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Medical device surveillance with electronic health records
Alison Callahan 1, Jason A. Fries 1,2, Christopher Ré2, James I. Huddleston III3, Nicholas J. Giori3,4, Scott Delp5 and Nigam H. Shah1

Post-market medical device surveillance is a challenge facing manufacturers, regulatory agencies, and health care providers.
Electronic health records are valuable sources of real-world evidence for assessing device safety and tracking device-related patient
outcomes over time. However, distilling this evidence remains challenging, as information is fractured across clinical notes and
structured records. Modern machine learning methods for machine reading promise to unlock increasingly complex information
from text, but face barriers due to their reliance on large and expensive hand-labeled training sets. To address these challenges, we
developed and validated state-of-the-art deep learning methods that identify patient outcomes from clinical notes without
requiring hand-labeled training data. Using hip replacements—one of the most common implantable devices—as a test case, our
methods accurately extracted implant details and reports of complications and pain from electronic health records with up to
96.3% precision, 98.5% recall, and 97.4% F1, improved classification performance by 12.8–53.9% over rule-based methods, and
detected over six times as many complication events compared to using structured data alone. Using these additional events to
assess complication-free survivorship of different implant systems, we found significant variation between implants, including for
risk of revision surgery, which could not be detected using coded data alone. Patients with revision surgeries had more hip pain
mentions in the post-hip replacement, pre-revision period compared to patients with no evidence of revision surgery (mean hip
pain mentions 4.97 vs. 3.23; t= 5.14; p < 0.001). Some implant models were associated with higher or lower rates of hip pain
mentions. Our methods complement existing surveillance mechanisms by requiring orders of magnitude less hand-labeled training
data, offering a scalable solution for national medical device surveillance using electronic health records.
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INTRODUCTION
For individuals implanted with the most widely used medical
devices today, including pacemakers, joint replacements, breast
implants, and more modern devices, such as insulin pumps and
spinal cord stimulators, effective pre-market assessment and post-
market surveillance are neccessary1 to assess their implants’ safety
and efficacy. Device surveillance in the United States relies
primarily on spontaneous reporting systems as a means to
document adverse events reported by patients and providers, as
well as mandatory reporting from manufacturers and physicians
to the Food and Drug Administration (FDA). As a result, device-
related adverse events are significantly underreported—by some
estimates as little as 0.5% of adverse event reports received by the
FDA concern medical devices.2 Recent adoption of universal
device identifiers3,4 will make it easier to capture device details,
and to report events using these identifiers, but linking devices to
patient outcomes remains a challenge. Unique device identifiers
have not been used historically (longitudinal data are essential to
monitor device safety over time) and many relevant patient
outcomes are simply not recorded in a structured form amenable
for analysis. The International Consortium of Investigative Journal-
ists recently analyzed practices of medical device regulation
around the world and dissemination of device recalls to the
public, sharing their findings in a report dubbed the ‘Implant
Files’.5 One issue highlighted in their report is the significant

challenge of tracking device performance and reports of adverse
events.
Observational patient data captured in electronic health records

(EHRs) are increasingly used as a source of real-world evidence to
guide clinical decision making, ascertain patient outcomes, and
assess care efficacy.6–8 Clinical notes in particular are a valuable
source of real-world evidence because they capture many
complexities of patient encounters and outcomes that are
underreported or absent in billing codes. Prior work has
demonstrated the value of EHRs, and clinical notes specifically,
in increasing the accuracy9 and lead time10 of signal detection for
post-market drug safety surveillance. The hypothesis motivating
this work is that EHRs, and evidence extracted from clinical notes
in particular, can enable device surveillance and complement
existing sources of evidence used to evaluate device performance.
EHR structure and content varies across institutions, and

technical challenges in using natural language processing to
mine text data11 create significant barriers to their secondary use.
Pattern and rule-based approaches are brittle and fail to capture
many complex medical concepts. Deep learning methods for
machine reading in clinical notes12–15 outperform these
approaches to substantially increase event detection rates, but
require large, hand-labeled training sets.16,17 Thus recent research
has led to new methods that use weak supervision, in the form of
heuristics encoding domain insights, to generate large amounts of
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imperfectly labeled training data. These weakly supervised
methods can exceed the performance of traditional supervised
machine learning while eliminating the cost of obtaining large
quantities of hand-labeled data for training.18,19 Unlike labeled
clinical data, these heuristics, implemented as programmatic
labeling functions, can be easily modified and shared across
institutions, thus overcoming a major barrier to learning from
large quantities of healthcare data while protecting patient
privacy.
In this work, we demonstrate the use of such novel methods to

