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Abstract

Resting-state functional connectivity (RSFC) records enormous functional interaction

information between any pair of brain nodes, which enriches the individual-

phenotypic prediction. To reduce high-dimensional features, correlation analysis is a

common way for feature selection. However, resting state fMRI signal exhibits typi-

cally low signal-to-noise ratio and the correlation analysis is sensitive to outliers and

data distribution, which may bring unstable features to prediction. To alleviate this

problem, a bootstrapping-based feature selection framework was proposed and

applied to connectome-based predictive modeling, support vector regression, least

absolute shrinkage and selection operator, and Ridge regression to predict a series of

cognitive traits based on Human Connectome Project data. To systematically investi-

gate the influences of different parameter settings on the bootstrapping-based

framework, 216 parameter combinations were evaluated and the best performance

among them was identified as the final prediction result for each cognitive trait. By

using the bootstrapping methods, the best prediction performances outperformed

the baseline method in all four prediction models. Furthermore, the proposed frame-

work could effectively reduce the feature dimension by retaining the more stable fea-

tures. The results demonstrate that the proposed framework is an easy-to-use and

effective method to improve RSFC prediction of cognitive traits and is highly rec-

ommended in future RSFC-prediction studies.
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1 | INTRODUCTION

Resting-state functional connectivity (RSFC) has been found to be

associated with pathological conditions and physiological status of the

human brain (Cribben, Haraldsdottir, Atlas, Wager, & Lindquist, 2012;

Elanbari et al., 2014; Finn et al., 2015; Meskaldji et al., 2016), which

therefore could be used to understand individual differences in cogni-

tion and behavior (Jiang et al., 2018). Previous studies have reported

that FC patterns could be used to predict individual behavioral and

cognitive phenotypes, such as attention ability (Yoo et al., 2018), ver-

bal creativity (Sun et al., 2019), intelligence ability (Finn et al., 2015;

Jiang et al., 2019), and chronological age (Dosenbach et al., 2010;

Liem et al., 2017). To model the RSFC-phenotype association, four

regression algorithms including connectome-based predictiveLijiang Wei and Bin Jing have contributed equally to this work.
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modeling (CPM), support vector regression (SVR), least absolute

shrinkage and selection operator (LASSO), and Ridge regression have

been frequently adopted for their good performances and interpret-

abilities (Coloigner, Phlypo, Bush, Lepore, & Wood, 2016; Cui & Gong,

2018; Dadi et al., 2019; de Vos et al., 2018; Gao, Greene, Constable, &

Scheinost, 2019; Jiang et al., 2019; Meng et al., 2017; Ryali, Chen,

Supekar, & Menon, 2012; Shen et al., 2017; Toiviainen, Alluri,

Brattico, Wallentin, & Vuust, 2014). CPM is in fact a linear regression

model and has been successfully applied in predicting intelligence

(Beaty et al., 2018; Finn et al., 2015; Jiang et al., 2019), attention

(Rosenberg, Finn, Scheinost, Constable, & Chun, 2017), cocaine absti-

nence (Yip, Scheinost, Potenza, & Carroll, 2019), and reading compre-

hension (Jangraw et al., 2018). SVR implements space transformation

by some kernel function in order to achieve better prediction (Basak,

Pal, & Patranabis, 2007), and has been utilized in prediction of mental

disease (Rizk-Jackson et al., 2011), brain maturity (Dosenbach et al.,

2010; Nielsen et al., 2019), and painful sensation (Tu et al., 2015).

LASSO provides sparse representation by driving redundant features

to zero-valued weights, and performs well in investigation of reward-

related behavior (Ferenczi et al., 2016), mental state (Haufe et al.,

2014), temperament metrics (Jiang et al., 2018), and intelligence quo-

tient (Jiang et al., 2019). Ridge regression adds an L2 penalization on

the object function to shrink the regression coefficients, and shows

good prediction performances in age (Khosla, Jamison, Kuceyeski, &

Sabuncu, 2019), behavioral measures, and cognitive traits (Cui &

Gong, 2018; Gao et al., 2019).

For the high-dimensional RSFC, feature reduction is indispensable

since redundant or irrelevant information may confound the statistical

testing significance (Bunea et al., 2011), worsen the machine learning

model performance (Arbabshirani, Plis, Sui, & Calhoun, 2017;

Duangsoithong & Windeatt, 2010), and increase the computational

complexity. For regression tasks, correlation analysis between RSFC

and the target phenotypic measure (e.g., cognitive trait) is the com-

monest approach to select effective features (Dadi et al., 2019; Gabri-

eli, Ghosh, & Whitfield-Gabrieli, 2015). However, the correlation

analysis may not be able to catch the reliable correlational relationship

since resting state fMRI (rs-fMRI) data exhibit low signal-to-noise ratio

(SNR) and the correlation analysis is sensitive to outliers (Wilcox,

2004, 2005). Small perturbation in the data may lead to inclusion of

unrelated features or exclusion of useful features, thus the weak

robustness of correlation analysis can introduce false correlations

including Type I error and power problem (Rousselet & Pernet, 2012).

