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Abstract

We present a workflow for clinical data analysis that relies on Bayesian Structure Learning

(BSL), an unsupervised learning approach, robust to noise and biases, that allows to incor-

porate prior medical knowledge into the learning process and that provides explainable

results in the form of a graph showing the causal connections among the analyzed features.

The workflow consists in a multi-step approach that goes from identifying the main causes

of patient’s outcome through BSL, to the realization of a tool suitable for clinical practice,

based on a Binary Decision Tree (BDT), to recognize patients at high-risk with information

available already at hospital admission time. We evaluate our approach on a feature-rich

dataset of Coronavirus disease (COVID-19), showing that the proposed framework provides

a schematic overview of the multi-factorial processes that jointly contribute to the outcome.

We compare our findings with current literature on COVID-19, showing that this approach

allows to re-discover established cause-effect relationships about the disease. Further, our

approach yields to a highly interpretable tool correctly predicting the outcome of 85% of sub-

jects based exclusively on 3 features: age, a previous history of chronic obstructive pulmo-

nary disease and the PaO2/FiO2 ratio at the time of arrival to the hospital. The inclusion of

additional information from 4 routine blood tests (Creatinine, Glucose, pO2 and Sodium)

increases predictive accuracy to 94.5%.

Introduction

Coronavirus disease (COVID-19) first appeared in China in November 2019 and it is caused

by the new coronavirus SARS-CoV-2. Its spreading was immediately very fast, prompting

WHO to declare a pandemic status on March 12, 2020. Currently, COVID-19 counts over

116M accumulated cases worldwide with more than 2.5M deaths [1]. Early identification of

critical patients is an imperative challenge for triage systems as the severity of cases is putting

great pressure on hospital resources, leading to the need of alleviating the shortage of medical

assets [2]. This is especially important during COVID-19 pandemic when the access to the
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relatively less available supportive care and intensive care units (ICUs) is more frequent and

timely interventions may reduce mortality.

Since the pandemic outbreak, several algorithms have been proposed to evaluate predictive

scores helping in management of COVID-19 patients. These systems are based on both stan-

dard statistical approaches and Machine Learning (ML) methodologies [3–5]. The application

of supervised ML algorithms to medical research has become widespread in the last years. It

has been therefore natural to see a continuation of this trend in the analysis of COVID-19 clin-

ical data, also thanks to the generally superior predictive performance of ML-based solutions

over classical statistical approaches. However, the adoption of ML models is also known to be

subjected to many pitfalls due to their black box and data-driven nature. In fact, the feckless

application of supervised ML often results in overfitting problems, confounding bias effects

and scarce interpretability; the latter being particularly troublesome for clinical practice. These

phenomena have effectively been noted by a recent meta-analysis [6] where predictive models

for COVID-19 are defined to be “poorly reported, at high risk of bias, and their reported per-

formance is probably optimistic”.

Another critical issue that needs careful consideration is the fact that commonly adopted ML

approaches to diagnosis or outcome prediction are almost uniquely from the family of the

supervised learning models. As such, they work on a purely associative approach, by identifying

correlations between input data, such as symptoms, clinical history and treatments, and the tar-

get variable. Many examples show that the inability to distinguish correlation from causation

can produce classifications that are misleading to the point of being potentially dangerous [7].

For instance, the paper by Caruana et al. [8] describes a model to predict the probability of

death by pneumonia, trained on medical records of patients who have previously had pneumo-

nia. Counter-intuitively, the model found that asthma lowers the risk of death, while it is known

to be a severe condition in subjects with pneumonia. This misleading effect occurred because

the patients with asthma in the training set received more care by the hospital system. In this

example, the association learned from the dataset was correct, but clearly the aim of this applica-

tion was to find only causal relations useful to prioritize care for patients with pneumonia.

A good option to avoid this kind of problems is given by Bayesian Structure Learning (BSL)

approaches [9], which allow to learn from data a probabilistic directed acyclic graph (DAG),

called Bayesian Network (BN), connecting the elements that according to the Bayes’ rule have

a causal relationship. With respect to supervised ML models, BSL has several features making

it suitable for medical research [10, 11], such as:

• it is intrinsically interpretable given that it produces a graph representing the causal relation-

ships among the input data;

• it allows to include domain knowledge [12], i.e. it can take into account a set of a-priori

known mandatory and prohibited connections. This is a useful feature to combine consoli-

dated medical knowledge with the ongoing research;

• it naturally avoids overfitting [13] and it is less sensitive to noise, because of its non-super-

vised nature and because it relies on a statistically based definition of conditional probability,

instead of finding an arbitrary complex pattern fitting the data;

• it has shown good performances also with small sized dataset [14], a common situation in

medical applications.

On a less rigorous note, it has been observed that building causal graphs with BSL forces

the researchers to think clearly about the topic, and articulate that thinking in the form of the

graph, which is often beneficial in and of itself [12, 15, 16].
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All these features make BSL an optimal tool for medical research. In fact, it has found good

application in the analysis of genetic data [17, 18], electronic health record time series [19],

longitudinal and standard clinical data [20, 21]. In particular, the knowledge of causality rela-

tionship between potential predictors and mortality among patients diagnosed with COVID-

19 would be crucial to target patients at highest risk and improve outcomes [22]. However,

only few works applied Bayesian approaches to the study of COVID-19, mainly to analyse its

spreading [23–25] and for contact tracing [26, 27]. One paper interestingly applied BSL to

serological tests of COVID-19 to determine a more accurate estimation of the disease’s infec-

tion and fatality rates taking into account the reliability of each kind of test [28].

