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A B S T R A C T   

Non-Orthogonal Multiple Access (NOMA) is a promising energy-efficient technology designed to 
satisfy the demands of future networks by efficiently sharing radio resources. In NOMA, the same 
radio resource is simultaneously assigned to two users at different power levels based on the 
NOMA-power domain. Resource allocation in NOMA presents a non-convex challenge, charac-
terized as a non-deterministic polynomial (NP-hard) problem. This involves user and channel 
assignment and power allocation, making it an extraordinarily complex task to achieve an 
optimal solution. In this work, Simulated Annealing (SA) is proposed as an optimization tech-
nique for resource allocation in an energy-efficient downlink NOMA system. This resource allo-
cation scheme addresses user and channel assignment, as well as power allocation, using SA as an 
efficient standalone approach to maximize energy efficiency in NOMA. SA is utilized to execute 
the assignment of users to channels, distribute the necessary power for each channel, and 
determine the power ratio among users sharing the same channel. The results obtained demon-
strate a significant improvement in energy efficiency, outperforming the existing numerical 
methods by 22 %. The proposed SA scheme not only achieves a close optimal solution but also in 
less computational time, offering sufficient reliability in terms of energy efficiency enhancement 
when compared to the existing numerical method.   

1. Introduction 

1.1. Preliminary 

Mobile network development is rapidly expanding to meet the soaring demand for high data rates, massive connectivity, and 
increased communication devices in the network. The fifth generation (5G) network has emerged as a pivotal potential network, 
poised to fulfil the requirements for high data rate, spectral efficiency, and the ever-increasing number of devices, all within the 
constraints of limited radio resources, spectrum availability, and energy resources. The escalating number of devices has led to a surge 
in energy consumption; a major concern both economically and ecologically for wireless operators. Hence, the development of an 
energy-efficient communication system has become a critical metric in shaping the evolving architecture of cellular networks, often 
referred to as green communication [1,2]. In the context of 5G, the proliferation of devices and the demand for massive connectivity 
have placed greater emphasis on data rates and spectral efficiency, necessitating more power and bandwidth from the base station 
(BS). However, the availability of these precious radio resources remains constrained and challenging. Furthermore, the ability to 
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accommodate users is restricted by the finite orthogonal channels within the cell’s coverage area, leading to diverse power effects, 
power consumption, and heightened carbon dioxide (CO2) emissions due to increased transmit power [3]. The constrained granularity 
of orthogonal resources in Orthogonal Frequency Division Multiple Access (OFDMA) imposes limitations on both the quantity of radio 
resources and the number of users. Consequently, the pursuit of an energy-efficient system is imperative for cellular networks, in 
consideration of the constraints imposed by radio resources and international network architecture standards [1–3]. 

Non-orthogonal multiple access emerges as a promising solution to meet the demands of the next network generation, primarily 
due to its superiority in achieving higher data rate, data balance, and energy efficiency. In the NOMA system, multiple users 
concurrently utilize the same frequency, code, or time slot, with each user being assigned distinct power levels in accordance with the 
power domain-NOMA principle. Within the NOMA system, the BS employs superposition coding (SC) to multiplex multiple users on 
the same channel, with successive interference cancellation (SIC) employed at the receiver to mitigate interference arising from radio 
resource sharing (RRS) [4,5]. To ensure an effective NOMA system, an efficient power allocation scheme must be devised to manage 
interference effectively. Energy efficiency (EE) presents an additional challenge within the NOMA system. It necessitates the efficient 
allocation of radio resources to strike a balance between power allocation and achieved data rates, all while maintaining a harmonized 
and acceptable energy consumption level. This paper explores prior research efforts on energy efficiency within the NOMA system in 
the following section. 

1.2. Related work 

In [2], the authors formulated a fractional optimization problem to maximize energy efficiency based on sub-channel and power 
allocation, rate selection, and transmission scheduling for the downlink NOMA-power domain. They used duality theory in linear 
programming (LP) and employed a sub-gradient algorithm using the CPLEX optimization tool to numerically solve the LP problem. The 
objective was applied to reframe the optimization problem into a manageable fractional optimization problem while imposing con-
straints to restrict the maximum-to-minimum user data rate ratio. The authors concluded that two users on the same channel are the 
maximum number for energy-efficient downlink transmission NOMA. The results showed a close optimal solution based on an iterative 
algorithm that is better than the existing algorithms including, the Orthogonal Multiple Access (OMA) [2]. However, the system model 
in Ref. [2] employed certain assumptions and simplifications in the propagation model, assuming uniform channel gain, and inter-
ference considerations. These simplifications may not align perfectly with the complexities and variabilities encountered in practical 
mobile communication environments, potentially affecting the model’s accuracy and applicability. Moreover, a power allocation and 
sub-channel assignment scheme was formulated in Ref. [6], employing the concept of the difference of convex (DC) optimization 
problem and a greedy approach to match users with sub-channels. This scheme aimed at maximizing energy efficiency in the downlink 
NOMA network, assuming perfect channel state information (CSI). Notably, the proposed algorithms demonstrated a superior energy 
efficiency compared to OFDMA. While the implementation of greedy user-channel matching and DC optimization showed effective-
ness, it may not yield the optimal solution in complex network scenarios when accounting for imperfect CSI that mirrors the practical 
mobile network conditions. Similarly, the DC programming approach in Ref. [7] was proposed to optimize the power and bandwidth 
with the goal of maximizing energy efficiency in downlink NOMA. This system design considered the allocation of unequal 
sub-channel bandwidth to users. To transform the non-convex problem into an equivalent DC form, slack variables were introduced. 
Subsequently, an iterative algorithm was employed to solve the constrained concave-convex procedure. The proposed NOMA scheme 
exhibited enhanced EE performance compared to the NOMA with equal bandwidth and the conventional OFDMA. However, the 
method in Ref. [7] transformed the non-convex problem using slack variables might not fully encapsulate the complexities of mobile 
network conditions, where bandwidth allocation and user demands can be highly dynamic and unpredictable processes in NOMA. The 
authors in Ref. [8] proposed a joint resource allocation scheme based on a matching algorithm for user and sub-channel and power 
allocation based on Dinkelbach’s algorithm to maximize the energy efficiency of a multi-carrier NOMA system (MC-NOMA). The 
proposed scheme converted the optimization problem into a series of sub-problems using the penalty function (PF) and achieved a 
superior level of performance compared to OFDMA and fractional transmit power allocation (FTPA). Therefore, the conversion of the 
optimization problem into sub-problems using the penalty function might oversimplify complex network dynamics, potentially 
reducing the applicability of the solution in more variable network scenarios. Furthermore, authors in Ref. [9] introduced a 
low-complexity numerical scheme for power allocation with the objective of optimizing the power for each user, thereby enhancing 
the EE in the downlink NOMA system. The results depicted an optimum performance of NOMA in terms of EE over the conventional 
OFDMA. A summary of the existing work is provided in the table below. 