In addition, data distribution may be another easily ignored factor in

the correlation analysis: it is also susceptible to the clustered points,

curvature, heteroscedasticity, and range (Rousselet & Pernet, 2012).

All these conditions may cause that the features detected from the

whole dataset do not significantly correlate with the target pheno-

typic measure in a subset, resulting in unstable features, which may in

fact contribute little to the target phenotypic prediction. Thus, an ade-

quate feature selection method that could detect intrinsic stable RSFC

features is of great importance to the prediction task.

Bootstrapping is a statistical method that relies on the random

sampling (Efron & Tibshirani, 1997; Hall & Robinson, 2009), and any

focused statistical test can be examined in newly resampled datasets.

After repeating the resampling process several times, the stability of

the statistical significance in each resampled dataset could be

accessed, which could be finally used to ascertain the statistical test

by setting a specific threshold. The main advantage of bootstrapping

is that it does not rely on any assumption on the data, so it can ascer-

tain the actual and stable between-group statistical significance. A

few literatures have adopted bootstrapping to investigate the stability

of selected features. In Alonso-Atienza et al. (2012), the bootstrapping

was used as a backward feature selection method for cardiac ventric-

ular fibrillation discrimination. Ditzler reported that the bootstrapping

combined with Neyman–Pearson hypothesis test successfully

detected the statistically relevant features on both synthetic and real

data (Ditzler, Polikar, & Rosen, 2015). In Bunea et al. (2011), features

which were selected most frequently by penalized least-squares

regression methods in bootstrapping resamples were identified as

useful predictors in neuroimaging. However, few studies tried to

explore the influence of different parameter settings on the boo-

tstrapping. For example, Bunea et al. (2011) used the bootstrapping

with only one cutoff threshold (50% inclusion frequency) to derive

the features. Abram et al. (2016) proposed a quantile threshold boo-

tstrapping method for feature selection in penalized regression

models. Hence, studies were highly needed to make known how dif-

ferent parameter settings in the bootstrapping influenced the final

prediction performance.

This study explored a bootstrapping-based feature selection

framework to enhance the RSFC prediction performances in CPM,

SVR, LASSO, and Ridge models, and different parameter settings in

bootstrapping were compared in order to ascertain the optimal

parameter setting, which mainly included two categories: boo-

tstrapping without replacement (i.e., subsample without replacement)

and bootstrapping with replacement. To verify these bootstrapping-

based feature selection methods, a large public dataset from Human

Connectome Project was used in this study, and 13 cognitive traits

were selected as the prediction targets. We hypothesized that boo-

tstrapping could improve the RSFC prediction performances of CPM,

SVR, LASSO, and Ridge models.

2 | MATERIALS AND METHODS

2.1 | Resting-state fMRI data

The data came from public WU-Human Connectome Project (HCP)

1,200 release of 1,206 healthy subjects (age 22–37). All imaging data

were collected on a customized 3T ConnectomeScanner adapted from

a Siemens Skyra (Siemens, Erlangen, Germany) scanner using a stan-

dard 32-channel head coil. Rs-fMRI data were acquired with a

multiband pulse sequence with the following scanning parameters:

time repetition (TR) = 720 ms, time echo = 33.1 ms, field of

view = 208 × 180 mm2, flip angle = 52�, and voxel size = 2.0 mm iso-

tropic cube (Smith et al., 2013). Two scanning sessions (REST1 and

REST2) of high spatial–temporal resolution rs-fMRI data were
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acquired during two consecutive days. Both sessions were scanned at

right-to-left (run1) and left-to-right (run2) phase encoding direction,

and the functional images comprised 1,200 volumes in each run. The

current study adopted the 1,003 subjects with complete rs-fMRI runs

(a total of 4,800 time points). Note that the HCP database has two

types of reconstruction data: 191 subjects were reconstructed utiliz-

ing an original reconstruction algorithm (recon1) that performed sepa-

ration of the multiband multi-slice images after transforming the

acquired fully sampled data to frequency space along the readout

direction, while the other 812 subjects applied an upgraded algorithm

(recon2) that performed the separation in k-space. To avoid possible

influences caused by reconstruction methods and validate the gener-

alization of the proposed bootstrapping methods, we used

812 (recon2) subjects as a discovery dataset, and the remaining

191 (recon1) subjects as an independent validation dataset. For more

details of inclusion and exclusion criteria on the HCP dataset, please

see Van Essen et al. (2013).

2.2 | Preprocessing

The extensively preprocessed PTN (Parcellation+ Timeseries+

Netmats) data were utilized in our study. Details of preprocessing

steps could be found in Smith et al. (2013). In brief, each run of rs-

fMRI data underwent a minimal preprocessed pipeline and ICA+FIX to

remove the potential artifacts. All four runs were concatenated to

form 4,800 volumes for each individual. After region parcellation by

group ICA, the subject-specific FC matrices, or connectomes, were

calculated using Pearson's correlation and then Gaussianized into Z-

stats. Here, we adopted 300 ICA components as network nodes,

resulting in a connectivity matrix with size 300 × 300 for each

participant.

