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ABSTRACT
Hepatoblastoma is a kind of extreme malignancy frequently diagnosed in children. Although 
surgical resection is considered as the first-line treatment for hepatoblastoma, a relatively large 
population of patients have lost the preferred opportunity for surgery. Administration of locor-
egional ablation enables local tumor control but with the deficiency of insufficient ablation, 
residual tumor, and rapid progression. In this study, we integrated 219 hepatoblastoma and 121 
non-cancer liver tissues to evaluate the expression of NR2F6, from which a higher NR2F6 level was 
found in hepatoblastoma compared with non-cancer livers with a standard mean difference (SMD) 
of 1.04 (95% CI: 0.79, 1.29). The overexpression of NR2F6 also appeared to be an efficient indicator 
in distinguishing hepatoblastoma tissues from non-cancer liver tissues from the indication of 
a summarized AUC of 0.90, with a pooled sensitivity of 0.76 and a pooled specificity of 0.89. 
Interestingly, nude mouse xenografts provided direct evidence that overexpressed NR2F6 was 
also detected in residual tumor compared to untreated hepatoblastoma. Chromatin immunopre-
cipitation-binding data in HepG2 cells and transcriptome analysis of HepG2 xenografts were 
combined to identify target genes regulated by NR2F6. We finally selected 150 novel target 
genes of NR2F6 in residual tumor of incomplete ablation, and these genes appeared to be 
associated with the biological regulation of lipid metabolism-related pathway. Accordingly, tar-
geting NR2F6 holds a therapeutic promise in treating residual recurrent hepatoblastoma after 
incomplete ablation.
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1 Introduction

Hepatoblastoma is the most prevalent hepatic 
tumor in children, accounting for 75% to 80% of 
pediatric liver malignancies [1]. Hepatoblastoma is 
a fetal-like tumor deriving from primordial 
embryonic cells believed to recapitulate liver 
growth and development [2,3]. In general, surgical 
resection is considered to be the preferred treat-
ment for hepatoblastoma patients [4]. However, 
hepatoblastoma is characterized by rapid progres-
sion and invasiveness; more than half of the 
patients are diagnosed at an advancing stage, for 
which surgical resection delivers limited benefits, 
especially for patients with stage III/IV hepatoblas-
toma [5,6]. Conventional treatments, including 
surgery and combined chemotherapy, may not be 
suitable for the child suffering from metastatic and 
unresectable hepatoblastoma who has already 
received extensive therapies. For such patients, 
ultrasound-guided tumor ablation seems to be an 
alternative option. For such patients, ultrasound- 
guided tumor ablation seems to be an alternative 
option [7].

In recent years, ultrasound-guided tumor abla-
tion has become the preferred clinical strategy 
for primary small liver tumors in adults because 
of the advantages of being minimally invasive 
with fewer complications compared to surgical 
resection [4,8]. But of note, some studies 
observed an important clinical phenomenon 
that recurrent residual tumor after incomplete 
ablation showed a more advanced ability on pro-
gression and invasiveness than recurrent tumor 
following surgery [9–12]. Increasingly successful 
cases with ultrasound-guided thermal ablation 
for recurrent or unresectable hepatoblastoma 
were reported during the past decade 
[7,11,13,14], while few studies currently focus 
on the clinical problem of residual hepatoblas-
toma after incomplete ablation, for which its 
underlying molecular mechanism remains largely 
unclear. Based on the emerging application of 
liver tumor ablation, in-depth research to reveal 
the mechanism of proliferation and invasion of 
residual cancer cells after incomplete ablation is 
about to promote precise medical treatment for 
patients with residual hepatoblastoma.

Transcription factor nuclear receptor subfamily 
2, group F, member 6 (NR2F6) is a member of 
a nuclear receptor superfamily that has been 
shown to be crucial for the regulation of biological 
events, such as metabolism, reproduction, and 
development [15]. Several reports have under-
scored the emphasis of NR2F6 in human cancers 
[16–20]. For head and neck squamous cell carci-
noma (HNSCC), a higher NR2F6 protein level had 
been detected in primary tumors that developed 
into locally recurrent tumors compared with non-
recurrent primary cancers, indicating high expres-
sion of NR2F6 protein may be a useful biomarker 
for early prediction of local recurrences in HNSCC 
[19]. Besides, a study published in 2018 provided 
direct evidence to manifest that NR2F6 functioned 
as an intracellular immunity checkpoint, and 
genetic elimination of NR2F6 enables improved 
PD-L1 blockade activity of immunotherapy [20]. 
Nevertheless, whether NR2F6 is a direct factor to 
incite more progression of residual hepatoblas-
toma justifies further investigation.