Al-Obiedollah et al. [10], proposed a resource allocation scheme based on Dinkelbach’s to transfer the problem into convex form to 
maximize the energy efficiency in MC-CR-NOMA. The scheme was iteratively employed to achieve optimal energy efficiency, striking a 
balance between data rate and energy efficiency that also outperformed the existing schemes. Although the scheme outperformed the 
existing methods, its adaptability and performance in dynamic network conditions and user locations require further comprehensive 
evaluation. In Ref. [11], the authors transformed the optimization problem into an equivalent subtractive form, based on fractional 
programming (FP) with sequential optimization. This was complemented by a greedy sub-carrier allocation strategy to address the 
non-convexity of the power allocation for EE maximization in a downlink MC-NOMA. The proposed scheme demonstrated effective EE 
performance while maintaining low complexity. Maintaining low complexity using greedy sub-carrier allocation [11] may not assure 
global optimal solutions in diverse network environments. Despite the achieved solution, the sequential nature of the optimization 
could lead to computational inefficiencies, which might affect its efficacy across various network scenarios, especially in 
HetNet-NOMA. In Ref. [12], the authors derived a closed-form optimal solution for the power allocation, sub-channel and user 
assignment based on the bilevel programming method to minimize the energy consumption for the multi-user-multi-base station 
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NOMA network. The EE problem was formulated in a non-probabilistic form, achieving higher EE performance than the conventional 
OMA with less complexity than the exhaustive search methods. The approach applied in Ref. [12] may not sufficiently represent the 
dynamic nature of real-mobile networks, including variable channel fading. This could impact the practicality and reliability of the 
solution, especially in high-density networks with diverse data traffic demands. Alternatively, the authors proposed a resource allo-
cation scheme based on DRL as three learning frameworks for energy efficiency maximization in uplink multi-user NOMA [13]. The 
discrete DRL method was designed for power allocation to enhance learning efficiency, reduce the output dimension, and address 
non-convexity issues. The scheme demonstrated improved EE performance with a reasonable computational consumption for uplink 
NOMA. However the method demonstrated enhanced energy efficiency with manageable computational demands, its scalability and 
real-time responsiveness in highly dynamic and densely populated network environments require additional investigation to fully 
ascertain its effectiveness and applicability, including Rician fading channel scenarios. In Ref. [14], a power allocation scheme and 
user clustering were proposed to maximize energy efficiency, utilizing Stackelberg game competition in multi-user and multi-cluster 
NOMA networks. The resources were allocated as revenue, and optimal power was determined based on the minimum transmission 
rate, along with sub-optimal clustering. This approach achieved an optimal sum-rate with lower computational requirements for the 
BS. While sub-optimal clustering reduced computational load and achieved optimal sum-rate [14], it could compromise user expe-
rience in dynamically varying network scenarios. Furthermore, the application of game theory in this scenario demands precise 
calibration to balance fairness and efficiency, especially in HetNet-NOMA environments. In Ref. [15], the authors developed an 
improved rider optimization technique for resource allocation to maximize energy efficiency based on M2M communication in NOMA. 
The proposed scheme showed an improved energy consumption in comparison to the existing schemes. Despite the effectiveness of this 
technique compared to existing schemes, further exploration is required to confirm its broad applicability and robustness, particularly 
under diverse and high-demand network conditions. Conversely, in Ref. [16], the authors adopted a space-time block code trans-
mission scheme for spatial diversity increment and simultaneous wireless information and power transfer (SWIPT) for energy har-
vesting in the NOMA network. Further, the Nash bargaining concept was employed to ensure fair resource allocation, outperforming 
the existing approaches in terms of the achievable rate and energy efficiency. Moreover, the intricate balance of spatial diversity, 
information transmission, and energy harvesting in a practical setting presents a complex optimization challenge that demands further 
investigation. In addition, the authors in Ref. [17] provided an extensive review of the SWIPT scheme performance for cognitive radio 
NOMA (CR-NOMA), considering factors such as the type of the employed relay network, the number of relays, and the utilized 
communication protocol. As suggested, SWIPT was identified as a promising research area. The analysis may not adequately cover the 
complexities of deploying SWIPT in dynamic, real-mobile network conditions, where factors such as user mobility, varying signal 
quality, and environmental interferences play significant roles. Correspondingly, the authors in Ref. [18] developed a wireless power 
transfer (WPT) scheme to optimize time, power, and sub-channel allocation, aiming to maximize the EE OFDMA-based NOMA system. 
They proposed an iterative algorithm to obtain the sub-optimal solution to deliver the upper bound with guaranteed convergence. The 
resource allocation scheme demonstrated superior performance compared to the OFDMA. The iterative process’s inherent complexity 
and time demands could constrain the scheme’s efficiency [18] in dynamic or resource-limited network settings. Moreover, the pursuit 
of an upper-bound solution may not comprehensively address the practical limitations and diverse conditions prevalent in actual 
network deployments. On the other hand, resource allocation was divided into three sub-problems in Ref. [19], focusing on optimizing 
user matching, power allocation, and sensing duration to maximize the sum rate and energy harvesting for uplink NOMA. This 
approach was applied based on cognitive radio, OFDMA, and SWIPT. It aimed to improve the capacity and extend the lifetime of the 
green IoT while using power splitting (PS) mode for energy harvesting from the signals of the radio frequency (RF). Further, the work 
employed overlay and underlay modes in the cognitive OFDMA, and the proposed algorithm showed a balanced performance of the 
data rate with respect to the required energy. However, the challenge of balancing data rate performance with energy needs in diverse 
IoT environments highlights the need for additional refinement and practical testing of the algorithm to ensure its efficacy. In Ref. [20], 
a multi-user cluster scheme was proposed to maximize the SST in HetNet for downlink NOMA. Moreover, the ϵ-optimal OAA was 
utilized to address the formulation of the proposed strategy problem. This approach employed a key performance indicator (KPI) to 
assess various aspects, including mobile user admission into the cluster, user association, fairness in association, and the overall 
sum-secrecy throughput. The proposed scheme outperformed the traditional OMA and the existing schemes in terms of KPI. Further, 
the adaptability of the strategy’s performance in HetNet-NOMA with varied user’s QoS and network conditions demands a more 
thorough evaluation to confirm its overall efficacy. 