2.3 | Cognitive traits

Given that the cognitive activities were functionally modulated by the

brain, prediction of cognitive traits by RSFC was a feasible task

(Sripada et al., 2019; Stevens, 2009). Previous studies had shown that

RSFC patterns were closely associated with cognitive traits

(Santarnecchi, Galli, Polizzotto, Rossi, & Rossi, 2014; Sun et al., 2019).

In this study, 13 measures of cognitive tests were chosen as the pre-

diction targets that provided by HCP (Kong et al., 2019; Li et al.,

2019). These tests included Picture Sequence Memory, Dimensional

Change Card Sort, Flanker Task, Oral Reading Recognition, Picture

Vocabulary, Pattern Completion Processing Speed, List Sorting, Penn

Progressive Matrices, Delay Discounting, Variable Short Penn Line

Orientation, Short Penn Continuous Performance, and Penn Word

Memory (Table S1). Seven of them measured by NIH (National Insti-

tutes of Health) Toolbox were normalized to age-adjusted scores with

mean of 100 and SD of 15. Furthermore, some subjects with the miss-

ing cognitive measures were excluded in corresponding trait predic-

tion analysis (see Table S1 for missing subjects).

2.4 | Bootstrapping-based feature selection
methods

The bootstrapping-based feature selection methods sought to find sta-

ble features that were consistently identified in the resampling subsets.

Conventional bootstrapping method mainly focused on resample with

replacement, but it usually required a high amount of resample times,

which seemed not efficient enough for feature selection. Moreover,

medical imaging dataset was usually not large enough, in this condition,

bootstrapping without replacement might be more suitable to the finite

population. In this study, both bootstrapping with and without replace-

ment (Figure 1) were investigated, and a wide range of parameter set-

tings on bootstrapping (with and without replacement) were tested and

evaluated to make sure the optimal parameter setting of bootstrapping.

2.4.1 | Bootstrapping without replacement

Bootstrapping without replacement took out samples without

replacement from an original dataset, so each subject in the

resampling dataset was unique without duplication. For each cognitive

measure, the bootstrapping without replacement was applied on the

dataset to extract the feature vector. Let NB (number of boo-

tstrapping) denote the sampling times. Within each resampling itera-

tion, a portion of subjects were randomly selected without repetition.

The proportion of sampling was defined as bootstrap percentage (BP),

for example, BP = 50% indicated that half of all subjects were chosen

from the original dataset to form a resample subset. Spearman corre-

lation analysis was then conducted in each resampling set between

RSFC and cognitive measure, and significant features were selected

as predictors. After all bootstrapping iterations finished, a stability

threshold for frequency percentage (FP) of feature was used to deter-

mine final feature sets in NB bootstrapping datasets. For example, if

the stability threshold was set to 50%, then features whose FP more

than 50% would be selected into the final feature set, otherwise it

would be filtered as weak predictors.

2.4.2 | Bootstrapping with replacement

In the bootstrapping with replacement method, resamples were obtained

with replacement from the original samples, so the sample size of

resampling subset was same as the original dataset size. There were only

two parameters in this method, that is, NB and FP. Likewise, after per-

forming Spearman correlation analysis in NB bootstrapping subsets, fea-

tures with FP larger than stability threshold were chosen as predictors.

2.5 | Regression models

Four widely used regression models were employed in the study to

predict the cognitive traits with RSFC, including CPM, SVR, LASSO,

and Ridge regression.
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2.5.1 | Connectome-based predictive modeling

Briefly, CPM summarized the relevant RSFCs for each individual and

fitted the summary values with cognitive measures in a linear regres-

sion model. The detail steps of CPM were as follows:

1. Find features in RSFC matrices that correlated with the cognitive

measure, and significantly positive or negative features were

respectively selected.

2. Summarize selected feature values of positive feature set and neg-

ative feature set separately for each individual.

3. Perform univariate linear regression between the summary value and

the cognitive measure for positive and negative feature sets separately.

4. Test the model performance with the unseen testing data.

Here, label the CPM model using positive or negative feature sets

respectively as CPM-P or CPM-N.

2.5.2 | Support vector regression

SVR was based on statistical learning theory and fitted linear model

with Vapink's ε-sensitive loss function (Smola & Scholkopf, 2004). It

tried to solve an objective function f(x) whose predicted values of

training data deviated by no more than ε from the actual values and

flatness of regression line was maximized. Samples that deviated by

more than ε from their actual values were called support vectors.

Given N training samples ((x1, y1), …, (xN, yN)), the object function took

the following form:

min
β,ξi , ξ̂i

1
2

βk k2 +C
Xm

i=1

ξi + ξ̂i
� �

s:t:f xið Þ−yi ≤ ε + ξi,

yi− f xið Þ≤ ε+ ξ̂i,

ξi, ξ̂i ≥0

where β was the regression coefficient vector for features, m was the

number of support vectors, ξi and ξ̂i were slack variables, and C was

the penalty parameter that controlled the trade-off of penalty

between variance and bias. The object function was solved to obtain

a weight for each support vector. In this study, the linear kernel was

selected for SVR.