identify real-world patient outcomes for the one of the most
commonly implanted medical devices: the hip joint implant. More
than one million joint replacements are performed every year in
the United States and rates are increasing, including in patients
under 65 years of age.20 Primary joint replacements are
expensive,21 and implant failure incurs significant financial and
personal cost for patients and the health care system. Recent
recalls for metal-on-metal hip replacements22 highlight the need
for scalable, automated methods for implant surveillance.23 While
major adverse events such as deaths or revision surgery are
typically reported, comprehensive device surveillance also needs
to track outcomes that are reported less often, such as implant-
related infection, loosening, and pain. Pain is a primary indication
for undergoing a hip replacement, yet studies have found that
more than 25% of individuals continue to experience chronic hip
pain after replacement.24,25 Pain is also an early indicator of the
need for revision surgery,26 and thus a key implant safety signal.
Motivated by the potential impact and scale of this surveillance

problem, we applied weak supervision and deep learning
methods using the Snorkel framework,19 to identify reports of
implant-related complications and pain from clinical notes. After
validating these machine reading methods, we combined data
from clinical notes with structured EHR data to characterize hip
implant performance in the real world, demonstrating the utility of
using such text-derived evidence. Working with the EHRs from a
cohort of 6583 hip implant patients, we show that our methods
substantially increase the number of identified reports of implant-
related complications, that our findings complement previous
post-approval studies, and that this approach could improve
existing approaches to identify poorly performing implants.

RESULTS
Overview
We first describe the cohort analyzed in our study and report the
performance of our implant extraction method and weakly
supervised relation extraction methods in comparison to tradi-
tionally supervised models. We then compare the ability of our
method to replicate the contents of the manually curated STJR
joint implant registry. Lastly, we present our findings when
combining the evidence produced by our extraction methods
with structured data from EHRs to characterize hip implant
performance in the real world, demonstrating the utility of such
text processing methods.

Cohort summary
We identified 6583 patients with records of hip replacement
surgery. The hip replacement cohort was 55.6% female, with an
average age at surgery of 63 years and average follow-up time
after replacement of 5.3 years (±2.1 years). Of these 6,583 patients,
386 (5.8%) had a coded record of at least one revision surgery. For
patients who had a revision surgery, the average age at primary
replacement surgery was 57.9 years and average follow-up time
was 10.5 years (±3.0 years).

Performance of machine reading methods
The performance of our implant, complication, and pain extraction
methods based on test sets of manually annotated records is
summarized in Table 1. During adjudication of differences
amongst annotators, there was very little disagreement on specific
cases–the majority of differences were as a result of one annotator
missing a relation or entity that another annotator had correctly
identified. For implant-complications and pain-anatomy relations,
Fleiss’ kappa was 0.624 and 0.796, respectively, indicating
substantial agreement amongst annotators.
Table 2 reports the performance of our relation extraction

models compared against the baselines described in the methods.
Using weakly labeled training data substantially improved
performance in all settings. Weakly supervised LSTM models
improved 9.2 and 24.6 F1 points over the soft majority vote
baseline, with 17.7 and 29.4 point gains in recall. Directly training
an LSTM model with just the 150 hand-labeled documents in the
training set increased recall (+13.5 and +15.4 points) over the
majority vote for both tasks, but lost 8.9 and 30.8 points in
precision. Model performance for each subcategory of relation is
enumerated in Supplementary Table 4. These results show that
training using large amount of generated, imperfectly labeled data
is beneficial in terms of recall, while preserving precision.
For subcategories of implant complications, F1 was improved

by 16.6–486.2% for different categories except radiographic
abnormalities, where a rule-based approach performed 12.6%
better. In general, models trained on imperfectly labeled data
provided substantial increases in recall, especially in cases such as
particle disease, where rules alone had very low recall.
Figure 1 shows the impact of training set size on the weakly

supervised LSTM’s performance for identifying implant complica-
tions. With training set sizes greater than 10,000 weakly labeled
documents, LSTM models outperformed rules across all possible
classification thresholds, with a 51.3% improvement in area under
the precision-recall curve (AUPRC) over soft majority vote.
The STJR snapshot covered 3714 patients. 2850 STJR patients

underwent surgery during the time period of this study
(1995–2014). 1,877 STJR patients overlapped with our hip
replacement cohort (Fig. 2) and were used to evaluate model
performance. For the most frequently implanted systems with ≥1
records present in the STJR (Zimmer Biomet Trilogy, DePuy
Pinnacle, Depuy Duraloc, Zimmer Biomet Continuum, Zimmer
Biomet RingLoc, Zimmer Biomet VerSys, Depuy AML and Zimmer
Biomet M/L Taper; corresponding to 88% of patients in the STJR/
cohort overlapping set), there was 72% agreement between STJR
and our system output, 17% conflict and 11% missingness.