In this study, we confirmed a higher expression 
of NR2F6 in 219 cases of hepatoblastoma than 121 
cases of non-cancer child liver by combining high 
throughput RNA sequencing (RNA-seq) data. We 
therefore hypothesized that overexpressed NR2F6 
might contribute to the carcinogenesis of hepato-
blastoma. The aim of this paper is to investigate 
the role of NR2F6 in the progression of residual 
tumor. The nude mouse xenografts were per-
formed, which indicated an upregulated NR2F6 
level in the ablation xenografts after incomplete 
ablation. Furthermore, targets regulated by the 
transcription factor NR2F6 were identified by inte-
grating ChIP-seq and nude mouse xenograft mod-
els. These findings supported that NR2F6 might be 
a prospective therapeutic target for recurrent resi-
dual hepatoblastoma after insufficient ablation.

2. Materials and methods

2.1 Evidence-based samples for evaluation of 
the NR2F6 level

To systematically evaluate the expression level of 
NR2F6 in hepatoblastoma, we tried to obtain avail-
able samples from several public databases (GEO, 
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SRA, and ArrayExpress) through the searching 
words of hepatoblastoma. The samples that met 
the following criteria would be included [1]: 
NR2F6 expression was detected by well-established 
methods, such as PCR, microarrays, RNA-seq, et al. 
[2]; samples derived from human hepatoblastoma 
and liver tissues rather than xenografts [3]; tissues 
for both hepatoblastoma and liver tissues should 
not be less than three samples [21].

2.2 Nude mouse xenograft model

In order to explore the underlying mechanisms of 
NR2F6 in residual hepatoblastoma, nude mouse 
xenograft experiments were performed to simulate 
incomplete ablation of human hepatoblastoma. 
Human hepatoblastoma (HepG2) cell line was 
provided by Shanghai Institutes for Biological 
Sciences, Chinese Academy of Sciences. HepG2 
cells were cultured in 25 cm2 dishes containing 
Dulbecco’s Modified Eagle’s Medium (Thermo 
Scientific, Inc.) supplemented with 10% fetal 
bovine serum and 1% streptomycin-penicillin anti-
biotic mixture in an atmosphere of 5% CO2 at 
37°C for 7 days. And specific pathogen-free 
BALB/c nude mice (N = 8; female; 6 weeks; 8– 
22 g) were purchased from Shanghai SLAC 
Laboratory Animal Co., Ltd. Of note, the ove 
[22]. Nude mice were randomly separated into 
two groups when the transplanted tumor grew to 
around 10 mm. After nude mice were anesthetized 
with 1% pentobarbital, the experimental group 
(N = 4) underwent treatment of incomplete abla-
tion through the Cool-tip™ radiofrequency abla-
tion system (power: 30 W; time: 10 s; 
temperature: 70 ± 5°C). Meanwhile, controls 
(N = 4) were treated by the Cool-tip™ radiofre-
quency ablation system (power: 0 W; time: 10 s; 
temperature: 20 ± 5°C). Theoretically, genetic 
changes occur in the cancer cells around the abla-
tion site when cells are subjected to thermal sti-
mulation, and the cancer cells of incomplete 
ablation show more aggressive progression than 
untreated cells. The previous publications have 
proven that this experiment can imitate the biolo-
gical properties similar to residual liver tumor 
observed clinically [22–25]. Following another 

24-h culture, HepG2 xenografts were removed 
and immediately protected by RNAsafer 
Stabilizer Reagent (OMEGA, Guangzhou, China) 
for RNA-seq detection. Differentially expressed 
genes between the incomplete ablation group and 
untreated controls were analyzed using the limma 
package of R language. Differently expressed genes 
(DEGs) would be selected with a statistic p-value < 
0.05 and a log2|fold-change (FC)|>1. Additionally, 
this experiment was approved by the Ethics 
Committee of the First Affiliated Hospital of 
Guangxi Medical University (Nanning, China).

2.4 Statistical analysis

Statistical analysis was performed using Prismpad 
8.0 and R language. All raw expression data were 
normalized into a log 2(x + 1) scale, and gene 
expression levels were calculated into mean ± SD. 
Students’ t-tests were used to examine expression 
differences between the two groups. And for sys-
tematic evaluation of the NR2F6 level in hepato-
blastoma, evidence-based evaluation models, 
including a fixed-effects model and a random- 
effects model, were constructed using the Stata 
12.0 software. When heterogeneity >50%, 
a random-effects model would be used; otherwise, 
a fixed-effects model would be the preferred 
option. Then, publication bias existing in evi-
dence-based models was further assessed using 
Begg’s and Egger’s tests. Further, latent compe-
tence for NR2F6 to differentiate between hepato-
blastoma and non-tumor liver tissues was also 
assessed by pooled sensitivity and specificity, 
together with a summarized receiver operating 
characteristic (ROC) curve [26,27].