On the other hand, advanced stochastic optimization techniques were proposed in Ref. [21] to transform the resource allocation 
problem into a deterministic problem for task off-loading, focusing on delay constraints to minimize the energy consumption for 
NOMA-enabled IoT. The proposed scheme showed more effective performance than conventional schemes. Overall, transforming the 
resource allocation problem into a deterministic problem might overlook the inherent uncertainties and variability in real IoT envi-
ronments. Although the scheme outperformed traditional methods, its applicability in diverse IoT scenarios with varying network 
conditions and user QoS demands requires further investigation. Cao and Zhao [22] divided joint resource allocation into sub-carrier 
allocation, power control, and time switching (TS) to maximize the user-centric energy efficiency in the IoT-NOMA system. Sub-carrier 
optimization was tackled using a two-sided matching algorithm due to the problem’s mixed-integer non-linear programming (MINLP) 
nature. The successive convex approximation (SCA) was also proposed to solve fractional programming linked to user-centric energy 
efficiency. This approach showed better performance and convergence than OFDMA. Nevertheless, dividing the problem into three 
sub-problems may not effectively capture the full complexity and scalability challenges in diverse real-world IoT applications. In 
Ref. [23], a hybrid beamforming approach was proposed based on partially and fully connected hybrid beamforming to improve the 
capacity with minimal power consumption in the multi-antenna NOMA network. The suggested hybrid beamforming outperformed 
the various network models in terms of significant energy efficiency. However, the practical deployment of the proposed hybrid 
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beamforming in real network environments faces challenges due to its complexity, particularly concerning hardware demands and 
advanced signal processing. This complexity could lead to increased energy consumption owing to the intensive computational 
processes and power dissipation across the multi-antenna system, potentially offsetting some of the efficiency gains. Furthermore, a 
resource allocation algorithm was proposed based on the Lyapunov optimization framework in Ref. [24] to maximize energy efficiency 
while adhering to minimum user’s QoS and maximum transmit power constraints in the NOMA network. The optimization problem 
was divided into three sub-problems, two of which were linear problems, and the third problem was solved using the Lagrangian 
function. The authors also derived the control parameter under fixed queue stability, effectively balancing energy efficiency and delay 
while achieving significant energy efficiency improvement [24]. Despite the algorithm effectively achieved balanced energy efficiency 
and delay, its performance under varying network loads and conditions considering dynamic queue conditions, needs further 
exploration to confirm its efficacy in more diverse network scenarios. In Ref. [25], SCA was utilized to transform the power allocation 
into the sequence of convex problems, combined with greedy sub-carrier allocation as a resource allocation scheme to maximize 
energy efficiency in generalized frequency division multiplexing (GFDM) and NOMA. The proposed scheme demonstrated superior 
performance, with GFDM suggested for further investigation to improve the wireless communications. Besides, utilizing greedy 
methods for sub-carrier allocation could lead to sub-optimal solutions, especially in networks with high user density or diverse data 
demands. Srilatha et al. [26], developed a fair energy-efficient power allocation algorithm to achieve a balanced trade-off between 
energy efficiency and outage under imperfect channel state information (ICSI) in downlink NOMA. The proposed scheme demon-
strated a significant improvement with a modest fairness index, outperforming the OFDMA. Admittedly, the algorithm’s performance 
across diverse network environments and under various user data demands still needs thorough validation to confirm its wide-ranging 
utility, especially under ICSI in downlink NOMA. In Ref. [27], the authors proposed Dragon Levy-based Lion Cub Generation (DL-LCG) 
for resource allocation to achieve a balanced trade-off between energy efficiency and spectral efficiency while maintaining a minimum 
data rate for a hybrid multi-carrier NOMA system. This hybrid system incorporated OMA and NOMA, including various elements such 
as the total degree of freedom (DoF), user clustering, sub-carrier, power allocation, and multiple access mode selection. The proposed 
scheme was evaluated favourably in terms of cost analysis. Despite the scheme’s promising cost analysis, the complexity of a hybrid 
system that merges OMA and NOMA could present considerable challenges to the algorithm’s practicality and operational efficiency, 
especially in dynamic networks with differing user densities. Further, authors in Ref. [28] developed a joint resource allocation 
strategy aimed at maximizing the weighted sum of energy efficiency for the uplink within a multi-carrier relay network operating 
under the NOMA system. This joint resource allocation was designed as two sub-problems, using hospital-residents matching theory for 
sub-carrier assignment and an iterative solution procedure for power allocation across sub-carriers to address the non-convex opti-
mization problem of the weighted-sum energy efficiency maximization. The proposed joint resource allocation demonstrated a 
comparable weighted sum energy efficiency while achieved a satisfied QoS with low complexity. Alternatively, the user scheduling 
and power allocation scheme were proposed to maximize the energy efficiency in millimetre wave NOMA (mm-NOMA) [29]. In this 
scheme, random beamforming was employed at the BS, focusing on user scheduling first and then the power allocation to reduce the 
feedback overhead. The proposed scheme showed improved energy efficiency compared to the conventional schemes. Moreover, 
prioritizing user scheduling before power allocation to reduce feedback overhead may not optimally address the unique propagation 
challenges and high sensitivity to blockages characteristic of mm-wave frequencies. In Ref. [30], the authors introduced proportional 
fairness constraint into the resource allocation scheme to maximize energy efficiency under perfect CSI for 
multiple-input-multiple-output (MIMO) NOMA. Two sub-problems were developed since energy efficiency is a non-convex optimi-
zation problem, utilizing the golden section search to determine the power allocation for fixed power and the fractional programming 
method to determine the total transmitting power. The MIMO-NOMA showed an acceptable performance with the introduced pro-
portional fairness constraint, achieving decreased energy efficiency but improved fairness. Perfect CSI might not reflect the varying, 
unpredictable, and imperfect channel states in real network scenarios, potentially affecting the scheme’s practicality. The resource 
allocation problem in Ref. [31] was decoupled into two sub-problems as sub-channel matching and power allocation. The SCA was 
employed to transform the problem into a convex one, reducing the computation complexity arising from the non-convexity of the 
energy efficiency maximization [31]. A super-modular game was introduced, and an algorithm was designed to converge to the Nash 
equilibrium point for power allocation. The proposed scheme achieved a sub-optimal solution for the NOMA system and demonstrated 
a superior energy efficiency performance than the OFDMA [31]. Nonetheless, the strategy of using Nash equilibrium for power 
allocation, while conceptually robust, might face practical challenges in the dynamic realities of real-mobile network environments, 
where network conditions and user demands are continuously changing. In Ref. [32], the authors proposed iterative water-filling (WF) 
for resource allocation to maximize the energy efficiency for uplink in multi-carrier NOMA, where users had access to the available 
sub-carriers. The maximization of the energy efficiency problem was transformed into a series of sub-problems focused on sum rate 
maximization sub-problems, relying on fractional programming and iterative WF. This approach highlighted the superiority of the 
NOMA over the OMA in terms of energy efficiency. The computational demands in processing of these iterative calculations could 
hinder its practical application, especially in scenarios with high user density, diverse user’s QoS. Conversely, a weighted energy 
efficiency power allocation scheme was developed to maximize the throughput based on chained fog structure (CFS) in multi-carrier 
NOMA [33]. This scheme involved a user pairing and power allocation with less complexity. The proposed scheme achieved a 12.7 % 
increase in energy efficiency compared to the dynamic network resource allocation (DNRA) algorithm, and dynamic programming 
(DP) recursion [33]. While the notable 12.7 % enhancement in EE, anchored on the chained fog structure’s stability and reliability, 
may not consistently translate to practical scenarios, especially considering the system’s design based on uncorrelated signal as-
sumptions. This factor could limit the applicability of the proposed solutions in varying and dynamic network environments. Adam 
et al. [1], developed a user scheduling and power allocation scheme to maximize the weighted sum energy efficiency in multi-carrier 
NOMA. The successive pseudo-convex approximation (SPCA) was applied to transform the weighted sum energy efficiency into a 
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separable scalar problem, allowing for parallel problem-solving. Fractional programming, and Lagrange dual multiplier method were 
utilized for user scheduling. Constraints were relaxed using Dinkelbach’s algorithm to characterize the closed-form power allocation, 
resulting in a superior energy efficiency performance better than the existing schemes [1]. Although the authors did not fully address 
the computational feasibility of their approach, as the third algorithm requires Ο(MNKI) iterations. This computational demand is 
influenced by the separable nature of the approximate function and the iteration count for the sub-gradient operation. Additionally, 
the method used for calculating step size further affects the total number of iterations required, presenting a significant consideration 
for the scheme’s practical implementation. An alternative method involved devising a strategy for channel assignment and power 
allocation, with the primary goal of maximizing energy efficiency. This approach took into account factors such as user fairness, 
minimum data rate requirements, and the constraints on maximum transmit power within the NOMA network [3]. This scheme 
employed the MOSEK function solver (cvx tool) for channel assignment and Dinkelbach’s scheme using the fmincon function solver, 
maintaining the relevant constraints. The proposed scheme achieved significant energy efficiency gains over the traditional OMA 
scheme [3]. The proposed approach scalability across diverse user scenarios, and computational efficiency for real-time deployment 
require further in-depth analysis to ascertain its broader applicability. Furthermore, the advance complexity lies in the difficulty of 
achieving a global solution due to the non-convex nature of the problem. 