Hip implant system performance in the real world
In the following sections we summarize our analysis of hip implant
system performance using the evidence extracted by our machine
reading methods. First we quantify additional evidence of revision
identified by our methods, and the association between implant
system and risk of revision. Next, we summarize our analysis of the
association between implant systems and post-implant complica-
tions generally. Lastly, we describe our findings regarding the

Table 1. Precision, recall and F1 of our best performing entity and
relation extraction methods

Category Task Type Precision Recall F1 Test
set size

Implant manufacturer/
model

Entity 96.3 98.5 97.4 500

Pain-anatomy Relation 80.2 82.5 81.3 100

Implant-complication Relation 82.6 61.1 70.2 633
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association between implant system, hip pain, and revision. Our
first two analyses used Cox proportional hazards models to
measure the association between implant system and revision/
post-implant complications. Our third analysis used a negative

binomial model to investigate the association between implant
system and frequency of hip pain mentions over time, and a t-test
to investigate the association between hip pain and revision
surgery.
We found that unstructured data captures additional evidence

of revision. In the analyzed subset of 2704 patients with a single
implant, only 78 had a coded record of revision surgery (as an ICD
or CPT code in a billing record, for example). Considering only this
evidence of revision, there was no significant association between
implant system and revision-free survival (log-rank test p= 0.8;
see Supplementary Figure 2). When including evidence of revision
extracted from clinical notes, we detected an additional 504
revision events (over six times as many events). In total, our
methods identified 519 unique revision events (63 revision events
that were detected in both coded data and text for a single
patient were merged, and assigned the timestamp of whichever
record occurred first). 63/78 (81%) of the coded revision events
have corresponding evidence of the revision extracted from
clinical notes by our system. The majority of coded records and
text-derived revision events occur within 2 months of each other,
suggesting good agreement between these two complementary
sources of evidence when both do exist.
Analyzing the augmented revision data using a Cox propor-

tional hazards model, different implant systems are associated
with a significantly higher or lower risk of revision when
controlling for age at the time of implant, race, gender, and
Charlson Comorbidity Index (log-rank test p < 0.001). Figure 3
summarizes the risk of revision for implant systems when
including evidence from clinical notes alongside structured
records of revision.
In addition to revision, the Cox proportional hazards analysis of

post-hip replacement complications indicates that some implant
systems are associated with a higher or lower risk of implant-
related complications overall (log-rank test p < 0.001) and of
specific types (see Supplementary Figs. 3–7, for specific complica-
tion types). For example, the Depuy Pinnacle (acetabular
component)+ AML (femoral component) system has a signifi-
cantly lower risk of overall complications in comparison to the
Zimmer Biomet Trilogy (acetabular)+ VerSys (femoral) system,
when controlling for age at the time of implant, race, gender, and
Charlson Comorbidity Index (see Fig. 4).
We also found that post replacement hip pain is associated with

implant systems and revision. Our system extracted 938,222
positive pain-anatomy relation mentions from 471,985 clinical
notes for 5562 hip replacement patients, with a mean of 168
mentions per patient, and 1 mention per note. Fitting a negative
binomial model to the subset of this data corresponding to the
2704 patients with a single implant, we found that some implant
systems are associated with higher frequency of hip pain
mentions in the year following hip replacement surgery. Other
covariates that also associated with higher frequency of post-
implant hip pain are hip pain in the year prior to hip replacement,

Table 2. Performance in terms of precision (P), recall (R), and F1, with standard deviation (SD) for weakly supervised relation extraction compared
with baselines

MODEL Pain-Anatomy (n= 236) Implant-Complication (n= 276)

P (SD) R (SD) F1 (SD) P (SD) R (SD) F1 (SD)

Soft Majority Vote (SMV) 81.4 (2.8) 64.8 (3.0) 72.1 (2.3) 81.6 (3.6) 31.7 (2.7) 45.6 (3.1)

Fully Supervised (FS) 72.5 (2.9) 78.3 (2.6) 75.3 (2.1) 50.8 (3.1) 47.1 (3.1) 48.8 (2.7)

Weakly Supervised (WS) 80.2 (2.6) 82.5 (2.4) 81.3 (1.9) 82.6 (2.6) 61.1 (2.9) 70.2 (2.3)

Improvement over SMV −1.5% +27.3% +12.8% +1.2% +92.7% +53.9%

Bold highlights show highest value for a given metric

Fig. 1 Precision Recall (AUPRC) curves for Implant-Complication
classifier performance at different training set sizes. The soft
majority vote (SMV) baseline consists of a majority vote of all
labeling functions applied to test data. Note how SMV favors
precision at substantial cost to recall. A classifier trained directly on
the 150 hand-labeled training documents failed to produce a high-
performance model. When training using the generated imperfectly
labeled training data, at 10 k–50 k documents, the resulting
supervised LSTMs are better than SMV at all threshold choices.
The model trained on 20 k documents performed best overall, with
a 51.3% improvement over SMV in average precision (AUPRC)