2.5.3 | Least absolute shrinkage and selection
operator

LASSO was a penalized regression method by adding L1-norm regu-

larization to ordinary least squares (Tibshirani, 1996). The method

F IGURE 1 The pipeline of bootstrapping framework
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could attenuate regression coefficients of correlated features except

one feature among them to zeros (Zou & Hastie, 2005), thus generat-

ing robust coefficients as well as parsimonious models. This algorithm

minimized the ordinary least squares plus the sum of absolute values

of regression coefficients β to obtain the estimated coefficients. The

object function was formed as below:

min
β

XN

i=1

f xið Þ−yið Þ2 + λ
XP

j=1

j βi j

where λ was the tuning parameter which controlled balance between

accuracy and sparsity.

2.5.4 | Ridge

Ridge applied L2-norm regularization on ordinary least squares, which

had the ability to shrink regression coefficients. The model minimized

ordinary least squares and the L2-norm regularization, and the object

function could be formulized as below:

min
β

XN

i=1

f xið Þ−yið Þ2 + λ
XP

j=1

βik k2

where λ controlled the trade-off between accuracy and shrinkage

strength.

At last, CPM, SVR, LASSO, and Ridge regression accompanied

with correlation analysis on the dataset were marked as the baseline

method, and the corresponding models combined with the

bootstrapping-based feature selection were regarded as the proposed

methods.

2.6 | Prediction framework

For each cognitive trait, a 10-fold cross-validation (CV) framework

was utilized in the discovery dataset. All individuals in the discovery

dataset were sorted according to values of cognitive measure and

then divided into 10 folds. To be specific, the (1st, 11th, 21st,…) sub-

jects were assigned to the 1st fold, the (2nd, 12th, 22nd,…) subjects

were assigned to the 2nd fold, and so on. This partition procedure

ensured the same distribution of the 10 folds and avoided random

bias and expensive computation due to random splitting (Cui & Gong,

2018). Within the prediction framework, each fold was iteratively

used for testing while the remaining ninefolds were used for training.

The bootstrapping feature selection methods were performed on the

training set to select features for CPM, SVR, LASSO, and Ridge

models (Figure 1). Significantly positive-, negative-, and combined-

correlated FCs were allotted into positive, negative, and combined

feature set (significant threshold p = .05). Then, the positive feature

set was adopted for CPM-P, the negative feature set for CPM-N, and

the combined feature set for SVR, LASSO, and Ridge. In both boo-

tstrapping method with and without replacement, a broad sets of boo-

tstrapping parameters including NB, BP, and FP were tested, where

NB was chosen from [10, 20, 50, 100, 500, 1,000] and FP from [50,

60, 70, 80, 90, 100%]. Besides, in bootstrapping without replacement,

BP was chosen from [25, 50, 60, 70, 80%]. All parameter settings

resulted in 180 combinations in bootstrapping without replacement

and 36 combinations in bootstrapping with replacement. For SVR,

LASSO and Ridge, inner fivefold CVs were employed to determine

their optimal model parameters (i.e., C and λ). Parameter C of SVR

ranged from [2−5, 2−4,…, 210] and parameter λ of LASSO and Ridge

ranged from [2−10, 2−9,…, 25] (Cui & Gong, 2018). The model perfor-

mance was evaluated by the correlation value (R) and the mean square

error (MSE) between predicted and actual cognitive values. In our

study, the reported correlation R andMSEwere averaged over 10 test-

ing folds. Among all candidate parameter combinations, the prediction

result with the largest R was served as the optimal bootstrapping

parameter setting.

2.7 | Feature dimension reduction

To illustrate the feature dimension reduction with bootstrapping-

based feature selection methods, the number of features selected by

baseline method and bootstrapping methods was respectively com-

pared. For each cognitive trait, the feature dimension was obtained

by counting the feature number on each fold and then averaged

across 10 folds. The final feature dimension was averaged across

13 cognitive traits to gain the mean feature dimension. Particularly,

for the bootstrapping methods, only the feature dimension derived

from the optimal bootstrapping parameter settings would be

considered.

2.8 | Computational cost

Since the bootstrapping methods required multiple resampling on the

original dataset, computational cost would be a noticeable concern

especially for a large dataset. Among the bootstrapping parameters,

concerning NB was the main source of computational cost, the run-

ning time of resampling and correlation test under each NB was quan-

tified for bootstrapping methods. Because only the bootstrapping

without replacement had BP, the running time in bootstrapping with-

out replacement was recorded for each BP and then averaged under

different NB. All procedures were carried out with a multi-core CPU

(Intel(R) Xeon(R) E5-2630 v4 @2.20GHz, 10 cores, 20 threads) with

128 GB memory.

2.9 | Evaluation in the validation dataset

In order to test the generalization of predictive models obtained from

the discovery dataset, we applied the predictive models acquired from
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F IGURE 2 The mean and standard
error of correlation R across 13 cognitive
trait predictions. For bootstrapping
methods, only the results derived from
optimal parameter settings were plotted.
Bootstrapping without replacement had
the highest prediction accuracy. See
Figure S1 for the corresponding mean
square error (MSE)

F IGURE 3 The correlation R of 13 cognitive trait predictions. The “bars” showed the mean and standard error of prediction correlation
R across 10-fold cross-validation
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the discovery dataset to predict subjects in the validation dataset.