Following these considerations, the main objective of this paper is to introduce the use of a

BSL-based methodology to study the causal relationship between various predictors and mor-

tality in COVID-19 patients. We aim at verifying whether BSL can reproduce and/or improve

our current understanding of causal pathways of COVID-19 risk of mortality using a single-

centre but feature-rich clinical dataset [29] which includes demographic information, clinical

history of the patient, symptomatology, blood analysis data on admission and outcome. Our

analysis is conducted both with and without incorporating prior medical information, to test

whether there are significant differences. Following up the causal analysis, we leverage the fea-

tures that are deemed to be causally related to the outcome to construct a Binary Decision

Tree (BDT) that describes a practical flow chart to identify patients at high-risk using data

available right at the admission in hospital.

In conclusion, the present work addresses the need of explainable and causally grounded

approaches to learn clinical useful knowledge from retrospective data, which is a mainly unex-

plored research topic, especially in the emergency context of COVID-19. This is achieved by

presenting a novel clinical data analysis framework that provides a multi-step approach that

goes from the identification of causal relationships between medical data, using BSL, to the

realization of a clinically suitable tool, based on a BDT. This tool is suitable for patients triage

and is easy to use, straightforward to interpret and has solid clinical bases behind its

predictions.

Materials and methods

Dataset description

The dataset includes COVID-19 diagnosed patients admitted between the 3rd of March 2020

and the 30th of April 2020 from three different units of the Pisa University Hospital (Emer-

gency Room, Emergency Medicine Department and ICU) [29]. All data were acquired from

both paper and electronic records and carefully checked for the presence of spurious and/or

erroneous inputs.

Data collection was performed according to the principles stated in the Declaration of Hel-

sinki and it conforms to standards currently applied in our country. No minors were involved

in the study. The use of the data was approved by the Comitato Etico Area Vasta Nord Ovest

(Internal Review Board) under the IRB number 230320 and the patient’s informed consent

was obtained in conformity with safety protocols adopted in the hospital during the emer-

gency. In particular, oral consent was obtained and recorded in the medical chart by nurses

from patients at the moment of admission. This procedure was approved by IRB in face of the

extraordinary conditions present at the time of the first wave of COVID-19.

The main outcome of the data cohort is dismissal at home or death. The subjects included

in the study are 265, of whom 71 died for COVID-19 or for its complications. The death rate

of this sample is thus 26.8%. The original dataset included 125 variables. Among the various

features collected during the triage and the hospitalization, 63 are missing in less than 50
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subjects and thus are included in the study. For the purpose of this study, these features are

grouped into six different logical categories as illustrated in Table 1. All the medical exams

used in this analysis have been made on the first day of hospitalization.

Causal learning for COVID-19 data

The methodology put forward in this paper is articulated in three steps, leveraging different

machine learning and statistical methods. First we apply BSL to analyze how the variables of

the sample are causally interconnected. Then, we evaluate with Bivariate Statistical Tests (BST)

the strength of the connections between the outcome and its neighbours in the BSL graph.

This second analysis may seem redundant with respect to the first step. However, while BSL

performs a multivariate analysis taking into consideration also latent variables and the possi-

bility of mediated connections, the second one evaluates singularly how each variable affects

the outcome. Thus, on the one hand, the causal graph obtained with BSL helps to understand

the logical cause-effect sequence bringing to the outcome and to select the features of interest;

on the other hand, BST helps to rank the dependency between each feature and the outcome.

The third step targets selecting the most relevant features to train a Binary Decision Tree

(BDT) useful for clinical practice.

The following sections provide a synthetic background on Bayesian Networks, describe the

BSL algorithm used and the workflow of the three analyses discussed above.

Bayesian Network (BNs) background. BNs are graphical models (G, P), where P is a

joint probability of random variables XV = (X1, . . ., XN) associated with nodes V = {1, . . ., N}.

Each random variable Xi can possibly be of different nature (binomial, multinomial, ordinal,

continuous). The graph G = (V, E) is a directed acyclic graph (DAG) whose edges E encode the

joint probabilistic relationships among the N random variables. The graph is a visual represen-

tation of the joint distribution of the data, where a directed edge eij from node i to j indicates

that i is the parent of j as part of a conditional dependence relationship between the two nodes

[30].

Broadly speaking, there are two main families of methods to learn the structure of a BN

from data: constraint-based methods and score-based ones [31, 32]. The first class of methods

learns the conditional independence relations of the BN from which, in turn, it generates the

network. Score-based approaches, instead, cast structure learning as an optimization problem,

often addressed as an heuristic search task leveraging a score function to drive exploration of

the space of the graph structures in search of the optimal DAG.

Causal graph analysis. BSL algorithm. In order to single out the best approach for our

analysis, we have considered the fact that constraint-based algorithms have been shown to be

more accurate than score-based algorithms for small sample sizes, and that score based algo-

rithms tend to scale less well to high-dimensional data [33]. Additionally, constraint-based

algorithms can naturally integrate domain knowledge in the form of already-known results of

independence tests, while it is more difficult to include this kind of information in score-based

methods. Since we would like to incorporate prior knowledge in our analysis, and since the

single samples in our dataset are highly dimensional while the dataset has a relatively low num-

ber of subjects, in this paper we use a constraint-based algorithm called Fast Causal Inference

(FCI) [34]. FCI is an extension of the popular PC [35] algorithm that considers also the pres-

ence of hidden variables, that are random variables for which no observable input data is avail-

able. Briefly, the FCI algorithm comprises two steps:

• Skeleton definition. The skeleton search phase consists in finding the undirected graph that

has the same edges as the true DAG but no edge orientations. The search starts with a com-

plete undirected graph. Then, each pair of variables is tested for mutual independence
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Table 1. Summary of the dataset features. In this table the 63 features analyzed in this work, reported in the second column, are grouped into 6 classes, listed in the first

column. The third and fourth columns show the feature occurrence in the dataset in dead and recovered subjects, respectively. The last column reports a description of the

feature values: for continuous variables the 5th and the 95th percentiles indicated as [P5, P95] are reported, while for categorical variables their values are reported within

curly brackets.

