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Fetal programming refers to an intrauterine stimulus or insult that shapes growth,
development and health outcomes. Dependent on the quality and quantity, dietary fats
can be beneficial or detrimental for the growth of the fetus and can alter insulin signaling by
regulating the expression of key factors. The effects of varying dietary fat content on the
expression profiles of factors in the neonatal female and male rat heart were investigated
and analyzed in control (10% fat), 20F (20% fat), 30F (30% fat) and 40F (40% fat which
was a high fat diet used to induce high fat programming) neonatal rats. The whole neonatal
heart was immunostained for insulin receptor, glucose transporter 4 (Glut4) and forkhead
box protein 1 (FoxO1), followed by image analysis. The expression of 84 genes,
commonly associated with the insulin signaling pathway, were then examined in 40F
female and 40Fmale offspring. Maintenance on diets, varying in fat content during fetal life,
altered the expression of cardiac factors, with changes induced from 20% fat in female
neonates, but from 30% fat in male neonates. Further, CCAAT/enhancer-binding protein
alpha (Cebpa) was upregulated in 40F female neonates. There was, however, differential
expression of several insulin signaling genes in 40F (high fat programmed) offspring, with
some tending to significance but most differences were in fold changes (≥1.5 fold). The
increased immunoreactivity for insulin receptor, Glut4 and FoxO1 in 20F female and 30F
male neonatal rats may reflect a compensatory response to programming to maintain
cardiac physiology. Cebpa was upregulated in female offspring maintained on a high fat
diet, with fold increases in other insulin signaling genes viz. Aebp1, Cfd (adipsin), Adra1d,
Prkcg, Igfbp, Retn (resistin) and Ucp1. In female offspring maintained on a high fat diet,
increased Cebpa gene expression (concomitant with fold increases in other insulin
n.org January 2022 | Volume 12 | Article 7720951
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signaling genes) may reflect cardiac stress and an adaptative response to cardiac
inflammation, stress and/or injury, after high fat programming. Diet and the sex are
determinants of cardiac physiology and pathophysiology, reflecting divergent
mechanisms that are sex-specific.
Keywords: diabetes, fetal programming, insulin resistance, insulin signaling, metabolic syndrome, nutrition, obesity
INTRODUCTION

Fetal programming is defined as the predisposition of the fetus to
metabolic abnormalities due to stimuli or insults during critical
developmental phases. The fetus is highly responsive to any
alterations within the placental environment, and its nutritional
status is an integral component that affects both growth and
maturation (1). Insulin resistance, which is closely associated with
obesity, predisposes to cardiovascular disease, diabetes and
metabolic syndrome (2, 3) – pathologies that contribute greatly to
global morbidity andmortality (4). However, independent of overt
diabetes, altered glucose homeostasis impacts the autonomic
functions of the heart, culminating in an increased probability for
developing cardiac disease (5). Diet is a major contributor to
multiple metabolic conditions, where high fat diets (HFDs), rich
in trans and saturated fatty acids, correlate to insulin resistance (6,
7). A HFD can be used to induce programming effects in offspring
i.e. high fat programming. Since type 2 diabetes and obesity are
closely associated, most diabetes models display an obese
phenotype (8). A maternal HFD and/or maternal gestational
obesity contribute to the origin of metabolic disease in the
offspring, are associated with congenital abnormalities, and may
increase neonatal morbidity and mortality (9) with gestational
HFDs adversely affecting the offspring’s metabolic physiology
(10). Maternal gestational obesity predisposes offspring to
diabetes, insulin resistance and hyperinsulinemia (11, 12). Rats
maintained on a HFD during pregnancy and lactation were insulin
resistant and glucose intolerant (13), with a long-term maternal
HFD suggested to induce maternal insulin resistance and alter
offspring neuroendocrine systems (14). In normal pregnancies,
hyperlipidemia presents; in diabetic pregnancies, hyperlipidemia
is exacerbated (15) and fetuses are exposed to hyperglycemia. In
diabetic pregnancies, the compromised maternal metabolic milieu
therefore exposes thedeveloping fetus toelevatedglucoseand lipids,
that stimulate fetal hyperinsulinemia and adversely affect the
developing fetal heart (16). In offspring from mothers with
diabetic pregnancies, maintenance on a HFD further impaired
diastolic and systolic function through oxidative stress,
mitochondrial dysfunction, the accumulation of lipid droplets
and metabolic derangements (16).

In obesity, cardiac insulin resistance is an early adaptive event,
which develops prior to insulin resistance in other organs, and
can be induced in rodents after 10 days of high fat feeding (17).
After maternal overfeeding (HFD + high sugar diet), fetal hearts
exhibited dysregulated pathways e.g. the overactivation of the c-
Jun N-terminal kinase (JNK)-insulin receptor substrate 1 (IRS1)
pathway and AMP-activated protein kinase (AMPK, a
cardioprotective factor) downregulation (18). Mouse offspring
n.org 2
from obese mothers were hyperinsulinemic with enhanced
cardiac insulin signaling evident by upregulation of the distal
insulin signaling pathway viz. p-AKT (or protein kinase B), p-
ERK (extracellular signal-regulated kinase), p-mTOR
(mammalian target of rapamycin) and p38-MAPK (mitogen-
activated kinase) (11). Cardiac insulin resistance impairs cardiac
metabolic efficiency and can induce contractile dysfunction
(19, 20).