Notably, the predictive model was obtained with the whole discovery

dataset, and features were selected by bootstrapping without

replacement and baseline method, respectively. The reason we only

used bootstrapping without replacement was that it displayed better

prediction performance and faster computation than bootstrapping

with replacement in the discovery dataset. Moreover, to simplify the

bootstrapping parameter settings in the prediction model, only eight

parameter combinations were explored based on the obtained opti-

mal parameter settings in previous section: NB [50, 100], BP [0.7,

0.8], and FP [0.8, 0.9]. Likewise, the prediction performance was

assessed by the correlation R and MSE between predicted and actual

cognitive values.

3 | RESULTS

3.1 | Bootstrapping improved prediction of
cognitive traits

Figure 2 summarized the mean correlation R (across 13 cognitive

traits) of each model using the baseline method and bootstrapping

method in discovery dataset, and only results derived from the opti-

mal parameters were plotted for bootstrapping methods. All models

using the refined feature sets derived from the optimal parameters

outperformed the baseline method. Compared with the baseline

method (mean correlation R = 0.15, 0.15, 0.21, 0.24, and 0.23 for

CPM-P, CPM-N, SVR, LASSO, and Ridge, respectively), the boo-

F IGURE 4 The comparison of mean
feature dimension across 13 cognitive
traits, where the feature dimension of
bootstrapping methods were obtained
under optimal parameter settings

F IGURE 5 Resting-state functional connectivity (RSFC) features of the Working Memory selected by the baseline method and the
bootstrapping methods in all 10-fold cross-validation. Features selected by the bootstrapping methods were derived from NB = 100, BP = 70%,
and FP = 80%. Orange and blue links denoted positive and negative features, respectively, and green links in bootstrapping methods denoted
shared features, that is, features that were overlapping between the baseline method and each of bootstrapping methods. Note that all features
selected by the bootstrapping methods overlapped with the baseline method
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tstrapping without replacement method increased the predictive cor-

relation values by 27.0, 33.6, 27.5, 14.8, and 18.5%. Among five

models, SVR, LASSO, and Ridge performed best and the mean correla-

tion R was up to 0.27, while CPM-P and CPM-N achieved similar per-

formances of mean correlation R = 0.19 and 0.20, respectively. In the

bootstrapping with replacement, the accuracy increased by 21.2, 23.9,

18.9, 12.1, and 14.0% for CPM-P, CPM-N, SVR, LASSO, and Ridge,

respectively. Similar to the bootstrapping without replacement, the

bootstrapping with replacement showed best accuracies in SVR (mean

correlation R = 0.25), LASSO (mean correlation R = 0.27), and Ridge

(mean correlation R = 0.26), and similar results in CPM-P (mean corre-

lation R = 0.18) and CPM-N (mean correlation R = 0.19). The best

prediction accuracies of 13 cognitive measures were illustrated in

Figure 3 for bootstrapping with and without replacement. Figure S1

showed the MSE (across 13 cognitive traits) of each model using the

baseline method and bootstrapping methods, and only results derived

from the optimal parameters were plotted for bootstrapping methods.

3.2 | Bootstrapping methods largely reduced
feature dimension

The feature dimension refined by the bootstrapping methods decreased

enormously compared with the baseline method (Figure 4). Additionally,

F IGURE 6 The mean time
consumption of the bootstrapping
methods across 13 cognitive traits

F IGURE 7 The optimal parameter setting for each cognitive measure in CPM-P, CPM-N, SVR, LASSO, and Ridge when using
(a) bootstrapping without replacement and (b) bootstrapping with replacement. The colored dots denoted different types of cognitive scores
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F IGURE 8 The mean correlation
R averaged across 13 cognitive traits in
the validation dataset using bootstrapping
without replacement. The prediction
accuracy was calculated by averaging the
correlation R of each trait-specific model
across 8 predefined parameter settings
and then averaging across 13 predictive
models. See Figure S2 for the

corresponding mean square error (MSE)

F IGURE 9 The correlation R of 13 cognitive trait predictions using the validation dataset. For bootstrapping without replacement, the “bars”
showed the mean and standard error of correlation R across eight predefined parameter settings

2310 WEI ET AL.



Figure 5 illustrated an example of features for Working Memory

selected by the baseline method and bootstrapping methods. More

importantly, the refined feature set by bootstrapping methods over-

lapped with feature set selected by baseline method (represented in

green links). Using the bootstrapping without replacement, the average

feature dimension decreased from 2,574 to 249 in CPM-P, from 2,648

to 97 in CPM-N, from 5,221 to 1,539 in SVR, from 5,221 to 1,342 in

LASSO, and from 5,221 to 1,441 in Ridge. Using the bootstrapping with

replacement, the average feature dimension decreased to 320 in CPM-

P, 235 in CPM-N, 3,273 in SVR, 2,921 in LASSO, and 3,185 in Ridge.