Category Feature Available data for dead subjects

(max 71)

Available data for recovered subjects (max

194)

Values

Demographic data Age (years) 71 194 [P5, P95] = [40, 89]

SEX 71 194 {M, F} = {0, 1}

Smoke(y/n) 66 187 {No, Yes} = {0, 1}

Smoke(ex/y/n) 64 187 {Yes, Ex, No} = {0, 1, 2}

Prior respiratory

problems

COPD (chronic obstructive pulmonary disease) 71 194 {No, Yes} = {0, 1}

Asma 70 194 {No, Yes} = {0, 1}

Other resp. disease 71 194 {No, Yes} = {0, 1}

Prior diseases Diabetes 71 194 {No, Yes} = {0, 1}

Hypertension 71 194 {No, Yes} = {0, 1}

Cardio.disease 71 194 {No, Yes} = {0, 1}

Hypercolest 71 194 {No, Yes} = {0, 1}

Cerebrovasc. disease 71 194 {No, Yes} = {0, 1}

Neuro. disease 71 194 {No, Yes} = {0, 1}

Dementia 71 194 {No, Yes} = {0, 1}

Cancer 71 194 {No, Yes} = {0, 1}

Blood cancer 71 194 {No, Yes} = {0, 1}

Kidney disease 71 194 {No, Yes} = {0, 1}

Liver disease 71 194 {No, Yes} = {0, 1}

Cirrhosis 71 194 {No, Yes} = {0, 1}

Autoimmune disease 71 194 {No, Yes} = {0, 1}

Ongoing treatments Anticoag 71 194 {No, Yes} = {0, 1}

RAAS BLOCK (renin-angiotensin-aldosterone

system)

71 194 {No, Yes} = {0, 1}

Immunos. therapy 71 194 {No, Yes} = {0, 1}

Dialysis 71 194 {No, Yes} = {0, 1}

Symptoms on admission Fever 71 194 {No, Yes} = {0, 1}

Conjunct. congest. 71 194 {No, Yes} = {0, 1}

Nasal congestion 71 194 {No, Yes} = {0, 1}

Headache 71 194 {No, Yes} = {0, 1}

Cough 71 194 {No, Yes} = {0, 1}

Sore throat 71 194 {No, Yes} = {0, 1}

Sputum 71 194 {No, Yes} = {0, 1}

Fatigue 71 194 {No, Yes} = {0, 1}

Hemoptysis 71 194 {No, Yes} = {0, 1}

Short breath 71 194 {No, Yes} = {0, 1}

Nausea 71 194 {No, Yes} = {0, 1}

Diarrhea 71 194 {No, Yes} = {0, 1}

Myalgia 71 194 {No, Yes} = {0, 1}

Rash 71 194 {No, Yes} = {0, 1}

FC (cardiac frequency, bpm) 63 176 [P5, P95] = [61, 119]

PAS (systolic arterial pressure, mmHg) 65 174 [P5, P95] = [100, 170]

PAD (diastolic arterial pressure mmHg) 65 174 [P5, P95] = [55, 100]

Chest pain 71 194 {No, Yes} = {0, 1}

Confusion 71 194 {No, Yes} = {0, 1}

(Continued)
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considering also all the subsets of the other variables. When two variables are found to be

independent given at least one subset of other variables, the edge connecting them is

removed. In this step we see how easy it is to include knowledge about prohibited or manda-

tory connections between variables: the information supersedes the result of the indepen-

dence test. Different independence tests can be used for different kinds of variables.

• DAG learning. In this step, the direction of the edges is estimated. During this operation hid-

den confounders are also considered, i.e., unobserved variables which are a common cause

of at least two observed variables [36].

In our analysis, variable independence is tested with a Gaussian conditional independence

test for continuous variables, and the G2 test for categorical variables [34]. Other parameters

relevant for the reproduction of this study are reported in S1 Table.

A significant issue with constraint-based algorithms is that the number of independence

tests needed to remove an edge increases significantly with the number of vertices and with

the number of values assumed by the random variables (for the discrete case). For this reason,

heuristic search algorithms are usually employed to avoid testing a combinatorial number of

cases [34]. As a consequence, the true DAG can seldom be identified and multiple DAGs with

different edge directions are found to be compatible with the input data. For this reason, in

our analysis we do not consider edge orientation by the algorithm as reliable information, leav-

ing this task to the clinician interpretation.