Approximately 60%-80% of cardiac energy requirements are
met by fatty acid metabolism (21). Abnormalities in lipid uptake
or intracellular metabolic activities may be causal in the etiology
of heart disease, excluding dilated cardiomyopathy due to
metabolic aberrations (22). Lipotoxic cardiomyopathy (or fatty
heart) is characterized by cardiac dysfunction attributed to excess
lipid accumulation (23). Lipid droplets are typically present in
the hearts of diabetic and metabolic syndrome patients (24–26).
With multiple gaps in the knowledge, and whilst the
consequential effect of diet on ventricular hypertrophy and
cardiac function is somewhat controversial, left ventricular
hypertrophy was reduced in hypertensive rodents fed a 60% fat
diet concomitant with dysfunctional systole (27). Fatty acid
oxidation was elevated in rodents fed a HFD compared to
rodents on a diet low in fat and rich in carbohydrate content (28).

There are several key factors required for maintaining cardiac
integrity (i.e. cardiac physiology and structure). Insulin receptors
are tyrosine kinase derived transmembrane receptors (29). Defects
in their structure and subsequent activity are a significant area of
current research; however, cardiac insulin resistance has not been
extensively investigated (30). Glucose transporter 4 (Glut4) is a
major contributor in the uptake and removal of glucose from the
circulation, and consequently a salient regulator of systemic glucose
homeostasis (31). Glut4 belongs to a family of 13 transporter
proteins (Glut1-12 and H+/myoinositol co-transporter (HMIT))
(32) that facilitate sugar-substrate translocation and are encoded in
the mammalian genome (33, 34). Glucose transporters are highly
expressedduringpostnatal development and in the adult heart (35).
The transcription factor, forkhead box protein 1 (FoxO1), displays
multiple functions in the regulation of apoptosis, senescence,
proliferation, stress resistance, metabolism, differentiation and
autophagy (36, 37). Therapy aimed at cardiac-derived FoxO1
could reduce mortality caused by heart failure in diabetic patients
(38).Cebpa andCebpb play roles in the onset of abdominal obesity,
and are linked to altered adipokine levels, cardiovascular disease
and diabetes (39). TheCebpb gene resides on chromosome 20q13.1
(40),with linkages to traits for diabetes, obesity and insulin (41–47).

Optimal cardiac development and physiology requires
balanced and adequate intrauterine nutrition (macro- and
micronutrients), with sufficient oxygen to the fetus, to enable
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offspring to manage metabolic stressors that provoke the
pathogenesis of cardiovascular disease (48). Different sex
mechanisms of fetal cardiac programming can be induced by a
suboptimal in utero environment (49) e.g. placental insufficiency,
hypoxia, protein deficiency or high fat programming. Genetic,
epigenetic and hormonal factors contribute to sex specificity
(50). In offspring, high fat programming induces sex-specific
metabolic alterations (51), such as sex-specific hepatic fat
accumulation (52) and altered histone binding at the leptin
receptor (Lepr) promoter in female offspring’s hippocampus
and interleukin-6 (IL-6) with epigenetic deregulation of Lepr
in female hippocampal neurons (in vitro) (53). In the murine
placenta, maternal diets shape gene expression with female
placentae more sensitive to nutritional programming; nutrition
has a global effect on gene expression that is specific, and female
fetuses respond more robustly, with distinct sexual dimorphic
gene expression (54).

Surprisingly, few studies on cardiac lipid metabolism have
been conducted relative to adipose tissue and liver metabolism
studies (22). In our previous studies, using diets varying in fat
content, most (~90%) of the circulating fatty acids that were
analyzed in neonates were unaltered (55). However, neonates
maintained on 20% and 30% fat diets (as energy) in utero (i.e.
20F and 30F neonates respectively), displayed increased crown to
rump length, higher body weights (56), with reduced heart
weights in 30F and 40F neonates (40F neonates were
maintained on a 40% fat diet in utero), elevated glycemia in
the 20F neonates, and no differences in insulinemia and
glucagonemia (55). Litter size and maternal body weight did
not play a role in 40F mothers, but the caveat was that mothers
maintained on a HFD throughout gestation had reduced food
intake compared to the control and 20F mothers, that may have
contributed to their offspring’s stunted growth and development
(55). Studies have examined the programming effects of a HFD
on insulin signaling in the liver and muscle, however minimal
information is available on fetal cardiac insulin signaling. Insulin
signaling and resistance are implicated in the pathogenesis of
cardiovascular disease. The targeting of IRS1 and IRS2 through
the activation of the Akt [Protein kinase B (PKB)] and FoxO1
signaling cascade and the related protein kinases and target genes
is critical for diabetes prevention and treatment and the
accompanying cardiac dysfunction (57). To determine the
sexual dimorphic effects, we therefore investigated, in female
and male neonatal offspring, the effect of (i) maternal diets of
20%, 30% and 40% (40% fat which is a HFD to induce high fat
programming) fat on cardiac immunoreactivity for insulin
receptor, Glut4 and FoxO1; and (ii) a maternal gestational
HFD on cardiac insulin signaling gene expression.
METHODS

Study Design
Following institutional ethical approval, three-month old virgin
Wistar rats weighing 220-275g were paired for mating (55). Upon
confirmation of pregnancy, dams were removed, individually
housed and categorized into groups (n = 4 per group).
Frontiers in Endocrinology | www.frontiersin.org 3
Pregnant rats were fed diets (all patties) of 10% (control), 20%
(20F), 30% (30F) and 40% (HFD) fat as energy throughout
gestation, with free access to water. The dietary macronutrient
profiles were Control [10.69% fat, 15.13% protein, 74.16%
carbohydrates with 453.37 total kcal/100g]; 20F [20.68% fat,
15.09% protein, 64.22 carbohydrates with 525.51 total kcal/
100g]; 30F [31.00% fat, 15.77% protein, 53.23% carbohydrates
with 554.08 total kcal/100g] and 40F [40.17% fat, 15.09% protein,
44.73% carbohydrates with 600.81 total kcal/100g] (55). Protein
was constant at 15% in all the diets (to avoid the effects of protein
deficiency); the fat comprised saturated fatty acids (viz. myristic,
palmitic and stearic acid) and the mono-unsaturated fatty acid,
oleic acid, derived from animal fat; with carbohydrates mainly
derived from starch to mimic a westernized diet (58). In each one-
day old rat, after euthanasia, hearts were harvested and either
snap frozen in liquid nitrogen or processed through paraffin-wax
fixation (55). Offspring were randomly assigned, from each dam,
to ensure that each dam accounted for an even distribution of
offspring across all the groups. There were no differences in litter
sizes, gender distribution, circulating total triglyceride and total
free fatty acid concentrations (55).