1.3. Motivation and contribution 

Direct numerical methods are often used for radio resource allocation in wireless communication. However, they may not be 
efficient for non-convex and NP optimization problems [34]. As the energy efficiency problem is inherently non-convex, transforming 
it into a solvable optimization problem is crucial for obtaining an effective solution [ [1–7,10–25,28–34]]. However, it’s worth noting 
that transforming a non-convex optimization problem into sub-problems does not guarantee a tractable solution in all cases [30–34]. 
Typically, an approximate solution is addressed for problems converted from non-convex to convex, and it may not be optimal. Hence, 
numerical techniques are commonly employed to tackle individual sub-problems, like power allocation and user pairing, in order to 
obtain approximate optimal solutions for resource allocation to maximize EE within the NOMA system [30–34]. This pattern has been 
identified in prior studies where distinct methodologies were employed separately for user pairing and power allocation. Overall, an 
integrated approach should be utilized to concurrently optimize power allocation and user pairing, thereby achieving maximal energy 
efficiency through efficient resource allocation [34]. The non-convexity nature renders it difficult to solve the resource allocation 
problem using standard polynomial-time algorithms, posing a significant hurdle in achieving optimal and dynamic solutions in NOMA 
network. Consequently, metaheuristic algorithms represent one of the potential methods for dynamic and iterative optimization, 
particularly suited for solving non-convex optimization problems without altering the nature of the problem. 

Simulated annealing is one such metaheuristics optimization algorithm that emulates the process of physical annealing. It aims to 
achieve the approximate global solution, similar to how a material is subjected to high temperatures and then gradually cooled to 
attain a crystalline state with minimal defects and energy. The annealing process starts with the melting phase, transitioning from a 
molten state to a stable crystalline state without defects [35,36]. SA algorithm is applied to minimize the objective function, allowing it 
to find the global solution, as opposed to stochastic local search algorithms. SA has the advantage of escaping local minimum traps and 
converging rapidly with sufficient iterations. Unlike the gradient descent algorithm, SA is a global optimization algorithm that does not 
rely on a specific assumption about the objective function [35–37]. 

Furthermore, SA is highly adaptable and effective for addressing both combinatorial and continuous optimization problems, 
regardless of whether the objective function exhibits convex or non-convex features. Hence, SA is proposed as a solution to the resource 
allocation problem for maximizing energy efficiency since the problem is addressed as a non-convex optimization problem in the 
NOMA system. In the NOMA system, multiple users coexist on the same channel, each having different power levels, particularly in the 
power domain. In such scenarios, finding optimal solutions becomes exceptionally critical [4]. Thus far, there has been no straight-
forward scheme reported for resource allocation optimization problems aiming to maximize energy efficiency in NOMA. The proposed 
SA scheme is utilized for optimizing both user pairing and power allocation, ultimately aimed at maximizing energy efficiency within 
the NOMA system. Moreover, SA is designed to tackle the resource allocation issue by establishing user and sub-channel assignments, 
assigning the necessary channel power, and distributing power among users who share the same channel. In this system design, 
differences in channel conditions are utilized for user pairing, employing two configurations: “hot” and “cold” configurations to 
achieve optimal matching [34]. This work introduced a novel standalone resource allocation algorithm, specifically developed to 
maximize energy efficiency in the downlink NOMA system for the 5G network. 

1.4. Paper organization 

The rest of the paper is structured as follows: Section 2 outlines the downlink NOMA system design and mathematical formulation. 
Section 3 offers an in-depth explanation of the proposed algorithm for resource allocation. Section 4 presents the system design model 
and analyses the results. Finally, the conclusion of this work is drawn in Section 6. 

2. System model 

In this system design, the BS is centrally positioned within the cell and a total number of U users are distributed in a uniform 
distribution in a downlink single input single output (SISO) NOMA system. Within the NOMA system design, the BS is equipped with SC 
to multiplex multiple users and serve them simultaneously at the same frequency, code, and time utilizing the features of the NOMA- 
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power domain. Multiplexing in the power domain represents the core multiplexing scheme for NOMA, allocating varying power levels 
to users who share the same channel. This is in contrast to OMA, which does not fully utilize the power domain [4,5]. The standard 
NOMA concept is illustrated in Fig. 1. 

In this system, the total number of channels is denoted Nsc and an equal bandwidth is allocated among the channels, calculated as 
Bsc = Btotal /Nsc, where Btotal represents the total available bandwidth. The channels are indexed as n ∈ {1, 2, …, …, Nsc}, each is 
assigned to the total number of users U where u ∈ {1,2, .....,U}. For the sake of simplicity, only two users are multiplexed on the same 
channel for less complexity and the number of users multiplexed is ith user denoted as Ui,n on the same nth channel where Un ∈ {U1,U2,

...., UNsc}. To facilitate this multiplexing, the BS employs SC to combine the signal of the two users on the same channel before 
transmitting the superimposed signal. The BS then transmits this signal on the channel, targeting the intended users as follows [4]: 

xn =
∑Un

i=1

̅̅̅̅̅̅̅pi,n
√ x̂i, (1) 

The superimposed transmitted signal is represented xn , where x̂i is the transmitted symbol for the ith user sharing the same channel 
n. The channel power for channel n is denoted Pn and pi,n signifies the power allocated to ith user on this channel. The power constraints 
are defined as follows 

∑Un
i=1pi,n = Pn, and pi,n = 0 when the user is not assigned to a particular channel. The received signal [4] at the kth 

user from channel n is formulated as follows: 

Yk,n = gk,n xn + Nk,n =
̅̅̅̅̅̅̅̅pk,n

√ gk,n xk +
∑Un

i=1,i∕=k

̅̅̅̅̅̅̅̅pi,n
√ gk,n xi + Zk,n, (2) 

The coefficient representing the channel between the user Uk,n and the BS is denoted gk,n and defined as gk,n = hk,n /Pl (d), where 
Pl (d) is the path loss function accounting distance (d) between the Uk,n and BS, and hk,n represents Rayleigh fading channel gain. The 
term Zk,n corresponds to Additive White Gaussian Noise (AWGN) and is represented as Zk,n ∼ CN(0,σ2), where σ2 represents variance 
with zero mean. The power spectral density is N◦ applied to estimate the variance as σ2 = (Btotal /Nsc)N◦ . In a NOMA system, co- 
channel interference is a significant factor due to the transmission of superimposed signal messages to multiple users multiplexed 
on the same channel. To mitigate this interference, SIC is introduced in the NOMA system. However, without considering the SIC, the 
signal-to-interference-plus-noise ratio (SINR) received at kth user on nth channel can be expressed as follows [34]: 