Quantifying causal effects. For every DAG identified by FCI, we estimate the effect that each

variable has on the variables it is connected to, representing an indicator of the strength of

Table 1. (Continued)

Category Feature Available data for dead subjects

(max 71)

Available data for recovered subjects (max

194)

Values

Blood analysis on

admission

Haemoglobin (g/dl) 68 188 [P5, P95] = [9.3, 16]

WBC (white blood cells, cells/nl) 69 192 [P5, P95] = [3.37, 15.78]

Lymphocyte (cells/μl) 68 191 [P5, P95] = [370, 2380]

Neutrophils (cells/μl) 69 188 [P5, P95] = [1740,

13540]

Haematocrit (%) 69 187 [P5, P95] = [27.5, 46.4]

Platelets (cells/nl) 69 191 [P5, P95] = [83, 423]

INR (international normalized ratio) 65 184 [P5, P95] = [1.03, 1.75]

Bilirubin (mg/dl) 64 186 [P5, P95] = [0.24, 1.6]

AST (aspartate aminotransferase, IU/l) 59 181 [P5, P95] = [14, 115]

ALT (alanine aminotransferase, IU/l) 66 187 [P5, P95] = [10, 125]

Glucose (mg/dl) 64 186 [P5, P95] = [84, 233]

Creatinine (mg/dl) 67 191 [P5, P95] = [0.62, 2.56]

BUN (blood urea nitrogen,mg/dl) 58 178 [P5, P95] = [9, 74]

Sodium (mEq/l) 68 190 [P5, P95] = [131, 145]

Potassium (mmol/l) 67 187 [P5, P95] = [3.21, 5.04]

pH 57 162 [P5, P95] = [7.35, 7.53]

pO2 (O2 partial pressure, mmHg) 62 173 [P5, P95] = [40, 143]

pCO2 (CO2 partial pressure, mmHg) 61 167 [P5, P95] = [24, 45]

PF (pO2/FIO2 ratio, %) 65 188 [P5, P95] = [126.25,

450]

PCR (C-reactive protein, mg/dl) 67 177 [P5, P95] = [0.48, 27.64]

Outcome 71 194 {Death, Recovery} = {0,

1}

https://doi.org/10.1371/journal.pone.0268327.t001
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their causal connection, using covariate adjustment. Basically, for each pair of variables, X and

Y, we compute a linear regression of Y on X using the parent set of X, extracted from the DAG,

as covariate adjustment. When multiple DAGs are available, we average the effects estimated

from each DAG. However, in this study we have observed that the DAG is usually estimated

without ambiguity and thus the cases in which multiple different effects are found are very

rare. Note that this method describes the effect that a unitary increase in X has on Y and, there-

fore, it is highly sensitive to the range of both X and Y. In order to be able to qualitatively com-

pare the effects, we standardized the variables before this calculation, applying a Z-score

transformation.

BSL strategy on our cohort. The application of the BSL pipeline described in the previous

subsection followed some considerations related to the nature of the dataset available in our

study. First, it has to be noted that only a portion of the features in Table 1 has been collected

or is available for all subjects in our dataset. As most data-driven methods, BSL performs better

when the sample size is higher than the number of features. Therefore, we opted for applying

the BSL pipeline separately for the 6 categories of features identified in Table 1, in order to

maximize the amount of samples available. The outcome variable has been included in each

category-specific analysis. After building the BNs (one per category), we identified those fea-

tures of each skeleton that reported either a direct causal connection with the outcome, or an

indirect connection mediated by a single intermediate feature. These served to define the can-

didate pool of relevant features which have been jointly analyzed with another round of the

BSL algorithm (i.e. representing samples only in terms of the filtered features) leading to an

integrated causal graph.

The BSL algorithm attempts to infer causal relationships from input data, which are

unavoidably biased, because the sample analyzed is composed by subjects whose medical con-

ditions required hospitalization. Thus, the results from this analysis should be interpreted as

representative of the most severe situations.

The causal graph analysis pipeline discussed so far has been repeated under two different

conditions. In the first we provide to the BSL process a conservative list of prohibited causal

connections (drawn up by our clinicians and based on the fact that there is vast medical agree-

ment on the nonexistence of such relationships), whose severance is enforced during the

graph identification process. The second one, instead, comprises a fully data driven setting,

where no prior knowledge is supplied to the BSL algorithm. This second condition is tested for

comparison, to assess the capability of the method to autonomously identify causal relation-

ships that are not blatantly in contrast with widely agreed clinical knowledge.

Bivariate statistical analysis. The focus of this step of our analysis is to study how the out-

come depends singularly from each relevant feature identified at the previous stage. To this

end, we use the Fisher Exact Test (FET) [37] for categorical variables and the Point-Biserial

Correlation (PBC) [38] for the continuous ones. The FET method tests whether two binary

variables are independent, such as “death-recovery” and “male-female”. The PBC, instead, is a

correlation test, such as the Pearson’s correlation, specifically developed to correctly estimate

the correlation between a categorical variable, in this case the outcome, and a continuous vari-

able. The bivariate statistical analysis is applied to all the features considered in the integrated

causal graph.

Decision tree analysis. BDT models are characterized by an inferential process which has

some resemblance with human reasoning, which makes them amenable to human interpreta-

tion. However, they are known to severely suffer from overfitting [39], thus it is fundamental

to reduce the complexity, and thus the depth, of the tree to avoid the identification of poorly

generalizable classification rules.

PLOS ONE A causal learning framework for COVID-19 data analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0268327 May 19, 2022 7 / 21

https://doi.org/10.1371/journal.pone.0268327


The scope of our BDT analysis is two-fold. On the one hand we would like to identify a

compact BDT to provide an interpretable and procedural view on what are the discriminative

cut-point values for the features identified by the BSL causal analysis, and if those values are in

agreement with clinical knowledge. On the other hand, we would like to measure the predic-

tive value of such candidate features on our dataset.

The first objective (interpretation) has been addressed by training a BDT with a depth fixed

to 4 levels, considering only those features present in the integrated graph and only those sub-

jects having those features fully available. Other BDT parameters relevant to reproduce this

work are recapitulated in S1 Table.

The interpretable BDT is trained on the full data (train-all setting), as it is never used for

prediction. To assess the impact of the identified causal features on predictive performance, we

train two additional models. The first is a BDT with the same structural constraints and fea-

tures of the intepretable one, but it is trained and assessed in a 10-fold cross-validation scheme.