Generally, the bootstrapping without replacement reduced more fea-

tures than bootstrapping with replacement.

3.3 | Time consumption increased with the
number of bootstrapping

The time consumption of the bootstrapping methods gradually increased

with NB (Figure 6). Under the same NB, bootstrapping with replacement

consumed more time than bootstrapping without replacement. When

NB exceeded 500, the average consumption time became significantly

large, implying that NB was preferably set to be less than 500.

3.4 | Optimal parameter settings were not
constant for different cognitive traits

The optimal bootstrapping parameter settings (i.e., NB, FP and BP) for

each cognitive measure were depicted in Figure 7. Here, a dot in the

parameter space referred to the best parameter setting for one cogni-

tive measure. The results showed that most of the values of the opti-

mal NBs were small, and 72% of these were less than 100 in the

bootstrapping methods. As for FP and BP, they varied in different

models under different bootstrapping methods. In bootstrapping with-

out replacement, most optimal FPs were relatively high (0.7~0.9) for

CPM and LASSO, relatively small (around 0.5) for SVR, and moderate

(0.5~0.7) for Ridge. In bootstrapping with replacement, most optimal

FPs were relatively high (0.8~1.0) for CPM, LASSO, and Ridge, and

moderate (around 0.5) for SVR, while relatively low BPs (around 0.5)

were suitable for CPM, SVR, and Ridge, but moderate (around 0.8) for

LASSO.

3.5 | Bootstrapping also improved prediction of
cognitive traits in the validation dataset

Figure 8 illustrated the mean correlation R (across 13 cognitive traits)

of each model using the baseline method and bootstrapping (without

replacement) in the validation dataset. Compared with the baseline

method (mean correlation R = 0.10, 0.10, 0.20, 0.21, and 0.21 for

CPM-P, CPM-N, SVR, LASSO, and Ridge, respectively), the boo-

tstrapping without replacement obviously increased the predictive

correlation values by 5.8, 24.5, 4.3, and 7.2% for CPM-P, CPM-N,

LASSO, and Ridge separately, while the mean correlation R of SVR

remained almost unchanged. Among all models, LASSO and Ridge per-

formed best and reached mean correlation R = 0.22 and 0.23, SVR

achieved suboptimal performance at mean correlation R = 0.19, CPM-

P and CPM-N achieved similar performances of mean correlation

R = 0.11 and 0.12, respectively. The correlation R of 13 cognitive mea-

sures was illustrated in Figure 9, and mean MSE across 13 cognitive

traits was shown in Figure S2.

4 | DISCUSSION

In order to improve the performance of RSFC prediction, this study

developed a bootstrapping based feature selection framework for RSFC

prediction of cognitive traits. Using a large sample from HCP dataset,

the prediction of cognitive traits with the bootstrapping methods signif-

icantly outperformed the baseline CPM, SVR, LASSO, and Ridge model

under optimal parameters, and the dimension of selected features

decreased dramatically using the bootstrapping methods. In addition,

bootstrapping could improve the predictive performances in the valida-

tion dataset, demonstrating its good generalization.

4.1 | Bootstrapping enhanced the RSFC-
phenotype associations

Modeling cognitive traits with RSFC is a persistent pursuit in modern

cognitive neuroscience studies (Petersen & Sporns, 2015; Poldrack &

Farah, 2015). A previous study showed that the diversity of individual

cognition can be represented by the inter-subject variations in the FC

patterns (Mueller et al., 2013). However, the FC patterns may be

noisy and unreliable (Braga & Buckner, 2017; Gordon et al., 2017;

Gratton et al., 2018; Mueller et al., 2013), thus confounding the pre-

diction precision. In recent years, improving RSFC-phenotype associa-

tion is a major concern in the domain, and several methodologies have

been proposed from different perspectives. The first way is to use

individual-specific RSFC patterns to predict the behavioral traits. In

Qin et al. (2019) and Kashyap et al. (2019), they decomposed RSFC

(or timecourse) to extract individual-specific RSFC (or timecourse)

with different methods, which obtained obvious improvements in pre-

diction. The second way is to combine various kinds of information

with RSFC to enhance the prediction, such as task-fMRI based FC

(Elliott et al., 2019; Gao et al., 2019; Xiao, Stephen, Wilson, Calhoun, &

Wang, 2019) and dynamic FC (Liegeois et al., 2019; Lim et al., 2018;

Park et al., 2018), which could provide complementary information to

the conventional FC. The third way is to decrease the influence of the

possible noise in rs-fMRI signal, for instance, the global signal regres-

sion (Li et al., 2019) and motion artifact correction (Nielsen et al.,

2019) have been reported to advance the RSFC-behavior prediction.