Immunohistochemistry and
Image Analysis
Heart tissue embedded in paraffin wax (4 mm sections) were set
on microscopic slides and de-waxed (twice) in xylene at room
temperature (10 minutes each). Tissue sections were then
rehydrated in the following solutions at room temperature:
100% ethanol twice (5 minutes each), absolute methanol for 20
minutes, 90% ethanol for 5 minutes, 70% ethanol for 5 minutes,
50% ethanol for 5 minutes and deionized in distilled water for 5
minutes. Slides were placed in 0.1 M sodium citrate (pH 6.0) and
boiled for 5 minutes at 80°C. Thereafter, slides were cooled to
room temperature for 30 minutes and immersed in deionized
distilled water for 5 minutes. Slides were placed in 20% hydrogen
peroxide (in methanol) for 20 minutes and repeated four times in
total. Following this inhibition of endogenous peroxidase
activity, slides were washed twice in tris-buffered saline (TBS)
for 5 minutes each. TBS/BSA (tris-buffered saline/3% bovine
serum albumin/10% casein buffer which is a blocking agent) was
added to each slide (100 ml) for 1 hour (fresh blocking agent
applied every 30 minutes). Finally, antibody [anti-insulin
receptor (C-terminal; Sigma, USA), 1:50; anti-Glut4 (Abcam,
UK), 1:500; anti-FoxO1 (Abcam, UK), 1:75] was added to
individual slides and incubated in a humidified chamber for 18
hours at 4°C.

Following incubation, the slides were allowed to come to
room temperature and a secondary antibody (Vector Lab, USA)
was applied for 10 minutes followed by the ABC Elite kit (Vector
Labs, USA) as per manufacturer’s instructions. The chromogenic
agent DAB (3,3’-Diaminobenzidine) was added to the slides for
up to 5 minutes, and the reaction was quenched with TBS.
Tissues were counterstained in Mayer’s hematoxylin for up to 5
minutes and washed under running water. Slides were then
dehydrated i.e. the reverse of rehydration from deionized
distilled water to 100% ethanol, prior to placing them in xylene
for approximately 5 minutes. Finally, slides were mounted in a
January 2022 | Volume 12 | Article 772095
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permanent medium (DPX, Merck, South Africa) and viewed
under light microscopy.

Immunostained slides for insulin receptor (combined
offspring: n = 8-10; female offspring: n = 3-6; and male
offspring: n = 4-7), Glut4 (combined offspring: n = 9-12;
female offspring: n = 3-6; and male offspring: n = 5-7) and
FoxO1 (combined offspring: n = 8-10; female offspring: n = 3-6;
and male offspring: n = 5-7) were examined by employing a
bright field/phase contrast microscope (DMLB; Leica, Germany)
attached to a camera (DFC 300FX, Leica). The adaptor
magnification was X10 and the objective lenses (Leica) used
X20, X40 and X100 magnification which had numerical
apertures of 0.50, 0.70 and 1.3, respectively. Tagged image
format (24-bit TIFF) images were captured (Leica LAS image
capturing software). Immunostaining was quantified by
converting the archived 24-bit TIFF images to 8-bit binary
images with a grey scale of 256 phases. Specific immunostained
grey scale intensities were quantified by image analysis (AnalySIS
Five, Soft Imaging Systems, Germany) with pre-determined
threshold range-limited pixel/mm2 values. Any non-specific
background immunostaining, calculated from staining in method
controls, was discounted from all positive immunostaining.

Enzyme-Linked Immunosorbent
Assay (ELISA)
Frozen neonatal hearts were thawed on ice followed by
homogenization on ice in 1 ml of PBS (Dounce Homogenizer).
Samples were centrifuged (Eppendorf, Germany) at 5000 x g for
5 minutes to retrieve the supernatant and diluted 1:1 in PBS (5 ml
supernatant: 5 ml PBS) for ELISA (Rat Glut4 ELISA Kit,
Elabscience, USA) analysis.

In a 96-well ELISA plate, 100 ml of the standard working
solution (40 ng/ml), constituted from the reference standard, and
sample diluent was added to the first two columns. A volume of
100 ml of the sample was added to the remaining wells, in
triplicate. The plate was incubated (in a water bath) at 37°C
for 90 minutes. Following the removal of all liquid from the plate,
100 ml of biotinylated detection antibody was added and the plate
was incubated at 37°C for 60 minutes. The wells were aspirated,
washed thrice (with wash buffer), 100 ml of horse radish
peroxidase conjugate was added, followed by incubation at
37°C for 30 minutes. The liquid was aspirated from the wells,
the plate was washed five times, and 90 ml of substrate reagent
was added to each well, followed by incubation at 37°C for 15
minutes. The reaction was stopped by adding 50 ml of stop
solution to each well. All reagents used in the assay were
provided in the ELISA kit. The Glut4 concentrations
(combined offspring: n = 3-6; female offspring: n = 3; male
offspring: n = 3 for control, 30F and 40F but n = 0 for 20F) were
estimated by the mean measurements at 450 nm using an ELISA
plate reader (microplate reader, BioRad 3550, BioRad, UK) by
interpolation from the standard curve.