Fig. 2 Overlap between Stanford Total Joint Registry (STJR) and the
hip replacement cohort extracted from the Stanford Medicine
Research Data Repository (STaRR). Of the 6583 patients in the hip
replacement cohort, 782 patients did not have an operative report
(white box with dotted outline). For the 5801 patients with operative
reports, 807 did not have a mention of any implant model in their
report(s) (striped box). Of the remaining 4994 patients (light gray
box), 1877 overlapped with the STJR. Of the 477 patients whose 500
operative reports were manually annotated (dark gray box), 185
overlapped with the STJR. 973 patient records were present only in
the STJR (white box with dashed outline)
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having the race category “other”, unknown ethnicity, and follow-
up time (see Supplementary Table 1 for all model coefficients).
Table 3 lists implant systems with statistically significant

negative binomial model coefficients (p ≤ 0.05), their incidence
rate ratios (IRR) and 95% confidence intervals. Six systems, all
manufactured by Depuy, had IRRs < 1, indicating that they are
associated with lower rates of hip pain mentions relative to the
Zimmer Biomet Trilogy+ VerSys reference system when control-
ling for patient demographics, pain mentions in the prior year and
CCI. Five systems (4 Zimmer Biomet, 1 Depuy) have IRRs > 1,
indicating that they are associated with higher rates of hip pain
mentions following implant.
For 1463 patients who had a BMI measurement within 100 days

of hip replacement, we assessed whether hip pain mentions in the
year following implant varies with BMI by including it in a negative
binomial model alongside the above variables. We found no
statistically significant association between BMI and pain in the
year following hip replacement (p= 0.29).
Mean post-hip replacement hip pain mention frequency is

significantly higher in patients who underwent revision surgery,
when controlling for length of post-implant follow-up time (8.94
vs. 3.23; t= 17.60; p < 0.001). This holds true when considering
only the period between primary hip replacement and revision for
those patients who had revision surgery (4.97 vs. 3.23; t= 5.14;
p < 0.001).

DISCUSSION
Post-market medical device surveillance in the United States
currently relies on spontaneous reporting systems such as the
FDA’s Manufacturer and User Facility Device Experience (MAUDE),
and increasingly on device registries.36–39 Neither source provides
a complete or accurate profile of the performance of medical
devices in the real world.23 Submitting data to registries is
voluntary and not all records capture complete details on primary
procedure, surgical factors, complications, comorbidities, patient-
reported outcomes, and radiographs,40 so existing state and
health system-level registries are not comprehensive. The short-
comings of spontaneous reporting systems, which are well known
in pharmacovigilance research41,42 (including lack of timeliness,
bias in reporting, and low reporting rates), also plague device
surveillance efforts.43 EHRs, with their continuous capture of data
from diverse patient populations and over long periods of time,
offer a valuable source of evidence for medical device surveillance
in the real world, and complement these existing resources.
Indeed, the FDA’s new five year strategy44 for its Sentinel post-
market surveillance system prioritizes increased capture of data
from EHRs. Our methods to extract evidence for device safety
signal detection from EHRs directly support these efforts.
Our inference-based methods for identifying the implant

manufacturer/model, pain and complications from the EHR were
very accurate (F1 97.4; 81.3; 70.2) and substantially outperformed

Fig. 3 Summary of Cox proportional hazards analysis of the risk of revision for each hip implant system. The table on the left lists the number
of patients implanted with each system, the number of revision events observed for each, and the total person-years of data available. The
forest plot displays the corresponding hazard ratio, with the hazard ratio (95% confidence interval) and p-value listed in the table to the right.
Note that this figure only shows implant systems for which at least one revision event was detected
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pattern and rule-based methods. As a result, our approach
improved coverage by identifying more patients who underwent
hip replacement, and detecting subsequent complications in a
more comprehensive manner. Moreover, these machine learning

methods can be deployed continuously, enabling near real-time
automated surveillance. Comparing our method’s output to a
manually curated joint registry, we achieved majority agreement
with existing registry records and increased coverage of hip
replacement patients by 200%. Discrepancies between implant
information extracted from operative reports and the correspond-
ing registry record primarily resulted from variability in how
implant system names were recorded; thus, one way our methods
can augment existing registries is to standardize record capture.
Our findings highlight the importance of using evidence derived
from clinical notes in evaluating device performance. Our
methods identified significantly more evidence of revision surgery
(over 6X more events than from codes alone), augmenting what is
available in structured EHR data. Our finding that text-derived
evidence increases the observed rate of complications in
comparison to coded data agrees with studies of the complete-
ness and accuracy of ICD coding for a variety of diseases,45 and for
comorbidities and complications of total hip arthroplasty
specifically.46,47

We found that a subset of implant systems were associated with
higher or lower risk of implant-related complications in general,
and of specific classes of complication. A recent meta-analysis of
implant combinations48 found no association between implant
system and risk of revision, although other studies have mixed
conclusions.49–54 These studies relied on structured records of

