environ-
ments and provides a modular architecture that can support various key functions. Since
the FASDQ proposed in this paper is mainly in an edge environment, the experimental
framework was designed at the edge, as shown in Figure 7.

Figure 7. Task rescheduling process, where MQTT is message queuing telemetry transport.

In this study, Kubernetes v1.8.3 was extended and deployed on the Centos 7.0 system.
The experiments used fault injection to interrupt the execution of task copies. Four types of
edge nodes and four types of containers were set up in EdgeCloudSim, and the processing
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capability of each edge node was set to 1000, 1500, 2000, and 3000 MIPS. The processing
capability of the containers was 250, 500, 700, and 1000 MIPS, respectively, to evaluate the
performance of FASDQ.

We want the edge containers to process task requests as quickly as possible. Therefore,
we implemented the Task Scheduler and Resource Manager modules in the edge server for
edge containers, which enable the containers to run a larger number of tasks in parallel.

In this paper, we compare FASDQ with the following solutions:

(1) Fault-tolerant elastic scheduling algorithm (FESTAL) [17]: it can be added or removed
certain virtual machines depending on the load state to optimize resource utiliza-
tion while supporting fault tolerance in the cloud. In terms of using virtualization
technology, the approach in this paper uses the more lightweight container virtualiza-
tion technology. This experiment applied FESTAL to the edge side for comparative
experiments to verify the effectiveness of FASDQ in terms of latency and resource
utilization.

(2) Fault-tolerance based QoS-aware scheduling algorithm (FTBQA)[19]: adjusts the QoS
level of tasks and has an adjustment mechanism, which is invoked when the backup
copy of a task in a compute node is deleted after the corresponding primary copy
succeeds.

(3) Non-Resource Adjustment (NONRAD): a variant of FASDQ that does not use the
resource-adaptive adjustment mechanism.

(4) Non-Backup Overlapping (NONBOL): a variant of FASDQ that lacks backup over-
lapping techniques to verify the impact of backup overlapping techniques on system
reliability and QoS levels.

To study the performance under a more realistic scenario, we used an open dataset,
YFCC100M [32], provided by Yahoo in 2014. YFCC100M contains 100 million media
objects. There are approximately 0.8 million videos and 99.2 million images. Each object in
YFCC100M contains several metadata, such as media source, owner name, camera, title,
tags, and location [33]. We filtered the multimedia contents of 300 videos and 300 photos
in the YFCC100M dataset. Multimedia content, namely, the number of tasks, is a random
number in [5000, 400, 000]. At a given time, some of the multimedia devices are active, and
the average number of active devices is 320. The distance of the edge base station was set
to 1000 m, and a hexagonal structure was adopted to depict the range of the geographical
location [34].

In order to more clearly observe the impact of different parameters on performance,
experiments based on random synthetic workloads were conducted. The data traffic
generated from each source point is related to total active users and is transmitted to the
edge computing system as packets. The packet size is a random number in [34, 6550] and
the unit is Byte. The average packet arrival rate is one packet per second per node. The
bandwidth capacity between the users and the edge network is 1 Gbps [35].

Assume that the task arrivals at the edge server follow a Poisson distribution and
that the average interval of task arrivals is 1/λ, uniformly distributed in

[
1
λ , 1

λ + 2
]

[17].

The task size is uniformly distributed in
[
1× 105, 2× 105]MI with a deadline of di =

ai + max
{

eq
(
t∗i
)}

+ basedeadline [36], and basedeadline is the benchmark deadline, which
is a random positive real number in {100, 140, · · · , 420} in units of s, indicating the range
of task delays. The edge server failure rate is uniformly distributed with a time unit of
10−7/h [14].

In each set of experiments, only one parameter was changed, and the others were left
unchanged. Table 2 shows the parameters and their values.
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Table 2. Task parameters.

Parameter (Fixed)-(Min, Max, Step)

Task size (×105 MI) ([1, 2])
Task count (×104) (1)-(0.5, 4, 0.5)
Interval time (1/λ) (4)-(0, 16, 2)

Base deadline (×102 s) (3)-(1, 4.2, 0.4)

5.2. Analysis of Experimental Results
5.2.1. Evaluation of the Effectiveness of Fault-Tolerant Scheduling

In this experiment, the effectiveness of fault-tolerant scheduling of primary copies
was evaluated by the task guarantee rate. The guarantee rate (GR) [17] is defined as
the percentage of total tasks that are guaranteed to be completed successfully among all
submitted tasks.

(1) The task arrival interval 1/λ value range is from 0 to 16 with a step of 2 s. The value
is inversely proportional to the workload per unit time. Other parameters remain
unchanged.

(2) Base deadline is set from 100 to 420 with a step of 40 s. The higher the value of the
base deadline, the more relaxed the task deadline constraint. The other parameters
remain unchanged.