SINRk,n =
Pk,n gk,n

∑Un

i=1,i∕=k
Pi,n gk,n + σ2

n

=
Pk,n Gk,n

∑Un

i=1,i∕=k
Pi,nGk,n + 1

, (3) 

The term Gk,n represents the channel response normalized by noise (CRNN) for kth user on nth channel and is calculated as Gk,n ≜ 
⃒
⃒gk,n

⃒
⃒2 /σ2

n , where σ2
n represents the noise power on the channel and is defined as σ2

n = Е[
⃒
⃒Zk,n

⃒
⃒2]. The data rate function is formulated 

based on Shannon’s capacity formula on the channel as given [34]: 

Rn =Bsc

∑Un

i=1
log2

⎛

⎜
⎜
⎜
⎝

1+
Pk,n

⃒
⃒Gk,n

⃒
⃒2

1 +
∑Un

i=1,i∕=k
Pi,n Gk,n

⎞

⎟
⎟
⎟
⎠

=Bsc

∑Un

i=1
log2

(
1+ SINRk,n

)
, (4) 

Fig. 1. NOMA standard model [4].  
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The SINR received at the user Uk,n is expressed as follows [34]: 

γk,n =
∑Un

i=1,i∕=k

Pi,n Gk,n, (5)  

In the downlink NOMA system, the physical layer is responsible for performing modulation, encoding, and superimposing messages of 
the multiplexed users on the selected channel. Additionally, it assigns different power levels based on the multiplexing in the power 
domain. The BS employs a power allocation strategy that prioritizes the users with weak channel conditions by assigning more power 
to them and less power to good channel conditions, ensuring significant signal acknowledgement. The multiplexing scheme applied by 
the BS prioritizes users in descending order of channel gain to facilitate SIC performance at the receiver. Fig. 2 illustrates the structure 
of the NOMA system, with the BS acting as the transmitter and the mobile equipment (ME) serving as the receiver. 

Alternatively, the SIC is conducted iteratively at the receiver side to successfully decode the superimposed message received at each 
user. This NOMA system design can be applied with the correlation of the SC, SIC, power allocation, and user pairing based on channel 
gain order. Thus, the good channel condition’s users perform SIC according to the BS acknowledgement that can decode the combined 
signal and cancel it, then decode the intended signal. On the other hand, the user with the weak channel condition treats the unwanted 
signal as noise and then decodes the required signal. 

Moreover, in NOMA, users with good channel condition, denoted as U1,n are multiplexed with the users having weak channel 
condition user like U2,n on the same channel n, where the channel gain 

⃒
⃒G1,n

⃒
⃒2 ≥

⃒
⃒G2,n

⃒
⃒ 2. This multiplexing is carried out with allo-

cating power, where P1,n≤ P2,n [38–40]. A user with a good channel condition applies the SIC to decode the interference signal and 
subtract it, thereby successfully decoding the intended signal. In contrast, users with the weak channel condition treat the other signal 
as noise. For instance, users multiplexed based on channel order: 

⃒
⃒G1,n

⃒
⃒ ≥

⃒
⃒G2,n

⃒
⃒ ≥ ... ≥

⃒
⃒Gk,n

⃒
⃒ ≥

⃒
⃒Gk+1,n

⃒
⃒ ≥ ... ≥

⃒
⃒GUn ,n

⃒
⃒. This allows 

optimal SIC application, with user UEk having good channel conditions capable of decoding and subtracting the signals of UEk+1..

UEk+2,…,UEUn who have weak channel conditions, ensuring successful interference cancellation. Subsequently, user UEk− 1, who 
experiences a weak channel condition, can effectively eliminate interference from UEk by treating the interfering signal as noise, 
allowing for the successful decoding of the intended signal. Each user is acknowledged to decode the intended signal and able to treat 
the interference power using SIC and consider it as noise [4]. Furthermore, the SIC performance on Uk,n is expressed as follows [34]: 

SINR SIC
k,n =

Pm,n Gk,n

1 +
∑k− 1

i=1,i∕=k
Pi,nGk,n

, (6) 

The effectiveness of SIC hinges on the allocation of more power to users with weaker channel conditions and less power to users 
with stronger conditions, guided by full BS acknowledgement. In the case of users with good channel condition user, the signal of the 
weak channel condition user will be decoded first due to the substantial power ratio. Subsequently, it is subtracted from the overall 
signal, enabling the successful decoding of the intended signal for users with good channel conditions. Conversely, users with weaker 
channel conditions experience a higher power level, effectively treating the power noise and signals from other users as mere noise. 
The allocation of power ratios among multiplexed users plays a pivotal role in achieving the optimal application of SIC, capitalizing on 
the diversity of power allocation levels and varying channel conditions. 

3. Problem formulation 

The resource allocation problem in this NOMA system is formulated with the goal of maximizing energy efficiency while mini-
mizing energy consumption. In the context of mobile communication networks, this optimization scheme seeks to achieve the highest 
possible data rate with the least amount of energy consumed [40]. Energy efficiency is directly proportional to data rate and inversely 

Fig. 2. NOMA communication system diagram with SC and SIC [ [4,34]].  
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proportional to energy consumption, representing the network’s ability to provide substantial data rates while conserving energy [41, 
42]. Therefore, data rate calculation serves as a standard metric for estimating energy efficiency, as per the capacity theorem, 
considering energy consumption within the network [42]. In this system, power is allocated to each channel as channel power Pn, and 
the data rate Rn is defined for each channel n. Consequently, the total data rate is expressed as follows [34]: 

RTotal =
∑Nsc

n=1
Rn, (7) 

User multiplexing in this system relies on the difference in channel conditions, where it is determined that G1,n ≥ G2,n on the same 
channel. This condition is incorporated into the optimization function as follows [34]: 

f (Pn)=Bsc1,n log2
(
1+ δnPnG1,n

)
+ Bsc2,n log2

(

1+
(1 − δn)PnG2,n

1 + δnPnG2,n

)

, (8) 

The power allocation in this system, determined by the proportional power factor δn, is crucial for users who share the same channel 
n. When a user has a strong channel condition, they can perform SIC, where the proportional factor δn takes values within the range 
δn ∈ (0,1). This optimal power allocation strategy is essential to allocate more power to users with weaker channel conditions, ensuring 
the effective implementation of SIC while considering appropriate user pairing. The proposed user pairing approach takes into account 
various user pairing scenarios based on differing channel conditions. The optimization of power allocation, user and channel 
assignment collectively forms a resource allocation problem aimed at maximizing energy efficiency within the NOMA system. In 
wireless communication, energy efficiency is defined as the maximum amount of transmitted data bits relative to unit energy. In the 
NOMA system, energy efficiency is influenced by both the transmit power for each channel, denoted as Pn, and the additional power 
consumption related to circuit power, denoted as Pc. The energy efficiency for each channel is expressed as follows [ [6,34]]: 

En =
Rn

Pn + Pc
, (9) 

The overarching goal of this system is to maximize energy efficiency, and this is described as follows [ [6,34]]: 