Fig. 4 Summary of Cox proportional hazards analysis of the risk of any complication for each hip implant system. The table on the left lists the
number of patients implanted with each system, the number of complication events observed for each, and the total person-years of data
available. The forest plot displays the corresponding hazard ratio, with the hazard ratio (95% confidence interval) and p-value listed in the
table to the right. Note that this figure only shows implant systems for which one complication event was observed

Table 3. Negative binomial model-derived incidence rate ratios (IRRs),
95% confidence intervals (CI) and associated p-values for implant
systems significantly associated with frequency of hip pain mentions
in the year following hip replacement

Implant System IRR (95% CI) p-value

Depuy Duraloc+ AML 0.033 (0.012–0.091) <0.001

Depuy Duraloc+ Corail 1.268 (1.020–1.577) 0.033

Depuy Duraloc+ Summit 0.161 (0.040–0.652) 0.011

Depuy Pinnacle+ AML 0.097 (0.057–0.163) <0.001

Depuy Pinnacle+ Corail 0.594 (0.475–0.742) <0.001

Depuy Pinnacle+ Endurance 0.032 (0.010–0.137) <0.001

Depuy Pinnacle+ Summit 0.369 (0.301–0.432) <0.001

Zimmer Biomet Continuum+M/L Taper 2.061 (1.561–2.720) <0.001

Zimmer Biomet Ranawat/Burstein+
Taperloc

2.061 (1.174–3.621) 0.012

Zimmer Biomet Trilogy+M/L Taper 1.490 (1.234–1.799) <0.001
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revision and registry data, and thus are complemented by our
analysis of real world evidence derived from EHRs. We also found
that patients with structured records of revision surgery reported
more hip pain in the post replacement, pre-revision period than
patients who did not. This agrees with previous findings36,55 that
pain is an early warning sign of complications that result in
revision surgery.
Our approach leverages data programming to generate training

sets large enough to take advantage of deep learning32 for
relational inference (which is one of the most challenging
problems in natural language processing27). The resulting models
sacrificed small amounts of precision over a rule-based approach
for significant gains in recall, demonstrating their ability to capture
complex semantics and generalize beyond input heuristics. This
approach requires only a small collection of hand-labeled data to
validate end model performance. By focusing on creating labeling
functions, instead of manually labeling training data, we achieved
state-of-the-art performance with reusable code that, unlike
labeled data, can be easily updated and shared across different
healthcare systems. The generative model learned from data
labeled using programmatic labeling functions may be applied to
new datasets with zero-to-low hand-labeling effort required, and
used to train high performing downstream discriminative models
over data from different sites or sources. Prior work19,56

demonstrates the utility of weak supervision in such variable
and low-label settings, commonly encountered in medical
applications.
There are several limitations to our work. We were not able to

retrieve operative reports for all hip replacement patients and thus
likely missed some implants. Patients had different numbers of
clinical notes, at varying time points, which may not have
captured their full experience of pain or complications following
surgery. It is also possible that the modes of note entry available in
different EHR systems may encourage more detailed reporting of
complications in different health systems, which would affect the
information our system extracts. Our approach canonicalized
implants to the level of manufacturer/model names, which only
identifies broad implant families rather than the specific details
provided by serial and lot numbers. However, as the use of unique
device identifiers grows in popularity, our approach can incorpo-
rate this information to further differentiate the performance of
implants with different design features. Our study was necessarily
restricted to the implant systems used by Stanford Health Care
surgeons, and thus our findings are limited to those systems.
While we controlled for patient age, gender, race, ethnicity, hip
pain mentions prior to surgery, and CCI in our statistical analyses,
there are additional patient- and practice-specific features that
may confound the complication-free survival of individual
implants and rates of post-implant hip pain. These include case
complexity, the orthopaedic surgeon who performed the hip
replacement, their preference for specific implant systems, and
their case mix. CCI is an indicator of case complexity, but joint
arthroplasty-specific factors, such as indication for surgery, also
contribute to patients’ overall complexity. Therefore, we focus on
developing scalable methods that may be deployed at other sites
to develop a national-level device registry populated from EHRs
(we make our code publicly available), and restrict the analysis of
implant complications to demonstrating an improvement in
inference over using only registry collected data. With the
resulting larger dataset it may be feasible to use advanced
methods such as propensity score modeling to select matched
cohorts for analysis that account for patient-level variation and
their association with likelihood of receiving a specific implant
system, but this is outside the scope of the current work and not
currently possible with the single-site data we have access to.
Lastly, our analysis was restricted to patients who underwent a

single hip replacement, to avoid attributing a complication or pain
event to the incorrect implant, in the case of patients who

underwent multiple primary implant procedures. Given these
limitations, the challenge of obtaining perfect test data (as
evidenced by the observed intra-annotator variability, and noise
in ground truth labels from the STJR), and the loss of precision
introduced by weak supervision (in exchange for significant gains
in recall), we would emphasize our findings are exploratory, and
would be strengthened through additional studies.
In conclusion, we demonstrate the feasibility of a scalable,