Figure 8a shows the variation in the guarantee rate with the task arrival rate of the
five algorithms. The arrival rate decreases as the task volume increases, but all have higher
guarantee rate (GR) values. Because the task arrival rate decreases, the workload decreases
and the resources are more sufficient, so the GR value increases as the arrival rate decreases.
Compared with FASDQ, NONRAD, and NONBOL, NONRAD has the lowest GR value
because it does not use the resource-adaptive adjustment mechanism proposed in this
paper, and when the task volume is large, the current resources cannot meet the demand
of the task copy. NONRAD cannot expand resources on demand, resulting in tasks that
do not start on time, thus missing deadlines. When a large number of task requests occur
at the same time, FASDQ has a better effect on GR. This is because FASDQ can confirm
the QoS level of task copies to reduce their execution time, and the resource adjustment
mechanism can add new resources adaptively. FASDQ is thus able to handle more tasks
under the same conditions. This is in line with our expectations.

Figure 8. Comparison of guarantee rate (GR). (a) Impact of interval time on GR; (b) impact of base deadlines on GR;
(c) impact of task count on GR.

Figure 8b shows the effect of the base deadline on the GR value. The data show that
base deadline has a greater effect on the GR value because when the task is urgent, the
system does not have time to adjust the available resources; therefore, task copies that
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arrive later are not able to meet the deadline. For several methods, when the latency is
relatively lenient, the variation in GR values is usually stable because they implement fault
tolerance and use overlapping technology. In particular, FASDQ can provide different
QoS levels to tasks according to their different urgency levels to guarantee reliable service.
Moreover, FASDQ extends the fault tolerance mechanism by considering the dynamic
resource adjustment technique when resources are insufficient. Therefore, FASDQ performs
better in terms of GR value compared with the other methods.

Figure 8c shows that the guarantee rate decreases as the number of tasks increases.
Since failures are uniformly distributed, the number of tasks increases, leading to more
failures, but all methods maintain a high guarantee rate, except for FTBQA. When the
number of tasks increases, the mechanism can handle new requests by adjusting resources;
while FTBQA has no resource-adaptive adjustment, it can guarantee a high GR because
if there are no resources in the edge cloud to meet the task requirements, the task will be
considered for scheduling in a remote cloud data center. With the increase in the number
of tasks, FASDQ’s GR value remains above 94%, which proves the effectiveness of the
proposed method once again.

In the proposed method, the latency is reduced by providing a QoS level to change
the execution time of task copies, allowing the system to accommodate more task copies,
so the effect of task latency can be better measured by the average reduced time. Figure 9
shows the results for the average reduction in time for the five methods. Both FASDQ
and NONBOL, which adaptively adjust resources, significantly reduce the task latency
with time constraints between 180 and 420 s, while the reduction in time is not significant
between 100 and 180 s. This is due to the resource-adaptive adjustment mechanism,
which is optimized to reduce resource consumption and improve resource utilization,
resulting in the increased data-processing capability of edge servers and thus reduced task
completion time. The difference in the latency results between FESTAL and FASDQ shows
that providing QoS levels to tasks also improves their execution time. However, for tasks
with short latency constraints, FASDQ cannot significantly reduce the task latency because
of insufficient resources for adjusting the urgent-task system.

Figure 9. Average time reduction for a task.

Because FASDQ dynamically assigns the QoS level to copies during scheduling, this
experiment also evaluated the average QoS level (AQL) on the basis of 1/λ, base deadline,
and the number of tasks. AQL is the average QoS level of all accepted tasks, and a higher
AQL indicates a higher reliability performance of the framework. Let q

(
t∗i
)

denote the QoS
level of task copies t∗i with 0 ≤ q

(
t∗i
)
≤ 1 taking a value of [0, 0.1, 0.2, · · · , 0.9, 1].

Figure 10a shows the variation in AQL as the task arrival rate decreases. As the task
arrival rate decreases, the burden is reduced, the competition for resources decreases, and
the task copies can be assigned higher QoS levels. Since FASDQ, NONRAD, NONBOL,
and FTBQA can dynamically adjust the QoS level according to the demand of the copies
when scheduling tasks, its average QoS level is higher than that of FESTAL. Compared
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with NONRAD and NONBOL, FASDQ has a higher average QoS level, which indicates
that the combined application of the proposed method provides a higher QoS level for task
copies, enabling the edge containers to handle more tasks in the same time interval.

Figure 10. Comparison of average QoS levels (AQL). (a) Impact of interval time on AQL; (b) impact of base deadline on
AQL; (c) impact of task count on AQL.

Figure 10b shows that the more relaxed the task deadline, the better the scheduling of
task copies, and the task copies can receive more reliable service guarantees. Therefore, the
QoS levels are improved in all five methods. The AQL of FESTAL fluctuates more and is
smaller than those of the other methods because it schedules without providing QoS levels
to the copies on demand. As shown, the AQL of FASDQ can also exceed 0.6 for urgent task
deadlines. This is because FASDQ can adaptively assign different QoS levels according to
the urgency of the task. The more urgent the task, the higher the QoS level, and the more
resources it consumes, resulting in fewer tasks being processed. However, FASDQ uses a
resource adjustment mechanism, so its average QoS level can be higher than those in the
other methods.