RNA Isolation and mRNA Gene Expression
Heart tissue (~20mg), was harvested frommale (n= 10) and female
(n = 10) neonatal rats, immersed in 1 ml of RNA later (Ambion,
Invitrogen, Thermofisher Scientific, USA) and stored at -80°C.
Frontiers in Endocrinology | www.frontiersin.org 4
Total RNA was isolated with the RNeasy mini kit (Qiagen,
Germany). Briefly, in a 2 ml Eppendorf tube, the heart tissue (11-
20 mg) was homogenized in 600 ml RLT buffer (with 10 ml b-
mercaptoethanol per 1ml of RLT buffer) and a stainless-steel bead
using the Qiagen tissue lyser. The lysate was centrifuged at 4°C and
the supernatant was transferred to a new 2 ml tube. Then 70%
ethanol was added to the supernatant, mixed and centrifuged at
15000 rcf. Half of this volumewas added to a spin column provided
in the kit and centrifuged at 15000 rcf for 15 seconds. The flow-
through was discarded, and the step was repeated with the
remainder of the supernatant/ethanol mixture. Subsequent steps
where buffers RW1 and RPE were added to the spin columns were
followed up and included the elution of RNA with 50 µl of RNase
freewater.The isolatedRNAwas treatedwithDnaseusingTURBO-
DNA free (Ambion) to remove any gDNA contamination. The
nanodrop spectrophotometer was used to quantify and determine
the purity of the isolated RNA, while the RNA integrity was assessed
by capillary electrophoresis with the Agilent Bioanalyser 2100
(Agilent Technologies, USA).

Total RNA was reverse transcribed to cDNA using the RT2

First Strand Kit (Qiagen, Germany). Rat Insulin Signaling Pathway
RT2 Profiler PCR Arrays (Qiagen, Germany) were used to analyze
the differential gene expression. The cDNA was added to the RT2

SYBR Green qPCR Master Mix then aliquoted in the wells of the
array plate. An ABI 7500 Instrument (ThermoFisher Scientific,
USA) was used to perform the RT-qPCR, and relative gene
expression was determined using the DDCt method. Each array
had 84 assay genes with 5 housekeeping genes (viz. Actb, B2m,
Hprt1, Ldha and Rplp1) (Table S2), and a reverse transcription
efficiency and DNA contamination control. Three RNA biological
replicates were pooled and repeated, in triplicate, for each
experimental condition.

The CT values were tabulated for data analysis on http://
www.qiagen.com/geneglobe with samples assigned to control
and test groups. The data were normalized to the panel of
reference genes. Fold change/regulation was calculated with the
DDCt method: DCT was calculated between the gene of interest
and average of reference genes, followed by DDCT calculations
[DCT (test group)- DCT (control group)]. Fold change was then
calculated using the 2^ (-DCT) formula.

Statistical Analysis
For image analysis, the Kruskal Wallis test was done (overall
comparison of the four groups), by sex for each group, and a
linear regression model (analyzed log-transformed data) followed
by pairwise comparison for sex independently. The analysis of data
was executed via Stat v13.a (StataCorp LP, USA). For ELISA, the
mean and SEM and group comparisons were analyzed by row
analysis, and Bonferroni tests with Graph Pad Prism 8 software
(GraphPad software, USA). For gene expression, fold change
(2^ (- Delta CT)) represented the normalized gene expression
(2^ (- Delta CT)) in the test sample divided by the normalized
gene expression (2^ (- Delta CT)) in the control sample. Fold
regulation represented fold changes that were biologically
significant: where fold regulation = 1 reflected no change, fold
changes >1 indicated upregulation, and fold changes <1 indicated
downregulation, with fold changes ≥1.5 and ≤1.5 reported as
January 2022 | Volume 12 | Article 772095
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upregulated or downregulated genes, respectively. The p values
were calculated with the Student’s t-test of the replicate 2^ (- Delta
CT) values for each gene in the control group and 40F groups. For
the statistical analysis, p < 0.05 was significant.
RESULTS

Immunoreactivity for Insulin Receptor,
Glut4 and FoxO1
Insulin Receptor Immunoreactivity
There were no differences in insulin receptor immunoreactivity
in the combined phenotype (Figure 1A). However, 20F female
neonates and 30F male neonates had increased insulin receptor
immunoreactivity (Figure 1A). Further, 30F and 40F female
neonates had reduced insulin receptor immunoreactivity
compared to 20F female neonates (Figure 1A).

When comparing sex, 20F male neonates had reduced insulin
receptor immunoreactivity relative to 20F female neonates (Figure 1B).

Glut4 Immunoreactivity
There were no differences in Glut4 immunoreactivity in the
combined phenotype (Figure 2A). In female neonates, 20F and
30F females showed higher Glut4 immunoreactivity compared to
the control and 40F females. However, in male neonates, 30F and
40F males showed an increase in Glut4 immunoreactivity
compared to the control and 20F males.

When comparing sex, control and 20F males had reduced
Glut4 immunoreactivity compared to control and 20F females
respectively (Figure 2B).

FoxO1 Immunoreactivity
There were no differences in FoxO1 immunoreactivity in the
combined phenotype (despite what appeared to be increases in
20F, 30F and 40F neonates, that were non-significant)
(Figure 3A). In female neonates, 20F, 30F and 40F females
had higher FoxO1 immunoreactivity compared to the control;
with 40F females also exhibiting higher FoxO1 immunoreactivity
compared to 30F females (Figure 3A). In male neonates, 30F and
40F males had increased FoxO1 immunoreactivity compared to
the control (similar for Glut4 immunoreactivity); and 40F males
also had increased FoxO1 immunoreactivity compared to 20F
males (Figure 3A).