accurate, and efficient approach for medical device surveillance
using EHRs. We have shown that implant manufacturer and
model, implant-related complications, as well as mentions of post-
implant pain can be reliably identified from clinical notes in the
EHR. Leveraging recent advances in machine reading and deep
learning, our methods require orders of magnitude less labeled
training data and obtain state-of-the-art performance. Our
findings that implant systems vary in their revision-free survival
and that patients who had revision surgery had more mentions of
hip pain after their primary hip replacement agree with multiple
prior studies. Associations between implant systems, complica-
tions, and hip pain mentions as found in our single-site study
demonstrate the feasibility of using EHRs for device surveillance,
but do not establish causality. The ability to quantify pain and
complication rates automatically over a large patient population
offers an advantage over surveillance systems that rely on
individual reports from patients or surgeons. We believe that
the algorithms described here can be readily scaled, and we make
them freely available for use in analyzing electronic health records
nationally.

METHODS
Overview
We developed machine reading methods to analyze clinical notes and
identify the implanted device used for a patient’s hip replacement, as well
as identify mentions of implant-related complications and patient-reported
pain. We evaluated these methods’ ability to (1) accurately identify
implant-related events with a minimum of hand-labeled training data; and
(2) map identified implants to unique identifiers—a process called
canonicalization—to automatically replicate the contents of a manually
curated joint implant registry.
We then combined the data produced by our machine learning

methods with structured data from EHRs to: (1) compare complication-free
survivorship of implant systems and (2) derive insights about associations
between complications, pain, future revision surgery and choice of implant
system.
In the following sections, we first describe how we identified the patient

cohort analyzed in our study. We then describe in detail our novel weakly
supervised machine reading methods. Lastly, we describe our analysis of
the performance of implant systems based on real-world evidence
produced by these methods, using Cox proportional hazards models,
negative binomial models, and the t-test.
Our study was approved by the Stanford University Institutional Review

Board with waiver of informed consent, and carried out in accordance with
HIPAA guidelines to protect patient data.

Cohort construction
We queried EHRs of roughly 1.7 million adult patients treated at Stanford
Health Care between 1995 and 2014 to identify patients who underwent
primary hip replacement and/or revision surgery. To find records of
primary hip replacement surgery, we used ICD9 procedure code 81.51
(total hip replacement) and CPT codes 27130 (total hip arthroplasty) and
27132 (conversion of previous hip surgery to total hip arthroplasty). To find
structured records of hip replacement revision surgery, we used ICD9
procedure codes 81.53 (Revision of hip replacement, not otherwise
specified), 00.70, 00.71, 00.72, and 00.73 (Revision of hip replacement,
components specified), and CPT codes 27134 (Revision of total hip
arthroplasty; both components, with or without autograft or allograft),
27137 (Revision of total hip arthroplasty; acetabular component only, with
or without autograft or allograft) and 27138 (Revision of total hip
arthroplasty; femoral component only, with or without allograft).
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We identified 6583 patients with records of hip replacement surgery, of
which 386 (5.8%) had a coded record of at least one revision after the
primary surgery. For all patients in the resulting cohort, we retrieved the
entirety of their structured record (procedure and diagnosis codes,
medication records, vitals etc.), their hip replacement operative reports,
and all clinical notes. We were able to retrieve operative reports for 5801
(88%) hip replacement patients.

Machine reading
In supervised machine learning, experts employ a wide range of domain
knowledge to label ground truth data. Data programming18,19 is a method
of capturing this labelling process using a collection of imperfect heuristics
or labeling functions which are used to build large training sets. Labeling
functions encode domain expertise and other sources of indirect
information, or weak supervision (e.g., knowledge bases, ontologies), to
vote on a data item’s possible label. These functions may overlap, conflict,
and have unknown accuracies. Data programming unifies these noisy label
sources, using a generative model to estimate and correct for the
unobserved accuracy of each labeling source and assign a single
probabilistic label to each unlabeled input sample. This step is
unsupervised and requires no ground truth data. The generative model
is used to programmatically label a large training set, to learn a
discriminative model such as a neural network. By training a deep learning
model, we transform rules into learned feature representations, which
allow us to generalize beyond the original labeling heuristics, resulting in
improved classification performance.
The probabilistic labels generated via data programming results in a

large training set, which is referred to as “weakly labeled”. The
discriminative model gets as input the original text sentences in the
training set and the probabilistic labels generated by the data program-
ming step. Because the label provided in such a supervised learning setup
is “weak”, the process is also called “weak supervision” and the resulting
discriminative model referred to as a weakly supervised model. We
describe each step of the process (Fig. 5) in the following paragraphs.
We defined 3 entity/event types: (1) implant system entities identified by

a manufacturer and/or model name, e.g., “Zimmer VerSys”; (2) implant-
related complications, e.g., “infected left hip prosthetic”; and (3) patient-
reported pain at a specific anatomical location, e.g., “left hip tenderness”.
The latter two, implant complications and patient-reported pain, involve
multiple concepts and were formulated as relational inference tasks27