The last way is to use the bagging strategy (Breiman, 1996) to

improve the prediction with RSFC (Jollans et al., 2019).

Our proposed method provides another perspective to promote

the RSFC-phenotype prediction, and displays several advantages.
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First, the method does not need any collection of additional data

(e.g., task fMRI) or any other processing (e.g., computation of dynamic

FC and FC decomposition), so it is an easy-to-use and effective

method. Second, the current method can purify the selected feature

sets, making the prediction model more succinct and interpretable. It

is known that reducing feature dimension is always beneficial to

attenuate overfitting in neuroimaging data (Jollans et al., 2019). At

last, previous studies (Alonso-Atienza et al., 2012; Ditzler et al., 2015)

used bootstrapping or bagging in a computation expensive manner,

which requires the model construction and optimization in each boo-

tstrapping resample dataset. This may lead to an unacceptable run-

ning time for the heuristic searching of optimal parameter setting in

large neuroimaging dataset, and these studies had to use a constant

parameter setting to conduct such methods without any optimal

parameter searching. In contrast, our method is a more feasible man-

ner and also displays good generalization that verified in the valida-

tion dataset.

As we know, good stability of biomarkers is thought to be as

important as high classification performances (He & Yu, 2010). Cur-

rently, the importance of the stability of the rs-fMRI signal (e.g., test–

retest reliability) and the stability of selected biomarkers across sites

(e.g., multicenter dataset) have been widely accepted (Marchitelli

et al., 2016; Mueller et al., 2015; Noble, Scheinost, et al., 2017; Noble,

Spann, et al., 2017), however, there is seldom study specially focusing

on the stability of selected biomarkers across subsamples in one

dataset. Indeed, heterogeneity exists in nearly all human neuroimaging

datasets regardless of whether the participants are healthy or not,

which may therefore result in instability in feature sets derived from

subsamples and further weakens the prediction performance. It is nec-

essary to eliminate the heterogeneity in the dataset and to obtain sta-

ble representations standing for neural activities. Figures 4 and 5

clearly showed that the amounts of fake correlated feature sets were

large, implying that it was very beneficial to take into account the sta-

bility of feature selection for machine learning studies on neuroimag-

ing dataset. Our study demonstrated that the proposed

bootstrapping-based framework is an effective way to eliminate the

heterogeneity in the dataset and to obtain feature sets with good

stability.

4.2 | Bootstrapping with replacement versus
bootstrapping without replacement

The bootstrapping with and without replacement were compared in

the study. Although bootstrapping with replacement was referred

more frequently than bootstrapping without replacement, it was

reported not to guarantee reliable results sometimes. In Strobl,

Boulesteix, Zeileis, & Hothorn (2007), for example, feature selection in

random forest was biased by bootstrapping with replacement, while

important measures of predictors could be accessed more reliably by

bootstrapping without replacement. This phenomenon was not hard

to explain, bootstrapping with replacement ensured the resample size

as same as the original dataset, but the replication samples might

introduce possible bias into the final feature selection, which was

especially obvious in a finite dataset (e.g., neuroimaging data). For

bootstrapping without replacement, the resamples was a subset of

original dataset, so they could be regarded as sampling from the same

population, and properties of statistical test in resamples were consis-

tent with the original data (Rospleszcz, Janitza, & Boulesteix, 2016). In

our study, bootstrapping without replacement selected less features

and showed better prediction performances for cognitive measures

than bootstrapping with replacement. Moreover, bootstrapping with-

out replacement required less computational cost, because it res-

ampled less samples from original dataset than bootstrapping with

replacement did. Since bootstrapping without replacement demon-

strated superiority in improving prediction performance, reducing

redundant features and running cost than bootstrapping with replace-

ment, we recommended bootstrapping without replacement as a fea-

ture selection technique to draw reliable predictors.

4.3 | Comparison of CPM, LASSO, SVR, and Ridge
regression

CPM had poorer prediction performance compared with SVR, LASSO,

and Ridge models. There were three possible aspects accounted for it:

(a) CPM is a simple linear regression model, while SVR, LASSO, and

Ridge are models with L1 or L2-norm regularization, which may there-

fore increase the model complexity and obtain better prediction per-

formances. (b) The correlated feature sets were respectively divided

into positive and negative feature sets in CPM, while SVR, LASSO,

and Ridge used their combination, which may also weaken the CPM

performance significantly. (c) CPM assigned same weight to all fea-

tures, which might underestimate key predictors and overestimate

weak predictors. However, when using bootstrapping methods, CPM

achieved relatively large improvement in prediction and the most

obvious reduction of features, suggesting future studies using CPM

should consider the bootstrapping methods.

SVR could produce sparse model since it only relied on support

vectors, and it could effectively decrease overfitting risk and display

good generalization. However, efficiency was a crucial problem for

high-dimensional data while SVR was tremendously expensive in com-

putation for model fitting (Cui & Gong, 2018; Shen et al., 2017).