ETotal =
∑Nsc

n=1

Rn

Pn + Pc
=

∑Nsc

n=1
En, (10)  

In this system, the resource allocation problem is formulated to maximize energy efficiency, and the objective function is presented 
hereunder [ [6,34]]: 

Max
Pn>0

∑Nsc

n=1

∑Un

k=1

Rk,n
(
Pk,n

)

Pc + Pn
=

∑Nsc

n=1

Rn(Pn)

Pc + Pn
, (11) 

Subject to: 

C1 :
∑Nsc

n=1
Pn ≤ PMax, (12)  

C2 :
∑Nsc

n=1
Rm,n(Pn) ≤ RMin, (13) 

The objective function (11) aims to maximize energy efficiency while subject to constraints C1 and C2. The resource allocation 
problem encountered in this NOMA system is known to be non-convex and characterized as NP-hard. Energy efficiency, in this context, 
represents a trade-off between transmission capacity and power consumption, with the circuit power assumed to be 1 Watt [6]. Hence, 
in this system design, the resource allocation is treated as a single optimization problem, focusing on maximizing energy efficiency 
within the NOMA system. 

4. Resource allocation problem 

In this system design, SA is proposed as a solution to optimize resource allocation to enhance the energy efficiency of the downlink- 
NOMA system. The resource allocation problem is divided into several components, including channel power allocation, user and 
channel assignment, and power ratio among the multiplexed users on the same channel. The SA algorithm is applied to address these 
aspects by optimizing the channel power Pn with respect to the maximum transmit power, match the users and channels with respect to 
the channel condition, and determine the power ratio δn for allocating the necessary power to each user sharing the same channel. 

SA, in essence, is a metaheuristic algorithm inspired by the physical annealing process commonly used in the metallurgical 
[35–37]. Physical annealing involves subjecting a solid material to high temperatures and then slowly cooling it down to achieve a 
crystalline structure with minimal defects and energy usage. During the high-temperature phase, the atoms within the material gain 
sufficient energy to move and rearrange themselves, resulting in a high-energy state. As the material cools down, the energy levels 
decrease, eventually leading to the formation of a stable crystalline structure with minimal energy. Thus, the primary goal of the 
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proposed algorithm is to maximize energy efficiency as a cost function similar to physical annealing using the energy function as the 
optimization function. SA operates as a straightforward optimization algorithm that can effectively escape local optimal by using a set 
of control parameters [35–37]. These control parameters can be defined based on the problem design such as initial temperature, 
cooling schedule, and algorithm termination as an empirical basis that can be tuned to obtain maximum performance. SA is a 
probabilistic optimization method that lacks memory, aiding in escaping local minimal but potentially leading to inefficiencies and 
slower convergence in complex scenarios due to its reliance on cooling schedule settings and sensitivity of the parameters. SA is known 
for its ability to accept both better and worse solutions with certain probabilities, making it a versatile optimization approach [35–37]. 

In the SA design, an represents a fraction of the maximum transmit power, denoted as PMax and is defined as an = Pn/ PMax. 
Similarly, the power ratio δn is a fraction of the power allocated to each user multiplexed on the same channel. User and channel 
assignment is carried out based on the channel gain difference. These three parameters within the objective function are instrumental 
in obtaining a solution, where any variations in their values represent potential solutions until the optimal one is achieved. 

Fig. 3. Proposed Scheme Flowchart [34].  
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Furthermore, the SA algorithm commences with an initial random solution, which is defined as the current best solution. This is done 
by assigning a random value of an to estimate the channel power, assigning a random value δn as power ratio, and randomly multiplex 
two users on the same channel based on the channel gain order established as the current best solution. This initial solution serves as 
the baseline within the objective function. Subsequently, various parameters are adjusted, and the cost function is evaluated to 
compare the new solution with the initial current best solution. The optimization system mode determines the modification of one 
parameter. Consequently, the algorithm accepts the new solution if it proves superior to the initial current best solution. Otherwise, it 
computes the probability using the Boltzmann distribution, specifically e− ΔF

T , where ΔF = F EE
b − F EE

a . A random variable ε is 
generated between 0 and 1, and the solution is applied only if ε < e− ΔF

T . After this phase, the temperature decreases, marking the 
commencement of a new iteration for the refined solution within the objective function. The resource allocation scheme, developed by 
the proposed SA algorithm is elaborated in Fig. 3. 

The Energy efficiency is estimated whenever a single parameter is altered, with the other parameters are fixed in every iteration. 
This approach improves the time efficiency of resource allocation by continuously computing the EE function, varying only one 
variable per iteration while keeping others fixed. This significantly reduces the time complexity by avoiding complete recomputation 
of all variables in the EE objective function each time. In each iteration, only one parameter is modified, significantly reducing 
computational time and aiding in the decoupling of the resource allocation problem. This decoupling is crucial due to the inherent 
coupling of the resource allocation problem in the NOMA system, as illustrated in Fig. 3. The choice of which parameter to change in 
each iteration is determined by the system mode, where μ can take on values from the set μ = {1,2,3}. When μ = 1, changes are made 
to user and channel assignment while keeping the an and δn values fixed. When μ = 2, the channel power an is changed while keeping 
the δn values and the current user pairing is unchanged. Finally, when μ = 3, the proportional power ratio δn is modified while 
maintaining an values and the current user pairing. The proposed SA algorithm is an automated and efficient scheme designed to 
ensure an optimal solution for resource allocation in the context of the coupled problem involving power allocation and assignment of 
users and channels. The objective function is formulated with a negative sign because the SA algorithm is a minimization algorithm. 
The subsequent sub-section outlines the proposed resource allocation scheme, which is divided into three concurrent sub-problems 
based on the SA algorithm [34]. 

4.1. User and channel assignment 

In the SA algorithm, the user and channel assignments are addressed during iterations when the system mode μ = 1. The initial 
solutions for user and channel assignments are devised in two configurations: the hot configuration and the cold configuration, taking 
into account differences in channel gains. In this system design, users have access to all available channels to simplify the pairing 
scheme and account for the impact of channel gain differences effectively [43]. This approach ensures that even users with weak 
channel conditions achieve a minimum data rate with minimal power consumption, given the proper exploitation of channel gain 
differences. The initial design in the hot configuration randomly multiplexes a high channel gain users with poor channel gain users on 
the same channel and sets the solution as the current best solution. Conversely, in the cold configuration, the search begins with a good 
solution since both multiplexed users have good channel gains [43]. In the cold configuration, the channel and user exchanges are 
formulated based on the average channel gain (Avg), calculated as follows [34]: 

Avg =

∑U
i=1Gi,n

U
, (14)  

where Gi,n is the channel gain of the users sharing the same channel and U is the total number of users. In the SA algorithm, the initial 
user and channel assignment is set in both configurations, taking into consideration the optimality of the SIC application. The average 
channel gain is also set as the channel gain threshold. This configuration considers channel gain differences to enhance energy effi-
ciency maximization. The threshold of channel gain is applied in both the hot and cold configurations to ensure practical user and 
channel assignments. The initial user and channel assignment solution acts as the current best solution for the specific configuration of 
the objective function. The user and channel exchange step is then executed to generate a potentially better solution. In this step, two 
channels are randomly selected, and a comparison of the users on those channels is made based on their channel gains. Users with 
either high or low channel gains may exchange channels. 