Its predictive performance is assessed as the average accuracy on the 10 validation folds. The

second is a permutation test BDT, again trained and evaluated in 10-fold cross-validation, but

using features randomly drawn from the set of features in Table 1.

The comparison between the last two BDTs is intended to verify the effectiveness of the fea-

ture identified by the BSL causal analysis. However, a fair comparison requires to ensure that

the two BTDs have a comparable number of subjects in training, otherwise it is impossible to

understand whether a performance reduction is to be imputed to the lower training size or to

the different features. Thus, in the permutation test, we train about 1000 different BDTs of

depth-4 with number of training subjects and features matching those used for training the

causal BDT.

As already said at the beginning of this paragraph, the choice of using a BDT is mainly

motivated by its interpretability and ease of clinical usage, but at the same time we want to

maximize the prediction performance, otherwise the benefit deriving from an interpretable

tool would be less useful. Thus, we performed an additional analysis to compare the perfor-

mance of the BDT with 3 commonly adopted machine learning algorithms: logistic regression

(LR) and support vector machine (SVM) with linear and polynomial kernels. In this analysis

the algorithms are trained only with the same features used by the BDT, following the same

steps of the BDT analysis: train-all, 10-fold cross-validation and permutation test using ran-

dom features.

Results

We report the main results of the empirical analysis run on our COVID-19 dataset following

the three-fold structure of our methodology. A pictorial overview of the experimental analysis

is provided in Fig 1. Here, we highlight the explorative causal analysis run separately on the

different feature categories (Step I), followed by the analysis on selected causal features (Step

II) comprising the integrated causal graph, the BST and interpretable BDT. The final stage

comprises a predictive analysis comparing the BDT on causal features with the BDT on ran-

domly drawn features (Step III).

Causal graph analysis

The results of the BSL step run separately on the single feature categories are provided in Fig 2,

while Fig 3 depicts the corresponding integrated graph. All graphs have been obtained includ-

ing prior knowledge on prohibited connections through a list provided by our physicians.

Their fully data-driven counterparts are reported in S1 and S2 Figs in the Supporting informa-

tion to ease readability. One can easily appreciate that no substantial difference exists between
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the two sets of graphs, confirming the robustness of the causal inference process. Note that the

distance between nodes in the graphs has no meaning and it is automatically adjusted to make

the diagrams visually appealing. Instead, the thickness of the edges reflects the intensity of the

connection and the red (blue) edges connect positively (negatively) correlated variables. The

definition of positively/negatively correlated variables may be confusing when one variable is

categorical and the other is continuous. For instance in Fig 3, age (continuous) appears to be

negatively correlated with the outcome, which has value 1 for death and 0 for recovery. This

means that older subjects have a higher risk of death than younger ones. To fully understand

Fig 1. Flow chart of the proposed approach. Our empirical analysis is mainly based on three steps: (1) an explorative analysis applied to different

classes of features separately; (2) an integrative and interpretative step; (3) a quantitative validation.

https://doi.org/10.1371/journal.pone.0268327.g001
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Fig 2. BSL analysis on separate classes of features. Image showing the BSL analysis applied to different categories of features.

All the illustrated graphs are generated taking the information provided by clinicians into account.

https://doi.org/10.1371/journal.pone.0268327.g002
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Fig 3. BSL analysis on the most relevant features. Graph generated with the most relevant features found from the graphs shown in Fig 2, taking the

information provided by clinicians into account.

https://doi.org/10.1371/journal.pone.0268327.g003

Table 2. Results of the bivariate statistical analysis for categorical variables. Contingency table and results of the Fisher test between the categorical variables present in

Fig 3 and the outcome. The most impactful deaths (recoveries) fold increases with respect to the dataset average are reported within the brackets in the second and third

columns, respectively.

Feature X % of deaths in patients

with X

% of recoveries in patients

with X

% of deaths in patients

without X

% of recoveries in patients

without X

P-Value (Fisher

test)

COPD 69.0% (×2.6) 31.0% 21.6% 78.4% 5.10−7

Kidney disease 58.3% (×2.2) 41.7% 23.7% 76.3% 6.10−4

Cerebrovasc. disease 59.3% (×2.2) 40.7% 23.1% 76.9% 1.7�10−4

Cardio. disease 42.5% (×1.6) 57.5% 19.1% 80.9% 6.4�10−5

Anticoag. 51.5% (×1.9) 48.5% 23.3% 76.7% 1.1�10−3

Myalgia 2.7% 97.3% (×1.3) 30.7% 69.3% 6.1�10−5

Confusion 71.9% (×2.7) 28.1% 20.6% 79.4% 1.4�10−8

Short breath 34.1% (×1.3) 65.9% 20.1% 79.9% 7.5�10−3

Dialysis 50.0% (×1.9) 50.0% 26.4% 73.6% 0.29

Hypercolesterolemia 37.0% (×1.4) 63.0% 24.7% 75.3% 6.6�10−2

Hypertension 35.5% (×1.3) 64.5% 19.1% 80.9% 2.1�10−3

Diarrhea 11.8% 88.2% (×1.2) 30.4% 69.6% 4.0�10−3

Fatigue 23.3% 76.7% 27.5% 72.5% 0.36

Headache 4.3% 95.7% (×1.3) 28.9% 71.1% 5.5�10−3

https://doi.org/10.1371/journal.pone.0268327.t002
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the meaning of each connection, we refer to Table 1 which reports the values of each categori-

cal variable under examination.