Figure 10c depicts the decreases in AQL as the number of tasks increases. As shown,
when the number of tasks is between 5000 and 40,000, FASDQ can obtain a higher AQL
than the other methods. The continuous increase in the number of tasks with a fixed num-
ber of available resources causes the average computational resources per task to become
increasingly scarce, and the task copies obtain a lower QoS level. The results of compar-
ing NONBOL and NONRAD show that the resource-adaptive adjustment mechanism
proposed in this paper strongly improves the scheduling effect.

5.2.2. Resource Consumption Evaluation

In this subsection, we verify the effect of the number of tasks on the total active time
(HAT) of the edge nodes and the ratio of the service time of tasks to the active time of the
edge node (RTH). The number of tasks in this experiment increased from 5000 to 40,000
with a step of 5000. HAT reflects the resource consumption of the system, RTH reflects the
resource utilization of the system, and RTH is defined as follows:

RTH = max
ti∈T,ENk∈EN

{TET/HAT} (11)

where TET denotes the total execution time of the task.
Figure 11a shows that as the number of tasks increases, the HAT of the five algorithms

maintains an increasing trend. The HAT is worse in both FTBQA and NONRAD, but
for different reasons. FTBQA does not use container technology, and when there is a
lack of computing resources, it needs to increase the edge server resources to meet task
requirements, which results in significant resource consumption. The HAT is worse in
NONRAD because there is no resource adjustment mechanism to replenish the processing
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capability for task copies in a timely manner, which also further illustrates the predominant
role of resource-adaptive adjustment in fault-tolerant scheduling. When the number of
tasks increases, FASDQ can migrate containers with a lower processing capability in the
current candidate nodes to free up resources. This allows the candidate nodes to create new
containers, thus avoiding the need to add or start new nodes and saving node resources.

Figure 11. Comparison of resource utilization. (a) Impact of task count on HAT (the total active time of the edge nodes); (b)
impact of task count on RTH (the ratio of the task service time to the active time of the edge node).

Figure 11b depicts the variation in RTH performance as the number of tasks increases
for the five methods. The RTH performance of NONRAD and FTBQA is poor when
the number of tasks increases: when the tasks increase substantially, the system is bur-
dened, and more active nodes must be added to the processing capability, resulting in
greater resource consumption. The RTH of NONRAD outperforms that of FTBQA by 8.6%,
indicating that the overlapping technique can effectively use the available resources to
accommodate more tasks and avoid a significant increase in resources, effectively improv-
ing resource utilization. Compared with the other methods, the RTH of FASDQ is higher
and relatively stable because FASDQ provides better QoS of reliability for task copies and
reduces the execution time of tasks; therefore, FASDQ can always process more task copies
in a given time, which effectively improves resource utilization.

In summary, the FASDQ mechanism extends the PB model to achieve fault tolerance
by providing QoS levels for task copies, which effectively reduces task latency. From the
evaluation of AQL, the FASDQ mechanism clearly provides higher QoS levels for latency-
sensitive tasks and performs better in terms of reliability requirements and scheduling.
As illustrated by the variation in HAT and RTH values, FASDQ can effectively improve
resource utilization in the edge node and container levels by implementing container
resource-adaptive adjustment in terms of consumption and saving resources.

6. Conclusions and Future Work

This paper introduces FASDQ, a fault-tolerant adaptive scheduling mechanism with
dynamic QoS-awareness that guarantees reliable service for latency-sensitive tasks and
improves the resource utilization of edge containers. FASDQ extends the PB model and
proposes a dynamic QoS-aware task scheduling mechanism to achieve fault tolerance,
which dynamically provides QoS levels to task copies according to the different latency
requirements of tasks to change the execution time, so the edge containers can accommodate
more task copies with a given processing capability while being fault-tolerant. In addition,
FASDQ implements a resource-adaptive adjustment mechanism to address the uneven
resource distribution and insufficient processing capability of tasks during execution, which
effectively replenishes resources for tasks with insufficient processing capacity and reduces
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resource consumption at the node and container levels. The experimental results show that
the method can significantly reduce the execution time of each task copy by about 12%,
effectively reducing the task latency and improving system resource utilization.

In this paper, we do not consider task scheduling enough when the tasks are uploaded
to the cloud after the failure of edge container scheduling, and we will further extend
the fault-tolerant adaptive scheduling mechanism between cloud edges in the future so
that the mechanism can tolerate multiple edge server failures. Furthermore, this paper
addresses relatively static user requests, such as monitoring devices that are deployed in
fixed locations. In realistic scenarios, such as 5G systems, there is a need to support mobility
for mobile users. If the corresponding contents, which are located in edge containers, could
be migrated to the place close to mobile users as they move, the QoS of reliability will be
improved during the movement of the mobile users and the communication delay will be
reduced between mobile users and the nodes. However, we did not delve into the task
requests of the mobile users, which are common in realistic environments. This is our
research focus for future studies.
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