where a classifier predicts links between two or more entities or concepts
found anywhere in a sentence, i.e., R= r(ci…cN), where r is a relation type
and ci is a concept mention. This formulation allowed our classifier learn
complex semantic relationships between sentence entities, using statistical
inference to capture a wide range of meaning in clinical notes. This
approach enabled identifying nuanced, granular information, such as
linking pain and complication events to specific anatomical locations and
implant subcomponents (e.g, “left acetabular cup demonstrates extreme

liner wear”). Therefore, complication outcomes were represented as entity
pairs of (complication, implant) and pain outcomes as pairs of (pain,
anatomy).
We considered all present positive mentions of an event—i.e., in which

the event was contemporaneous with a note’s creation timestamp—as
positive examples. Historical, negated and hypothetical mentions were
labeled as ‘negative’. Implant complications were further broken down into
6 disjoint subcategories: revision, component wear, mechanical failure,
particle disease, radiographic abnormality, and infection (see Supplemen-
tary Material for examples). These categories correspond to the removal of
specific hardware components as well as common indicators of device
failure.
All clinical notes were split into sentences and tokenized using the

spaCy28 framework. Implant, complication, anatomy, and pain entities
were identified using a rule-based tagger built using a combination of
biomedical lexical resources, e.g., the Unified Medical Language System
(UMLS)29 and manually curated dictionaries (see supplement for details).
Each sentence was augmented with markup to capture document-level
information such as note section headers (e.g., “Patient History”) and all
unambiguous date mentions (e.g., “1/1/2000”) were normalized to relative
time delta bins (e.g., “0–1 days”, “+ 5 years”) based on document creation
time. Such markup provides document-level information to incorporate
into features learned by the final classification model.
Candidate relations were defined as the Cartesian product of all entity

pairs defining a relation (i.e., pain/anatomy and implant/complication) for
all entities found within a sentence. Candidate events and relations were
generated for all sentences in all clinical notes.
Labeling functions leverage existing natural language tools to make use

of semantic abstractions, or primitives, which make it easier for domain
experts to express labeling heuristics. For example, primitives include
typed named entities such as bacterium or procedures, document section
structure, as well as negation, hypothetical, and historical entity modifiers
provided by well-established clinical natural language processing methods
such as NegEx/ConText.30,31 These primitives provide a generalized
mechanism for defining labeling functions that express intuitive domain
knowledge, e.g., “Implant complications found in the ‘Past Medical History’
section of a note are not present positive events” (Fig. 6). Primitives can be
imperfect and do not need to be directly provided to the final
discriminative model as features. Critically, the end deep learning
discriminative model automatically learns to encode primitive information
using only the original text and the training signal provided by our
imperfect labels.
We developed labeling functions to identify implant-related complica-

tions and pain and its anatomical location. In total, 50 labeling functions
were written, 17 shared across both tasks, with 7 task-specific functions for
pain-anatomy and 25 for implant-complications. Labeling functions were
written by inspecting unlabeled sentences and developing heuristics to
assign individual labels (Supplementary Fig. 2). This process was iterative,

Fig. 5 Overview of our machine reading pipeline. Top: Each patient’s EHR is processed to extract the date of primary hip replacement surgery,
any coded record of revision surgeries, and all clinical and operative notes. Bottom: From the patient’s coded data and primary hip
replacement operative report, we tagged all mentions of implants, complications, and anatomical locations. We defined pairs of relation
candidates from these sets of entities, and labeled them using data programming via the Snorkel framework. These labeled data were then
used to train a deep learning model. When applied to unseen data, the final model’s final output consists of timestamped, structured attribute
data for implant systems, implant-related complications, and mentions of pain
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using development set data (described in the next section) to refine
labeling function design.
We used two sources of manually annotated data to evaluate our

methods: (1) the Stanford Total Joint Registry (STJR), a curated database of
joint replacement patients maintained by Stanford Health Care orthopedic
surgeons which, as of March 2017, contained records for 3714 patients and
(2) clinical notes from the Stanford Health Care EHR system, manually
annotated by co-authors and medical doctors expressly for the purpose of
evaluating our models’ performance. The clinical notes manually
annotated by our team consisted of three sets:

(A) 500 operative reports annotated to identify all implant mentions.
(B) 802 clinical notes annotated to identify all complication-implant

mentions.
(C) 500 clinical notes annotated to identify all pain-anatomy relation

mentions.