LASSO ensured sparseness by randomly selecting one feature

from correlated features, which was shown to perform well in chal-

lenging situation like potential features size exceeded the sample size

(Abraham et al., 2017; Bunea, Tsybakov, & Wegkamp, 2007a, 2007b;

Zhang & Huang, 2008). However, when confronting the condition

that the feature number was remarkably larger than the sample size, it

might meet such a problem: LASSO could only retain no more than

N features (N is the sample size), thus some informative features

might be discarded in the model (Efron, Hastie, Johnstone, &

Tibshirani, 2004; Ryali et al., 2012).

Ridge regression can handle the problem of multicollinearity by

adding a small positive quantity in the diagonal elements of design

matrix (Hoerl & Kennard, 2000), whereas Ridge regression was unable
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to produce parsimonious model since it kept all predictors in the

model without any selection (Zou & Hastie, 2005).

Although the four regression algorithms adopted were different,

when combined with bootstrapping methods, the predictive models

obtained higher prediction performances (Figure 2) and lower feature

dimensions (Figure 3), suggesting that the benefits of the boo-

tstrapping methods were not limited to specific regression algorithm.

Besides, the bootstrapping methods displayed good generalization in

the validation dataset, demonstrating bootstrapping methods should

be adopted in future prediction tasks.

4.4 | Optimal selection of parameter setting

There were three parameters for the bootstrapping methods (NB, BP,

and FP), and it is not known beforehand which parameter setting was

best for a give problem. In both bootstrapping methods, most of the

best performances were achieved with NB less than 100 in discovery

dataset, implying that the bootstrapping did not require a mass of

resampling times to acquire stable features. Besides, small NB could

lessen computational cost, so we recommended small NB (<100) for

the bootstrapping methods. FP indicated the stability of the features

in the resampling subset, thus specifying an appropriate threshold for

FP was a key setting. In Bunea et al. (2011), the FP threshold was set

to a single value (50%) in a bootstrapping-based feature selection

method in order to not miss any possibly relevant features, but our

study found the optimal FP threshold varied for different cognitive

traits, indicating that constant threshold setting could not guarantee

the best performance. BP stood for the resample percentage of the

bootstrapping without replacement from the original dataset, which

also did not show obvious rules. The results from the validation

dataset also demonstrated that although the optimal parameter set-

ting for bootstrapping without replacement was not searched, it still

enhanced overall prediction performances in different regression

models. Therefore, in practical application, to identify optimal parame-

ters is time consuming and seems unnecessary, to choose the parame-

ters from a reasonable range would be also useful to achieve higher

prediction accuracy.

4.5 | Other methodological considerations

Group ICA has been found to be a better way to define the functional

brain nodes than the atlas-based methods for its better prediction accu-

racy (Dadi et al., 2019), hence, group ICA parcellation was adopted to

calculate the corresponding FC in the study. There were various brain

parcellations derived from group ICA provided in HCP dataset, that is,

[15, 25, 50, 100, 200, and 300]. To have direct comparisons among dif-

ferent parcellations, the baseline CPM, SVR, LASSO, and Ridge method

were used to predict the cognitive traits with FC matrices under differ-

ent parcellations. The results were illustrated in Figure 10, and the main

tendency was that the prediction accuracy increased with component

dimension, and grew slowly from 100 to 300 ICA components, and sim-

ilar trend was also revealed in other studies (Abraham et al., 2017; Dadi

et al., 2019). Therefore, the current analysis was only based on

300 independent components. Besides, significant threshold p-value

was an important parameter for correlation analysis. In order to con-

serve features as much as possible, the p-value was set at .05 rather

than other more stringent values in this study. In addition, concerning

different head motion correction strategies and global signal regression

were still controversial in functional connectivity studies, and we just

focused on the bootstrapping related improvement, so we did not com-

pare any other preprocessing steps on the preprocessed HCP data.

4.6 | Limitation and future work

The bootstrapping methods were more expensive in computation

compared with the baseline method, which could be speeded up via

parallel computing with multiple CPUs, making the bootstrapping

methods feasible in practical use. Although the bootstrapping

methods could improve the RSFC-phenotype association, the predic-

tion accuracy was still not high enough, and future work should com-

bine other improvement strategies together to make the RSFC-based

prediction applicable for clinical requirement. At last, although our

study only focused on RSFC, the bootstrapping methods could easily

extend to any correlation-based prediction tasks with any imaging

data, such as task-fMRI functional connectivity, DTI and EEG.

F IGURE 10 The prediction
correlation R in different independent
component number. Each point was mean
correlation R averaging across
13 cognitive trait predictions, and only
baseline method was used for feature
selection. The result of 15 ICA
components was not shown since no
significant features were selected for
some cognitive traits
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5 | CONCLUSION

This study presented a bootstrapping-based feature selection frame-

work and applied to CPM, SVR, LASSO, and Ridge models, and the

results demonstrated the bootstrapping methods could not only

improve the RSFC-phenotype association but also purify the selected

features into a lower dimension. Future RSFC prediction works were

highly recommended to use the bootstrapping methods especially

bootstrapping without replacement.
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