When comparing sex, control and 30F male neonates had
increased FoxO1 immunoreactivity relative to control and 30F
female neonates respectively (Figure 3B).

Glut4 Concentrations
Glut4 concentrations were reduced in 40F female neonates
compared to 30F female neonates (Table S1). No samples were
available for determining ELISA concentrations in 20F
male offspring.

Insulin Signaling Gene Expression
Eighty four genes involved in insulin signaling were investigated,
with differential gene expression in high fat programmed female
and male neonates (Table S2). By fold change, high fat
Frontiers in Endocrinology | www.frontiersin.org 5
programming altered 31 (37%) of the 84 genes of the insulin
signaling pathway in both female and male neonates, of which 17
(20%) genes were unique, 7 (8%) were shared in female and male
neonates, which affected 15 (18%) of the genes in female
neonates and 16 (19%) of the genes in male neonates
(Tables 1, 2 and S2).

In 40F female neonates, Cebpa, was upregulated 2.51 fold (p <
0.05),Aebp1 (p=0.098) andCfd (p=0.074) tended tobeupregulated,
whereas Fbp, G6pc, Gck, Igfbp, Lep, Prkcz, Retn, Serpine 1 and Ucp 1
had >1.5 fold increases (non-significant) (Table 1). In 40F female
neonates, Cebpb, Prkcg and Tg were downregulated, with >1.5 fold
decreases (non-significant) (Table 1).

In 40F male neonates,Adra1d (p = 0.057) and Prkcg (p = 0.071)
tended to be upregulated whereas Cfd, Dok2, Fbp1, Frs3, G6pc,
Igfbp1, Pklr, Retn, Srebf1 and Ucp1 had >1.5 fold increases (non-
significant) (Table 2). In 40F male neonates, Hk2, Ins2, Kras and
Pdpk1 had >1.5 fold decreases (non-significant) (Table 2).
DISCUSSION

Programming-induced alterations in insulin signaling is a
consequence of maternal nutrition (e.g. over and undernutrition)
during pregnancy (59) which influences offspring growth,
development and health. Any alterations in nutrition during fetal
life shape health outcomes that may present as early as neonatal life,
and is expected to either be transient (e.g. corrected to some extent by
eating healthier) or exacerbate and persist with consistent unhealthy
nutrition and/or overnutrition. This reflects themetabolic agility and
compensatory responses to fetal programming.

The control diet represented a low fat diet with 10% fat, with
increasing fat content from20%-40% in the experimental diets. The
first part of the study reported on the varying fat content i.e. 20%,
30% and 40% fat, whereas the second part of the study focused on a
high (40%) fat diet (i.e. high fat programming). Various diets can
induce obesity and programming such as diets high in saturated fat,
sucrose and calories. Westernized diets contain 36%–40% fat by
energy (60). A 60% fat rodent diet diverges too greatly from control
rodent diets, therefore rodent diets of 40%-45% fat more closely
mimic diets consumed by people (60). Further, in rodentmodels of
obesity, HFDs with high saturated fat content, more closely mimic
human pathophysiology as they are often highly palatable and
calorically dense to promote weight and fat gain (61). However,
rodents have variable responses to diets, with sex, age and strain
influencing their responses, and younger rodents andmalesmay be
more sensitive to obesity and its co-morbidities (61). In rodent
models of developmental programming, the windows to induce
obesity are short in duration, i.e. primarily the fetal and lactation
phases, which may be insufficient to induce obesity with a HFD,
unless the mothers are obese and/or diabetic or there are other
obesogenic factors and/or compromised metabolic states to drive
the obese phenotype.

Varying Fat Content Alters Insulin Receptor,
Glut4 and FoxO1 Immunoreactivity
The first phase of the study reported on altered immunoreactivity,
in the neonatal heart, of the insulin receptor, Glut4 and FoxO1,
January 2022 | Volume 12 | Article 772095
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factors with roles in maintaining cardiac physiology and insulin
signaling, and demonstrated sex-specific effects after maintenance
on diets varying in fat content i.e. 20%, 30% and 40% fat diets. One
of the earliest defects in insulin resistant rats, due to HFDs, is
dysfunctional auto-phosphorylation of the insulin receptor (62).
Female neonatal offspring maintained, in utero, on a 20% fat diet
and theirmale counterparts on a 30% fat diet, had increased insulin
receptor immunoreactivity that may reflect a compensatory
mechanism in response to their respective diets. In the combined
phenotype,neonatesmaintainedon20%or30%fat dietshadhigher
body weights (56) with elevated glycemia in the former (55), which
with the increased insulin receptor immunoreactivity reflect early
events in the pathogenesis insulin resistance. High fat programmed
neonates (combined phenotype) were hyperglycemic (63) with
impaired insulin release from islets (64) and insulin resistant (65).
Interestingly, in both female and male neonates maintained on a
HFD, cardiac insulin receptor gene expression (data not shown)
and immunoreactivity were unaltered.

A 30% fat diet (in utero) consistently programmed increased
cardiac Glut4 immunoreactivity in both female and male
Frontiers in Endocrinology | www.frontiersin.org 6
neonates. Cardiac Glut4 immunoreactivity was also increased in
female neonates, after maintenance on a 20% fat diet and in males
maintained on a HFD in utero, which again reflected a variation
in the percentage of fat content to elicit an effect, which was lower
in female neonates at 20%, and distinctive sexual dimorphic
programming responses in cardiac Glut4 immunoreactivity.
When comparing the diets per sex, the control and 20F female
neonates had higher cardiac Glut4 immunoreactivity relative to
their male counterparts which demonstrated the sex-specific
effects. Glut4 concentrations were not fully determined due to
insufficient sampling, but in 40F female neonates, the Glut4
concentrations were reduced relative to the 30F neonates in
alignment with immunoreactivity data.