Set A was randomly sampled from the entire hip replacement cohort’s
operative report corpus, using the manufacturer search query “Zimmer OR
Depuy”. This query captured >85% of all implant components in the STJR
and accounted for >90% of all implant mentions in operative reports. Sets
B and C were randomly sampled with uniform probability from the entire
hip replacement cohort’s clinical note corpus. Ground truth labels for
implant model mentions (set A) were generated by one annotator (author
AC). Ground truth labels for complication-implant mentions (set B) were
generated by five annotators (authors AC, JF, and NHS, and two medical
doctors). Ground truth labels for set C were generated by three annotators
(authors AC and JF, and one medical doctor). We used adjudication to
resolve differences between annotators.
For implant manufacturer/model entity extraction (e.g., “DePuy Pinna-

cle”, “Zimmer Longevity”), we used a rule-based tagger, as we found using
dictionary-based string matching was sufficiently unambiguous to achieve
high precision and recall (see supplemental methods for detail on the
construction of the implant dictionary used).
We used a Bidirectional Long Short-Term Memory (LSTM)32 neural

network with attention33 as the discriminative model for relational

inference tasks. All LSTMs used word embeddings pre-trained using
FastText34 on 8.1B tokens (651 M sentences) of clinical text. Each training
instance consisted of an entity pair, its source sentence, and all
corresponding text markup. All models were implemented using the
Snorkel framework.
We evaluated our implant extraction system using the 500 manually

annotated operative reports (set A, above). We evaluated our weakly
supervised pain and complication LSTMs against two baselines: (1) a
traditionally supervised LSTM trained using 150 hand-labeled training
documents; (2) the soft majority vote of all labeling functions for a target
task. To quantify the effect of increasing training set size, we evaluated the
weakly supervised LSTM neural networks trained using 150 to 50,000
weakly labeled documents. We used training, development, and test set
splits of 150/19/633 from set B for implant-complication relations and 150/
250/100 documents from set C for pain-anatomy relations. All models and
labeling functions were tuned on the development split and results
reported are for the test split. All models were scored using precision,
recall, and F1-score.
We then compared the structured output of our implant extraction

method to the STJR. Given a patient, an implant component, and a
timestamped hip replacement surgery, agreement was defined as identical
entries for the component in both the STJR and our system’s output;
conflict was where the implant component(s) were recorded for a hip
replacement surgery in both STJR and our data but did not match;
missingness was where a record for a hip replacement surgery was absent
in either STJR or our data. We canonicalized all implant models to the level
of manufacturer/model, i.e., the same resolution used by the STJR.

Characterizing hip implant performance in the real world
We analyzed complication-free survival of implant systems using Cox
proportional hazards models, controlling for age at the time of hip
replacement, gender, race, ethnicity and Charlson Comorbidity Index (CCI).
CCI was categorized as none (CCI= 0), low (CCI= 1), moderate (CCI= 2), or
high (CCI ≥ 3). For patients with multiple complications, we calculated

Fig. 6 Labeling function examples. Clinical notes (top left) are preprocessed to generate document markup, tagging entities with clinical
concepts (blue), parent section headers (green), dates/times (orange), and historical, hypothetical, negated, and time-delta attributes (shades
of red). Labeling functions (top right) use this markup to represent domain insights as simple Python functions, e.g., a function to label
mentions found in “Past Medical History” as FALSE because they are likely to be historical mentions rather than a current condition. These
labeling functions vote {FALSE, ABSTAIN, TRUE} on candidate relationships (bottom, with true labels indicated in the LABEL column) consisting
of implant (black rounded box) - complication (grey square box) pairs to generate a vector of noisy votes for each candidate relationship. The
data programming step described in Fig. 1 uses this labeling function voting matrix to learn a generative model which assigns a single
probabilistic label to each unlabeled candidate relationship
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survival time from primary hip replacement to first complication. We
performed this analysis for a composite outcome of ‘any complication’, and
also for each class of complication extracted by our text processing system.
To quantify association between implant systems and hip pain, we fit a

negative binomial model to the frequency of hip pain mentions in the year
post-hip replacement. The model included the following covariates:
implant system, age at the time of hip replacement, gender, race,
ethnicity, frequency of hip pain mentions in the year prior to surgery (to
account for baseline levels of hip pain), and follow-up time post-THA (to a
maximum of one year). For the subset of patients with body mass index
(BMI) data available, we also fit models that included BMI as a covariate.
We specified implant system as an interaction term between femoral

and acetabular components, grouping infrequently occurring interactions
into a category “other”. The frequency cutoff for inclusion in the “other”
category was chosen in a data-driven manner using Akaike information
criterion (AIC) to find the cutoff resulting in best model fit. We specified the
most frequent system (Zimmer Trilogy acetabular+ VerSys femoral
component) as the reference interaction term.
To assess the association between revision and hip pain, we tested the

hypothesis that hip-specific pain mentions were more frequent in patients
with a coded record of revision compared to those who without. We used
the two-sided t-test, controlling for post-implant follow-up time.
For all implant system analyses, we restricted the analysis to the 2704

patients with a single hip replacement, a single femoral component and a
single acetabular component.
All statistical analyses were performed using R 3.4.0.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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