Bivariate statistical analysis

Table 2 reports the contingency table and the p-values of the Fisher exact test computed for all

the categorical variables found relevant in the single-category BSL analyses and thus included

in the integrated causal graph in Fig 3. With relevant we mean that these features are con-

nected to the outcome within 2 hops. To ease intepretation of the results we report also, in the

second (third) within the brackets, the death (recovery) excess factors with respect to the

occurrence in the whole dataset.

Table 3 instead reports PBCs and their p-values. As it can be noted, these measures empha-

size some differences with respect to the BSL-based analysis. For instance, in the integrated

graph fatigue and headache seem both to be linked to the outcome through myalgia. The

Fisher analysis instead reveals that headache is unrelated to the outcome and has to be simply

related to myalgia, while fatigue seems to be actually causally connected to the outcome.

Decision tree analysis

Fig 4 shows the BDT trained with all the 198 subjects having the 26 features included in the

integrated causal graph Fig 3. The interpretable BDT chose to base its prediction exclusively

on 7 features: AGE, PF, COPD, Creatinine, Glucose, pO2 and Sodium. Remarkably, all of

them are connected to the outcome within 2 hops in the integrated causal graph (Fig 3). When

computing the classification accuracy of the interpretable BDT on its training set, we appreci-

ate that only 5.5% of the data are misclassified. Despite a few leaves being clearly tailored to fit

the dataset (and thus being good candidates for pruning), all the learned patterns appear to be

in line with current clinical understanding of how these features affects the outcome.

The first line in Table 4 shows various performance metrics of the BDT classifier evaluated

in train-all setting (i.e. trained and validated on the same data comprising all the available sub-

jects) and in a 10-fold cross-validation assessment. As it can be noted, the results are quite

coherent, suggesting that the overall pattern is really informative and almost insensitive to

overfitting. The permutation test, whose results are reported in the second line of Table 4,

shows instead a completely different behaviour. Even with randomly selected features it is

Table 3. Results of the bivariate statistical analysis for continuous variables. Point-biserial correlation values and

significance tests between the continuous variables present in Fig 3 and the outcome.

Feature Correlation P-Value

Age -0.46 1.3�10−15

PAS 0.21 4.6�10−4

PAD 0.24 8.1�10−5

AST -0.11 0.052

Glucose -0.19 1.5�10−3

Creatinine -0.20 5.6�10−4

BUN -0.45 1.1�10−13

Sodium -0.16 5.0�10−3

Potassium -0.18 1.6�10−3

PCR -0.21 4.4�10−4

pO2 0.12 0.032

PF 0.46 1.1�10−14

https://doi.org/10.1371/journal.pone.0268327.t003
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possible to achieve high performances in train-all setting, but these performances are not

maintained in cross-validation.

Fig 5 depicts the average proportion of misclassified patients in cross-validation of our BDT

(red line) and of the permutation test (orange columns), showing that the errors in the former

tree are significantly lower from what would be obtained from one considering 7 features ran-

domly taken from the dataset.

Finally, the additional comparison with less interpretable but well regarded algorithms such

as LR and SVM (reported in S2 Table of the supplementary materials) shows that these algo-

rithms reach overall inferior performance. In fact, they are strongly misled by the bias in the

number of recoveries with respect to deaths and tend to classify most of the subjects as recov-

ered. Furthermore, they are more prone to overfitting, as shown by the performance loss when

moving from a train-all configuration to a 10-fold cross-validation. The permutation test

results, reported in S2 Table and in the S3–S5 Figs show that also for these algorithms, the 7

features selected by our pipeline allow a better classification of the subjects with respect to a

random selection of other 7 features.

We believe that these results support the methodological choice to select the features caus-

ally connected to the outcome through BSL and then training a BDT to obtain an intepretable

clinical decisional tool.

Fig 4. BDT obtained with a train-all setting. BDT trained with the features included in the graph analysis reported in

Fig 3. The color of the squares represents the class prevalence: red for deaths, green for recoveries and grey in case of

parity. The number of subjects is indicated in the first line of each square, while the last line reports deaths/recoveries.

Black edges denote leaves.

https://doi.org/10.1371/journal.pone.0268327.g004

Table 4. BDT performance evaluation. Comparison between the performance of the classifier developed in this study and classifiers trained on a random set of 7 features.

The results of the permutation tests are the average of those obtained from 1,000 permutations.

Input data Sensitivity Specificity F1 score

Train all 10f cv Train all 10f cv Train all 10f cv

7 feat of the tree in Fig 4 0.99 0.90 0.95 0.95 0.97 0.92

7 random feat 0.99 0.88 0.82 0.49 0.97 0.86

https://doi.org/10.1371/journal.pone.0268327.t004
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Discussion

In this section, we briefly discuss the experimental results obtained by our causal analysis. We

begin by considering the results from the single-category causal graphs in Fig 2.

Among respiratory diseases (graph b), COPD is the only pathology in direct causal relation-

ship with mortality. This result was recently confirmed by a meta-analysis on the associations

between respiratory diseases and COVID-19 outcomes [40].