FoxO1 is implicated in the pathogenesis of diabetic
cardiomyopathy, and has a role in the regulation of
dysfunctionalities in cardiac glucose and fatty acid metabolism
(66–68). In female neonates, cardiac immunoreactivity for
FoxO1 was consistently increased after maintenance on either
a 20%, 30% or 40% fat diet. Thus, there was a lower fat threshold
to elicit a consistent programming response in female neonates,
A

B

FIGURE 1 | (A) Insulin receptor immunoreactivity. Combined neonates, female neonates, and male neonates maintained on either a control, 20% fat (20F), 30% fat
(30F) or 40% fat (40F; high fat) diet. *p < 0.05 for 20F females compared to control females; and 30F males compared to control males. †p < 0.05 for 30F and 40F
females compared to 20F females. (B) Insulin receptor immunoreactivity (sex vs. diet). Female and male neonates maintained on either a control, 20% fat (20F), 30%
fat (30F) or 40% fat (40F; high fat) diet. ‡p < 0.05 for 20F males compared to 20F females.
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and the increased immunoreactivity for FoxO1 may be an
adaptive programming response that was consistent
irrespective of varying dietary fat content. In male neonates
maintained on a 30% or 40% fat diet, cardiac immunoreactivity
for FoxO1 was increased reflecting a clear programming
response at a higher fat threshold, with no programming effect
with a 20% fat diet. These changes mirrored the cardiac Glut4
immunoreactivity which demonstrated consistent programming
effects in male neonates in FoxO1 and Glut4 immunoreactivity.
Unlike insulin receptor and Glut4, the cardiac immunoreactivity
for FoxO1 was reduced in control and 30F female neonates
compared to male neonates, which again revealed distinctive sex-
specific programming effects.

In the combined neonatal data, there were no differences in
cardiac insulin receptor, Glut4 or FoxO1 immunoreactivity.
However, when accounting for sex, differences were apparent,
thus highlighting the importance of sex-specific studies and
effects. There is variable capacity for insulin sensitivity in females
and males (69, 70), with sexual dimorphic effects of fetal cardiac
Frontiers in Endocrinology | www.frontiersin.org 7
programmingdue to anunfavorable in utero environment (49) (e.g.
high fat programming or protein deficiency in utero) that trigger
sex-specific metabolic derangements in offspring (51). In female
neonates, maintenance on a 20% fat diet revealed a consistent
increase in insulin receptor, Glut4 and FoxO1 immunoreactivity
that was mirrored in male neonates maintained on a 30% fat diet.
Thus there were (i) distinctive sex-specific effects on cardiac insulin
signaling and (ii) lower dietary fat content induced changes in
female neonates.

High Fat Programming Alters Cardiac
Insulin Signaling
Maternal nutrition, during gestation and/or lactation, largely
determines fetal and neonatal growth and development and
shapes offspring’s health outcomes. A maternal HFD during
gestation diminishes maternal metabolism and physiology and,
through high fat programming, provides a suboptimal intrauterine
environment for fetal growth and development, thereby
conferring unfavorable cardiac outcomes to offspring (71). As a
A

B

FIGURE 2 | Glut4 immunoreactivity. Combined neonates, female neonates, and male neonates maintained on either a control, 20% fat (20F), 30% fat (30F) or 40%
fat (40F; high fat) diet. *p < 0.05 for 20F and 30F females compared to control females; and 30F and 40F males compared to control males. †p < 0.05 for 40F females
compared to 20F females; and for 30F and 40F males compared to 20F males; §p < 0.05 in 40F females compared to 30F females. (B) Glut4 immunoreactivity (sex
vs. diet). Female and male neonates maintained on either a control, 20% fat (20F), 30% fat (30F) or 40% fat (40F; high fat) diet. ‡p < 0.05 for control and 20F males
compared to control and 20F females, respectively.
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cardiac stressor, high fat programming alters the expression of
cardiac factors that modify cardiac structure and function (71), i.e.
may induce cardiac remodeling, with specific programming
induced alterations reported across species [reviewed in (71)]. In
high fat programmed neonates (combined phenotype), heart
weights were reduced (55) suggesting some heart stunting and
possible structural compromization and/or modifications. Insulin
signaling gene expression was studied in high fat programmed
female and male neonates (second phase of the study). This is the
first study, to our knowledge, to report on the upregulation of
cardiac Cebpa mRNA expression in high fat programmed female
neonatal offspring. High fat programmed female offspring showed
a 2.5 fold increase in Cebpa mRNA expression. Cebpa, which is
required for terminal adipocyte differentiation, is activated in the
epicardium due to developmental cues and stress signals (72), and
has roles in regulating postnatal systemic energy homeostasis and
A

B

FIGURE 3 | (A) FoxO1 immunoreactivity. Combined neonates, female neonates, and male neonates maintained on either a control, 20% fat (20F), 30% fat (30F) or
40% fat (40F; high fat) diet. *p < 0.05 for 20F, 30F and 40F females compared to control females; and 30F and 40F males compared to control males. †p < 0.05 for
40F males compared to 20F males. §p < 0.05 for 40F females compared to 30F females. (B) FoxO1 immunoreactivity (sex vs. diet). Female and male neonates
maintained on either a control, 20% fat (20F), 30% fat (30F) or 40% fat (40F; high fat) diet. ‡p < 0.05 for control and 30F males compared to control and 30F
females, respectively.
TABLE 1 | Differential gene expression in 40F female neonates.