Subsequently, the EE objective function is evaluated with the new user and channel assignment. If the new solution proves superior 
to the current best solution, it is accepted and subsequently updated as the current best solution. Then, the temperature is lowered for 
the ongoing iteration, and the latest best current solution is recorded. In the hot configuration, the assignment is made without 
considering the channel gain threshold, resulting in high channel gain users being assigned with low channel gain users on the same 
channel. In the cold configuration, the high channel gain user is assigned to the same channel as the user whose channel gain falls 
below the channel gain threshold will be selected in the cold configuration as Gi,n ≤ Avg. This assignment tests all possible user and 
channel assignment solutions involved in EE maximization. 

4.2. Channel power allocation Pn 

The SA algorithm selects system mode μ = 2 to determine the optimal channel power concerning the maximum transmit power as 
defined by an, a fraction of the maximum transmit power to allocate the required power for each channel. Allocating the necessary 
power for each channel in this manner, with an = Pn/PMax, serves to minimize power consumption while potentially increasing energy 
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efficiency. Changes in the channel power, represented by Pn, are influenced by the fraction an in relation to the fixed variable of the 
maximum transmit power, PMax. The formulation for the fraction power an is as follows [34]: 

∑Nsc

n=1
Pn =

∑Nsc

n=1
an × Pmax = Pmax, (15)  

∑Nsc

n=1
an < 1, (16)  

In the initial system design, the value of an is randomly assigned within the range 0 ≤ an < 1 to determine the channel power, Pn, for 
the objective function, and this value is stored as the current best solution. Following this, the SA algorithm adjusts the value of an to 
alter the channel power Pn, for the chosen channel during the selected iteration, while recording the new best solution. This modi-
fication of an occurs while keeping the current user and channel assignment, as well as the value of the power ratio, δn, fixed. The SA 
algorithm evaluates the objective function and updates the new best current solution after modifying the channel power, Pn, provided 
that the new solution is superior to the previous current best solution. The set of the current best solutions is then updated with the 
newly accepted best current solution, and the current iteration proceeds with a reduction in the algorithm’s temperature. Furthermore, 
the system design considers equal channel power allocation when the value of an is fixed for all channels in relation to the maximum 
transmit power. To introduce variability, an is changed while the other parameters remain constant, specifically by employing the 
formula an = an + ρ Δamax, where ρ is a random number ranging [-1,1]. This equal channel power allocation is implemented to assess 
the optimality of power allocation for enhancing energy efficiency in the NOMA system, based on mathematical derivations for data 
rates in NOMA [34]. 

4.3. Proportional power ratio allocation δn 

In this system design, only two users share the same channel n, specifically defined as U1,n and U2,n. The difference in channel gain is 
defined as G1,n > G2,n, with channel power Pn and power ratio δn. The proportional power ratio δn is modified when system mode μ =

3, where its value varies between 0 and 1 (0< δn < 1) to distribute the channel power among the multiplexed users on the same 
channel. Following the NOMA concept, more power is allocated to U1,n as the first user with a high channel gain, while less power is 
assigned to U2,n with a lower channel gain. This power allocation scheme in NOMA aligns with the SIC principle to mitigate inter-
ference. The power ratio δn is formulated in the objective function to assign the weaker channel condition user with more power and 
sufficient power to the better channel condition user, facilitating the application of SIC. Specifically, the power ratio value is small for 
the good channel condition user, U1,n, whereas a larger power ratio is assigned to the user with a weaker channel condition, U2,n. This 
configuration allows the good channel user, U1,n, to decode and cancel the interference from the weaker channel condition users, as the 
power allocated to U1,n is sufficient for this purpose. Subsequently, the weaker channel condition user, U2,n, treats the interference from 
the good channel user as normal AWGN noise, given the lower power allocation for U1,n. 

The power ratio δn, is employed to balance the power allocation between the two users who share the same channel, ultimately 
maximizing energy efficiency. Therefore, the SA algorithm is proposed to determine the optimal value of value of the factor δn to 
maximize the EE objective function, subject to the constraint δn ∈ (0, 1).The initial solution for the objective function starts with a 
randomly assigned value for the proportional power ratio δn, which is preserved as the current best solution. This value is then 
modified based on the system mode. In system mode 3, one channel is randomly selected to alter the proportional power ratio δn, and 
evaluate the objective function. If the new solution proves to be superior to the current best solution, it is embraced as the updated 
current best solution. This accepted new solution is then reflected as the current best solution, and the temperature for the current 
iteration is lowered. The proposed SA algorithm seeks to determine the optimal value for the power ratio, which varies between 0 and 
1, to evaluate the EE objective function. The change in δn, while keeping the other parameters constant, is expressed as δn = δn +

ρ Δδmax, where ρ is a random number ranging [− 1,1]. 
Moreover, the proportional power ratio, δn, can take on different values for different channels, as channel power is also a variable 

optimized to maximize EE in NOMA. Thus, the value of the proportional power ratio, δn, may vary according to the channel conditions 
of the multiplexed users, with EE serving as the criterion for determining the value with respect to the SIC application (see Table 1). 

5. Results and performance analysis 

The simulation results have been presented and analysed to evaluate the performance of the proposed algorithm. In this downlink 
NOMA system design, a single BS is situated at the center of a cell with a radius of 500 m, accommodating a minimum of 10 to a 
maximum of 60 users for algorithm validation. Users are uniformly distributed, ensuring a minimum distance of 50 m between each 
user and the base station, as well as a minimum distance of 40 m between users. The dedicated bandwidth for this system is 5 MHz, 
which is evenly distributed among the channels. Furthermore, to reduce SIC complexity, only two users are multiplexed on the same 
channel. Each user is assigned to one channel in the case of OFDMA while considering a decay factor of 0.4, as applied in FTPA [44]. 
The proposed algorithm has been implemented, developed, and assessed using MATLAB, with the system’s parameters elaborated in 
Table 2. 

The SA algorithm is employed to optimize resource allocation and is fine-tuned using specific model parameters as tabulated in 
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Table 3. These parameters include initial settings, initial temperature, perturbation mechanism, cooling schedule, and termination 
criteria, all aimed at maximizing the cost function efficiently. 

The SA algorithm initiates with a high initial temperature, set as Tinitial = 100◦C. Subsequently, a cooling schedule is applied to 
gradually decrease the temperature based on the following expression [35]: 

Ti = Ti− 1 − α Ti− 1, (17)  

where Ti− 1 represents the previous temperature value, and α is the variation coefficient. Setting α = 2/3 ensures a gradual cooling 
schedule, which aids in escaping the local optimal and reaching the optimal solution effectively [35]. The proposed SA algorithm 
involves evaluating the objective function for a minimum of 2000 iterations, even for systems with the smallest number of users. 