As regards prior (non-respiratory) diseases (graph a), not surprisingly, cardiovascular dis-

ease has a direct relationship with the outcome [41]. Furthermore, it is the mediator of the

causal effects of hypertension and hypercholesterolemia. On the other hand, hypercholesterol-

emia also has a causal effect on the presence of cerebrovascular disease which has a direct

impact on the outcome [42]. From graph a also kideny diseases appear to be directly connected

to the outcome, as widely documented [43]. Remarkably, the three pathologies directly con-

nected to the outcome (i.e. cardiovascular, cerebrovascular and kidney diseases) exert a strong

effect on it, increasing the probability of death by 1.6, 2.2 and 2.2 with respect to the average in

the dataset, respectively (see the analysis in Table 2). In contrast to published results, in our

analysis liver diseases (including cirrhosis) [44], diabetes [45] and the presence of dementia or

neurological diseases [46] seem to be not causally connected to the outcome. This discrepancy

is mainly imputable to their scarce representation in the dataset, which does not allow to satisfy

Fig 5. BDT permutation evaluation. Histogram reporting the percentage of misclassified subjects in the permutation test. The red bar shows the

performance of the BDT reported in Fig 4. All the misclassification rates are calculated as the average over a 10-fold cross-validation.

https://doi.org/10.1371/journal.pone.0268327.g005
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the conditional probability criterion with which the graph connections are identified. In fact,

despite their limited size, in all the subsets of subjects presenting the aforementioned diseases,

the risk of mortality rises at least by a factor of 2.3. However, these increases cannot be attrib-

uted to these diseases alone because at least 75% of the subjects who died and were affected by

one of them, presented also one of the three pathologies directly connected to the outcome.

Age is one of the most cited risk factors due to its close relationship with mortality in

COVID-19 patients [47]. Accordingly, the BSL approach (see graph c) identifies a strong

causal relationship with the outcome also in the patients enrolled in Pisa. The importance of

this effect can be appreciated even more by looking at the thickness of the “age-outcome” edge

in the integrated causal graph, Fig 3. On the other hand, in our cohort neither sex nor smoking

seem to have a direct causal role with mortality, contrary to what was claimed by recent meta-

analysis [48, 49]. The apparent inconsistency on the effect of sex is explained by the intrinsi-

cally biased cohort which has been selected based on the symptomatology severity of the

patients in admission. In fact, only 32% of the examined sample is composed by females,

which means that they are somewhat protected from acute forms of COVID-19. Thus, accord-

ing to our analysis being a female has no protective effect against death when the patient

already shows severe symptoms that necessitate hospitalization, while this protective effect is

present ab origin and it is detectable by the gender bias in hospitalized patients.

The BSL analysis applied to treatment features (graph d) shows also a direct connection

between the assumption of anticoagulant before/during Coronavirus infection and the out-

come. As it can be noted from Table 2, the prescription of anticoagulants increases the risk of

mortality by a factor of 1.9, while the cardiovascular diseases by only 1.6. This effect suggests

that the subjects that are prescribed to take anticoagulants have a more severe form of cardio-

vascular disease, and that the true causal effect is given by cardiovascular disease alone. Follow-

ing this idea, given that kidney diseases increase the risk of mortality, we would expect a

connection between outcome and dialysis, however only 4 subjects of the cohort were on

dialysis.

Results from the analysis of the symptoms present at hospital admission (graph e) are par-

ticularly intriguing. In fact, only a relatively small number of symptoms show a direct causal

relationship with the outcome. Among these, myalgia seems to be protective against the risk of

mortality. This fact, which has been recently confirmed by Zheng et al. [50], could be explained

by the fact that patients with less severe form of disease are reporting a generic muscle pain

with augmented sensitivity as they do not suffer from more severe and debilitating symptoms.

Accordingly, myalgia presents upstream causal relationships with many other symptoms of

medium and mild severity, such as nasal congestion, sputum and nausea. On the other hand, a

strong causal link between confusion and mortality was detected (leading to an increased risk

of death by 2.7 with respect to the average in Table 2), probably associated with the older age

of patients presenting this symptom. In the same way, the effects of PAD (and indirectly PAS)

could be explained by the already demonstrated causal relationship between cardiovascular

disease and outcome. In contrast to what is present in the literature, the presence of fever at

the time of admission seems to lack a direct causality link with mortality [51], however differ-

ences in fever assessment may alter the results of this analysis. For instance, fever may be mea-

sured at the hospital at the time of admission or assessed by the patient and in both cases its

value may be altered by antipyretic assumption, whose frequency depends on self-medication

habits.

Among laboratory tests (graph f), only three parameters have a direct causal relationship

with mortality. PF ratio is an index of respiratory function and, given that the respiratory sys-

tem is one of the systems most affected by COVID-19, its causal relationship with mortality is

highly understandable. This connection can be observed both in the single-category as well as
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in the integrated causal graph. Other clinical variables selected by our automatic method are

BUN and creatinine. Elevated levels of both BUN and creatinine can be associated to chronic

kidney disease which was already demonstrated in direct causal relationship with mortality.

Furthermore, a link between creatinine, BUN and mortality has already been observed in

COVID-19 patients by other authors [52].

The study of causality between classes of clinical variables and mortality in COVID-19

patients revealed some already known relationships as well as offering some new insights.

However, the picture becomes more clear when all clinical variables are used together to assess

causal effects on the outcome as in the integrated causal graph of Fig 3. In this case, only 4 vari-

ables show a direct causal effect on the outcome. However, these direct relationships are very

strong, with PF, age and BUN being particularly correlated to mortality (see Table 3). Further-

more, these parameters also exhibit a strong upstream causal relationship with practically all

the clinical variables that are directly associated with the outcome in the analysis divided by

single categories. In fact, age has causal relationships with confusion, cardiovascular and cere-

brovascular diseases, as well as with the use of anticoagulants and high blood pressure. Simi-

larly, BUN levels mask a causal relationship with creatinine levels and the presence of

nephrological disease. Finally, the PF mediates the relationship with shortness of breath. On

the contrary, myalgia seems to have a weaker and more distant causal role with the outcome

when all the clinical variables are considered. This seems to sustain the hypothesis that the

apparently causal of myalgia on symptoms is due to the fact that less severe patients report its

occurrence together with the deficiency of more critical symptoms.