Gene Fold regulation P value

1 Aebp1 1.88 0.098

2 Cebpa 2.51 0.025*

3 Cfd 1.89 0.074

4 Fbp1 2.94 0.362

5 G6pc 1.60 0.423

6 Gck 3.12 0.249

7 Igfbp 2.02 0.341

8 Lep 2.02 0.164

9 Prkcz 1.67 0.146
10 Retn 2.77 0.346
11 Serpine 1 1.61 0.164
12 Ucp 1 18.19 0.352
13 Cebpb -1.52 0.310
14 Prkcg -1.75 0.210
15 Tg -1.6 0.203
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lipid storage. In embryogenesis, mitogenic factors are secreted by
the epicardium for cardiomyocyte proliferation and for
multipotent progenitor cells to develop the heart’s vasculature
and fibrous architecture (73). Interestingly, in female neonates,
Cebpa was upregulated but Cebpb was down regulated. Mice with
reduced cardiac C/EBPb (Cebpb) levels displayed resistance to
cardiac failure after pressure overload (74). In high fat
programmed female neonates, Cebpa upregulation may be
triggered in response to stress (72) whereas Cebpb
downregulation may be an adaptive cardioprotective mechanism
(74), However, early molecular responses and adaptations need to
be supported with protein studies (as transcripts may not
necessarily be translated i.e. mRNA and protein expression may
not correlate for a specific factor) and contextualized with cardiac
physiological data. These limitations can be addressed in
future studies.

The different insulin signaling genes that tended to
significance and some genes that expressed fold changes ≥1.5
are discussed to discern their potential interrelations and roles in
cardiovascular disease, diabetes and obesity. The overexpression
of adipocyte enhancer-binding protein 1 (Aebp1) promoted
atherosclerosis in AEBP1-transgenic mice with hyperlipidemia
and atherosclerotic lesions in their proximal aortas (75).
In obese individuals, elevated leptin may contribute to low-
grade inflammation, rendering them more susceptible to
cardiovascular diseases; whereas in dilated cardiomyopathy,
leptin is a biomarker for the progression of heart failure
independent of immune responses (76). Aebp1 (p = 0.098)
tended to be upregulated 1.9 fold similar to a 2 fold increase
(non-significant) in leptin (Lep) expression, which could suggest
cardiac inflammation and injury. Complement factor D (Cfd or
adipsin), a serine protease, has a role in the activation of the
alternative pathway of the complement system (77, 78). In female
neonates, Cfd tended to be upregulated (there was also a non-
significant increase in male neonates). In adipose tissue, adipsin
mRNA abundance was increased during fasting in normal rats
and in insulin deficient diabetes induced by streptozotocin (79).
Frontiers in Endocrinology | www.frontiersin.org 9
Further, in humans, plasma adipsin was elevated in obesity (80–
82) and in coronary artery disease (83). The upregulation of Cfd
in female and male neonates may also reflect a cardiac
adaptive mechanism.

Adrenoceptor alpha 1D (Adra1D) is the predominant subtype
in human coronary arteries (84). The a1-adrenergic receptor is
expressed in the myocardium and vasculature of humans and
rodents, regulates cardiovascular physiology, and was recently
reported to be cardioprotective e.g. involved in hypertrophy,
ischemic pre-conditioning and protection from apoptosis (85,
86). Thus in high fat programmed male neonates, the
upregulation ofAdra1Dmay be linked to cardioprotection (85, 86).

Although other protein kinase C (PKC) isoforms may have
more prominent roles in cardiovascular physiology, Prkcg is
involved in blood pressure modulation at the central nervous
system level (87) and may protect neural tissue from ischemia.
The PKCg (Prkcg) isoform is expressed mainly in cells in the
brain, neuronal tissues, the lens and retina. PKCa, b, d and ϵ are
expressed in the heart with PKCϵ playing a protective role (88).
PKCϵ is involved in cardiac preconditioning (89). The brain and
eye contain PKCg and PKCϵ which may protect against stroke
and neural ischemia (90). The C1 domains in PKCg and PKCϵ
are open and easily activated that enable their activation by
oxidative signals and reactive oxygen species (ROS) (88). Both
PKCg and PKCϵ have roles in controlling the mitochondria and
gap junctions during ischemic stress in neural tissues and the
heart, respectively (88). Prkcg may play a role in the
communication between cells and contribute to the positive
inotropic effect induced by the a-adrenergic receptors (91, 92)
which establishes a link between Adra1d and Prkcg. In the male
offspring maintained on a HFD, the expression of Adra1d (p =
0.057) and Prkcg (p = 0.071) were increased 2 fold and 1.8 fold
respectively, that any reflect a protective and/or regulatory
response by these two genes, in the neonatal male heart after
high fat programming.

Several genes in the insulin signaling pathway displayed >1.5
fold increases, albeit non-significant, in both female and male
neonates viz. Cfd (already discussed), Fbp1, G6pc, Igfbp and Retn
reflecting similar effects in both sexes. However, this was specific
to the insulin signaling factor as Pkrg had a fold decrease in
female neonates but a fold increase in male neonates, and there
were also several unique genes with >1.5 fold changes per sex.
Further investigation with additional pathway arrays and the
determination of maternal and paternal gene expression profiles
may provide further insights.