Fig. 4 illustrates the proposed scheme’s impact on energy efficiency concerning a maximum transmit power of 12 W in a NOMA 
system with 10 users. The proposed SA algorithm with four scenarios improves the EE and exhibits overlapping trends with slight 
differences between the scenarios. The proposed solution demonstrates enhanced energy efficiency compared to the numerical 
schemes such as DC [6] and FTPA [44] schemes as well as OFDMA. Specifically, the proposed SA algorithm outperforms DC by 22 %, 
surpasses OFDMA by 47 %, and exceeds FTPA by 46 % [44]. Notably, the proposed SA scheme exhibits a gradual increase in energy 
efficiency with the augmentation of the transmit power. However, minimum energy efficiency is observed for the low transmit power, 
attributed to the full utilization of the maximum BS power. Ultimately, the proposed SA approach outshines the other schemes, 
although, at a certain point, energy efficiency experiences a decline, reaching the lowest values encountered in DC, OFDMA, and FTPA. 

Fig. 5 presents how energy efficiency changes with an increasing number of users while keeping the maximum transmit power 
constant. The results clearly demonstrate that the proposed SA achieves superior performance of energy efficiency compared to the DC, 
FTPA, and OFDMA. The proposed scheme exhibits a consistent improvement in energy efficiency as the number of users increases, 
which stands in contrast to the trends observed for DC, FTPA, and OFDMA, where energy efficiency is notably lower for a system with 
10 users. All four SA scenarios display similar performance across different user counts, resulting in overlapping solutions. Conse-
quently, the proposed SA algorithm proves capable of providing high capacity even with a lower number of users while still enhancing 
capacity for a larger user count, effectively balancing this with energy consumption considerations. In particular, for a system with 20 
users, the proposed SA algorithm achieves an energy efficiency 24 % higher than DC, 46 % higher than OFDMA, and 47.5 % higher 
than FTPA. This emphasizes the significant advantages of the SA algorithm in enhancing energy efficiency as the number of users 
grows. 

Fig. 6 provides an insightful analysis of the proposed scheme’s energy efficiency concerning the circuit power to BS power ratio 
(Pc /PMax) while maintaining a fixed BS transmit power of 12 Watts. The results highlight the superiority of the proposed scheme in 
terms of energy efficiency, particularly for lower circuit power to BS power ratios. However, it is worth noting that, energy efficiency 
decreases as the (Pc /PMax) ratio increases. Even with increasing (Pc /PMax) ratios, the proposed scheme continues to achieve higher 
energy efficiency compared to DC, FTPA, and OFDMA, with a notable advantage of 35 % over the DC [6] and 55 % over the OFDMA in 
terms of power consumption. This emphasizes the effectiveness of the proposed scheme in maintaining a satisfactory level of energy 
efficiency even as the circuit power increases. The observed decrease in energy efficiency with rising circuit power (Pc /PMax) is 
consistent with the definition of energy efficiency, where higher circuit power contributes to reduced energy efficiency. High circuit 
power, often attributed to factors like RF components, hardware equipment, and amplifier efficiency, can indeed lead to lower energy 
efficiency. Balancing the need for high data capacity with acceptable energy consumption poses a significant challenge in achieving an 
energy-efficient network. However, the NOMA system, particularly when employing the proposed standalone algorithm for resource 
allocation, demonstrates superior performance compared to DC, FTPA, and OFDMA in maximizing energy efficiency while considering 
circuit power constraints. 

Table 1 
Existing work Summary.  

Ref. Objective Proposed Algorithm 

[2] Maximize the EE downlink in the NOMA network. The CPLEX optimization tool was applied to solve the LP. 
[8] Maximize the EE in the MC-NOMA system. Matching algorithm and Dinkelbach’s algorithm. 
[9] Improve the EE in the downlink NOMA system. A numerical scheme for power allocation. 
[10] Maximize the EE in multi-carrier cognitive radio NOMA (MC-CR- 

NOMA). 
Dinkelbach’s for resource allocation scheme. 

[11] Maximize EE and fairness in downlink multi-carrier MC-NOMA. Fractional programming with sequential optimization to solve power allocation 
and a greedy algorithm for sub-carrier allocation. 

[13] EE maximization in uplink multi-user NOMA. Deep reinforcement learning (DRL) for power allocation. 
[14] Maximize the EE for multi-user and multi-cluster NOMA networks. Stackelberg game competition for power allocation scheme and user clustering. 
[15] Maximize the EE based on machine-to-machine (M2M) communication 

in NOMA (M2M-NOMA). 
Improved Rider optimization technique for resource allocation in M2M 
communication. 

[20] Maximize the sum-secrecy throughput (SST) for downlink NOMA in a 
heterogeneous network (HetNet). 

ϵ-optimal outer approximation algorithm (OAA) for clustering, user association, 
fairness association, and the SST. 

[21] Minimize the energy consumption for NOMA-enabled Internet of 
Things (IoT). 

Transformation of the resource allocation problem into a deterministic problem 
using advanced stochastic optimization. Techniques. 

[24] Trade-off EE and delay under minimum user quality of service (QoS) 
and maximum transmit power NOMA network. 

Lyapunov optimization and Lagrangian function for resource allocation.  
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6. Conclusion 

In this work, the resource allocation problem has been addressed by employing Simulated Annealing with the aim of maximizing 
energy efficiency in the downlink NOMA system. SA is implemented as a standalone scheme, addressing tasks such as user and channel 
assignment, channel power allocation, and power ratio allocation. The channel gain difference is employed in the user pairing with two 
configurations to ensure the optimal solution. Additionally, the maximum transmit power fraction has been utilized to accurately 
determine the required channel power relative to the maximum transmit power. Moreover, the proportional power ratios have been 
investigated to distribute the necessary power to the users multiplexed on the same channel. As a result, the SA scheme has managed to 
achieve an impressive 22 % improvement in energy efficiency compared to DC, 46 % compared to FTPA, and 47 % compared to 
OFDMA, all while maintaining a lower time complexity. It boasts a significant advantage, with a 35 % improvement over DC and a 
remarkable 55 % enhancement over OFDMA in terms of power consumption. These findings indicate that SA presents a viable and 
efficient solution for addressing the resource allocation challenge in the context of maximizing energy efficiency within NOMA systems 
in 5G networks. Future research should focus on enhancing the SA algorithm’s scalability in larger, more complex networks, including 
its application in uplink NOMA systems and integration with IoT and massive Machine-Type Communication (mMTC) devices. 
Additionally, incorporating machine learning to refine SA could provide adaptive solutions for evolving network conditions and user 

Table 2 
System design Parameters.  

PARAMETERS VALUE 

Bandwidth 5 MHz 
Number of Sub-channel s 128 
Cell Radius 500 m 
Number of Base stations One 
Total Number of Users 60 
Minimum distance between User – User 40 m 
Minimum distance between User – BS 50 m 
Maximum Transmit Power 12 Watt 
Circuit Power 1 Watt 
Maximum Number of Multiplexed users/channels 2 users 
Noise Power Spectral Density − 174 dBm/Hz 
Shadow Standard Deviation 8 dBm 
Noise Figure 9 dBm  

Table 3 
SA parameters.  

MODEL PARAMETERS VALUE 

Initial Temperature 100◦C 
Variation Coefficient 2/3 
Random Variable [-1,1] 
Boltzmann distribution variable [0,1] 
System mode {1,2,3}
Minimum Iterations 2000  

Fig. 4. Energy efficiency versus maximum transmit power for system with 10 users.  
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QoS, potentially making it a crucial tool for NOMA resource allocation in the 5G network. 
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