Moving to the BDT illustrated in Fig 4, remarkably the first two levels of the tree alone

allow to correctly classify 85% of the subjects basing on their age, a previous history of COPD

in young and middle-aged patients and the PF ratio value in the older ones. The PF threshold

discovered by the algorithm to distinguish patients at high and low risk is almost equal to the

criterion adopted by the American-European Consensus Conference Committee (AECC) to

define hypoxemia, i.e. a PF ratio less than or equal to 200 mmHg [53]. Throughout the tree,

creatinine levels have been questioned 3 times. Despite in healthy subjects creatinine normally

can range between 0.6 to 1.3 mg/dl, from this analysis it seems that subjects affected by

COVID-19 have an increased risk of mortality already when its value passes 0.96 for the youn-

ger ones and 1.145 for the older ones. Instead, binary decisions based on sodium and pO2 lev-

els are coherent with normal range values. Sodium below 135 mEq/L indicates hyponatremia

that may hint to heart, kidney or liver problems, which notoriously have a negative impact on

subjects with COVID-19 and pO2 values below 80 mmHg indicates that a person is not getting

enough oxygen [54]. The only binary decision of dubious interpretation from a medical per-

spective is the one based on glucose value at the third level of the tree. Probably, this is due to

the overfitting problem that characterizes BDTs. However, this question and the following

ones along its branches do not improve particularly the ability of the BDT to predict the risk of

mortality. In fact, already before the debatable question on glucose the set was composed by 19

subjects who died and only 3 who survived.

As it emerges from this discussion, various limitations exists in this study:

• the limited size of the dataset;

• the dataset is unavoidably biased towards locally resident subjects with severe symptoms

requiring hospitalization;

• patient-reported data may be very noisy: such as clinical history details, ongoing treatments,

symptoms before hospitalization, etc.
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Except for the first limitation, all the remaining ones represent common issues in the medi-

cal field. However, the coherence between the results obtained with this methodology on such

a limited dataset, with the results available in literature, suggests that the implemented

approach is resilient to this kind of issues. Overall, a percentage of 5.5% of misclassified sub-

jects using solely data available at the triage suggests that the 3-step methodology presented in

this paper could be successfully adopted to design an operative flowchart for clinical use when

paired with a larger dataset and after an extensive validation.

Conclusion

Our work took place on the claim that causal learning, and in particular BSL methodologies,

provide useful tools for delivering a robust and interpretable exploratory analysis of clinical

data. We have put forward an integrated methodology, rooting on causal graph learning, that

provides practitioners with a pipeline of analytical steps amenable to

• identify and measure the strength of causal association between features and outcomes in a

fully-multivariate fashion;

• select causally relevant features and assess how they impact, separately, the outcome;

• provide a compact and interpretable procedural description of the outcome-determination

process to support clinical decision making.

We have demonstrated the effectiveness of our approach on a COVID-19 case study, where

we evaluated the causality relationship between clinical parameters and mortality in a cohort

of COVID-19 patients, confirming existing results. The analysis was carried out both splitting

the clinical variables into classes as well as using them altogether into an integrated causal

graph. Our clinical discussion provides compelling evidence of the robustness of the causal

relationships identified by our causal learning approach. The results of the causal analysis were

further used to build a highly explainable predictive model of mortality as a decision tree that

could be easily implemented in a real clinical context. Our empirical validation against a per-

mutation test setting, confirms the quality and relevance of the features identified by our

method, also in a predictive setting.

Thus, we propose the adoption of this workflow to discover complex cause and effect rela-

tionships in clinical high dimensional dataset, also for other applications. For instance, one

possible future work may consist in the study of targeted drugs by applying the presented

methodology to the data about the effects of such drugs on subjects with different symptoms,

comorbidities, personal and familial clinical history. Within the context of this Coronavirus

emergency, we hypothesize this multi-step approach may be useful for investigating how the

symptomatology, the care received and the clinical history of the patient impact on COVID

long-term effects, which are still very unclear [55, 56].

Finally, future improvements of the methodology itself may rely on the adoption of super-

vised deep learning models using causal inference [57], that have the advantage to integrally

accomplish both the prediction task and the detection of causal relationships.

Supporting information

S1 Table. Important parameters. Parameters used for the BSL and BDT analyses.

(PDF)

S2 Table. Performance evaluation of the LR and SVM (with linear and polynomial kernels)

algorithms. Results obtained with the SVM (linear and polynomial kernels) and Logistic

Regression algorithms. In all the 3 cases, the permutation test using random features shows
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significantly inferior results with respect to the features chosen with the causal analysis. Note

that the results of the permutation tests are the average of those obtained from 1,000 permuta-

tions.

(PDF)

S1 Fig. BSL analysis on separate classes of features, without incorporation of prior knowl-

edge. Image showing the BSL analysis applied to different categories of features. All the illus-

trated graphs are generated without taking the information provided by clinicians into

account.

(TIF)

S2 Fig. BSL analysis on the most relevant features, without incorporation of prior knowl-

edge. Graph generated with the most relevant features found from the graphs shown in S1 Fig.

This graph is generated without taking the information provided by clinicians into account.

(TIF)

S3 Fig. Logistic regression permutation evaluation. Results of the permutation test con-

ducted with the logistic regression algorithm.

(TIF)

S4 Fig. Linear SVM permutation evaluation. Results of the permutation test conducted with

the linear kernel SVM.

(TIF)

S5 Fig. Polynomial SVM permutation evaluation. Results of the permutation test conducted

with the polynomial kernel SVM.

(TIF)
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