Fbp1 (or Folbp1) transports folate and appears to modulate
glycerol gluconeogenesis in the liver, plays a role in
embryogenesis in mice (93) and may regulate appetite and
adiposity. Fbp1 may also mediate the transferring of maternal
folate to embryos during neurulation (93) and susceptibility to
heart defects (94). Fbp1 gene expression was decreased in the
offspring of diabetic rats and in embryos cultured in high glucose
(30 mmol/l glucose) after 24 hours of culture (95). G6PC is a key
enzyme in glucose homeostasis. The impact of the fold increases
in Fbp1 and G6pc in the neonatal heart remain undefined.
TABLE 2 | Differential gene expression in 40F male neonates.

Gene Fold regulation P value

1 Adra1d 2.12 0.057
2 Cfd 1.98 0.265
3 Dok2 1.64 0.105
4 Fbp1 4.47 0.393
5 Frs3 1.56 0.298
6 G6pc 5.21 0.380
7 Igfbp1 3.59 0.369
8 Pklr 2.14 0.390
9 Prkcg 1.77 0.071
10 Retn 2.69 0.383
11 Srebf1 2.39 0.351
12 Ucp1 9.83 0.370
13 Hk2 -1.59 0.543
14 Ins2 -1.83 0.525
15 Kras -1.55 0.299
16 Pdpk1 -1.69 0.549
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IGFBP1 promotes neovascularization in response to ischemia,
is required for the endothelium to respond appropriately to injury
(96) and may be implicated in obesity. Retn (Resistin) induces
insulin resistance in rodents, plays a role in atherosclerosis and
cardiovascular disease, induces nuclear factor kappa-light-chain-
enhancer of activated B cells (NFkB) activity and activates MAPKs
such as Erk or p38 and Akt (97). Further, there are high resistin
levels in cardiomyocytes derived from type 2 diabetic hearts, with
resistin overexpression altering cardiac contractility and
promoting cardiac hypertrophy potentially through the IRS1/
MAPK pathway (98). In humans, circulating resistin correlated
with inflammatory markers and predicted coronary
atherosclerosis to connect metabolic signals, inflammation and
atherosclerosis (99) and was linked to obesity-induced
inflammation and cardiovascular events (100), evident by
correlations with proinflammatory cytokines, lipids and systolic
and diastolic blood pressure in obese adolescents with metabolic
syndrome (100). The fold increases of Igfbp and Retn support a
response to cardiac inflammation, stress and/or injury, in
alignment with upregulation of Cebpa, and fold increases of
Aebp1, Cfd (adipsin), Adra1d and Prkcg. Further, there was high
upregulation in Ucp1 mRNA in both sexes (an 18 fold increase in
females and a 9.8 fold increase in males). UCP1 activity is induced
during ischemia-reperfusion and mitigates reperfusion-induced
damage, likely through lowering mitochondrial hyperpolarization
at reperfusion, and reducing ROS production (101). Increased
Ucp1mRNA expression, in high fat programmed female and male
offspring, may be suggestive of heart injury and inflammation.
Further investigation is required by conducting an inflammatory
array in cardiac tissue and to further elucidate pathways affected
by high fat programming, that may become more impactful over
the offspring’s life-course.

Sex-Specific Differences and
Cardiovascular Disease
In the neonates maintained on diets varying in fat content,
including high fat programmed neonates, there were distinctive
sex-specific differences in the expression profiles of cardiac and
insulin signaling factors. In the combined phenotype, differences
in expression of factors were undetected. Sex is a determinant of
alterations in cardiac physiology and structure (102) evident, in
humans and rodents, by sex differences in arterial blood pressure
(103–105). A maternal HFD induced cardiac hypertrophy; in
adult male rat offspring, it increased cardiac susceptibility to
ischemic-reperfusion injury, and differentially regulated cardiac
angiotensin II (AngII), AngII receptor type 1 (AGTR1) and type
2 (AGTR2) expression through various mechanisms involved in
the sex-specific alterations (49). Female db/db mice gained
weight and were hypertensive with greater increases in left
ventricular mass and worse diastolic dysfunction, whereas male
db/db mice had accelerated microvascular rarefaction (102),
highlighting the sex-specific cardiomyopathy associated with
metabolic disease mirroring human diabetes, obesity and
metabolic dysfunction (102). Female spontaneously
hypertensive rats had delayed aortic dysfunction and associated
myocardial remodeling that was dependent on sex-specific
differences in levels of local angiotensin type 2 receptor (AT2R)
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and Mas receptor (MasR) (106). Further, they better preserved
aortic endothelial function, had lower activities of matrix
metalloproteinase 2 (MMP2), preserved elastin, had less
fibrosis, and developed less left ventricular hypertrophy and
cardiac fibrosis (106). These studies reveal sex-specific effects
in cardiovascular disease, different cardiac pathologies in females
and males, and some delays in the onset of cardiovascular disease
(possibly cardioprotection) in females, in support of some of
our findings.
CONCLUSION

Maintenance on diets varying in fat content during fetal life altered
the expression of cardiac factors and induced sex-specific changes.
A 20% fat diet in female neonates and a 30% fat diet in male
neonates were sufficient to induce differences, evident by increased
immunoreactivity for insulin receptor, Glut4 and FoxO1. In female
neonates maintained on a 40% fat diet (high fat programmed),
CebpamRNA expression was upregulated that may reflect cardiac
stress. In high fat programmed offspring, the fold increases in other
insulin signaling genes viz. Aebp1, Cfd (adipsin), Adra1d, Prkcg,
Igfbp, Retn (resistin) andUcp1may suggest an adaptative response
to cardiac inflammation, stress and/or injury. Programming with
varying fat content altered cardiac factor immunoreactivity in
neonatal offspring that were sex-specific. High fat programming
also altered insulin signaling gene expression in a sex-specific
manner. Therefore, diet and sex are determinants of cardiac
physiology and pathophysiology, that reflect divergent
mechanisms in female and male neonatal offspring.
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