2.5 Targets of NR2F6 in hepatoblastoma HepG2 
cells

Transcription factors usually exert a regulatory 
influence on gene expression by binding to pro-
moter regions. Chromatin immunoprecipitation 
(ChIP) assay is a helpful technique to explore 
interactions of protein-DNA and to advance epi-
genetic modifications and genetic regulation. 
ChIP-seq technique can identify and relatively 
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measure-specific interactions between protein and 
chromatin at multiple loci in the human genome. 
Based on CistromeDB, four ChIP-seq datasets of 
NR2F6 (CistromeDB: 63,772, 63,771, 101,379, and 
101,378) were obtained to screen latent targets 
regulated by NR2F6 in the hepatoblastoma 
HepG2 cells. The genes with interaction scores 
greater than 2 and repeated in at least two datasets 
among four ChIP-seq analyses were considered as 
potential targets for NR2F6 [28].

2.6 Underlying mechanism of NR2F6 in residual 
hepatoblastoma

In this study, transcriptome analysis of incomplete 
ablation xenograft and NR2F6 ChIP-seq data were 
jointly used to detect the latent genes targeted by 
NR2F6 in residual hepatoblastoma. We selected 
the intersection genes appearing at upregulated 
DEGs following incomplete ablation and the tar-
gets of NR2F6 detected by ChIP-seq. To reveal the 
underlying mechanism of NR2F6 in recurrent resi-
dual hepatoblastoma, Gene Ontology (GO) anno-
tation and pathway analysis including Reactome 
pathway and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway were finally carried 
out using WebGestalt server [29].

In this work, increased NR2F6 was determined 
from hepatoblastoma based on large-scale data 
including 440 samples. Subsequently, hepatoblas-
toma-derived HepG2 cells were inoculated under 
the right armpit of mice. Treatment of incomplete 
ablation was performed for HepG2 xenografts, 
from which a higher NR2F6 level was detected in 
residual hepatoblastoma untreated samples. A total 
of 150 targets regulated by NR2F6 in residual 
tumor were identified from experimentally verified 
ChIP-seq data and transcriptome analysis, and 
a molecular mechanism for these genes was 

disclosed utilizing GO annotation and pathway 
analysis, indicating NR2F6 along with its targets 
greatly contribute to the dysregulation of biologi-
cal activity related to lipid metabolism.

3 Results

3.1 Overexpression of NR2F6 in hepatoblastoma

In seven datasets among nine studies, NR2F6 
exhibited clearly higher levels in hepatoblastoma 
tissues than non-cancer child livers (p < 0.05; 
Table 1, Figure 1). Further, an evidence-based 
model, including 219 hepatoblastoma samples 
and 121 non-cancer liver tissues, was performed 
to assess the expression of NR2F6, from which 
NR2F6 was also found to be overexpressed in 
hepatoblastoma compared with non-cancer 
liver with a standard mean difference (SMD) of 
1.04 (95% CI: 0.79, 1.29; heterogeneity: 1%; ran-
dom-effects model; Figure 2(a)). Additionally, 
there is no significant publication bias detected 
from Begg’s and Egger’s tests, which further 
strengthens the credibility of this model for the 
measurement of NR2F6 expression (p > 0.05; 
Figure 2(b,c)).

3.2 Potential clinical effectiveness of NR2F6 in 
hepatoblastoma

After the evaluation of NR2F6 expression, the 
potential diagnostic effectiveness of increased 
NR2F6 level in hepatoblastoma was further 
explored with nine included studies. Based on the 
ROC curves for each dataset, the results (AUC> 
0.7) of eight studies indicated that NR2F6 had 
a relatively high ability to differentiate between 
hepatoblastoma and non-cancer child livers 
(Figure 3). Besides, the overall AUC of 0.9 

Table 1. Included studies for evaluation of differentially expressed genes in hepatoblastoma.

Datasets Update Year Country Methods Ca. N
Ca. 

Mean Ca. SD Ctal. N Ctal. Mean Ctal. SD

E-MEXP-1852 2014 France Microarray 25 7.69 0.4617 4 7.51 0.2781
GSE104766 2019 France RNA-seq 30 4.23 0.7728 30 3.38 0.6832
GSE131329 2019 Japan Microarray 53 10.3 0.6151 14 9.61 0.4076
GSE132037 2020 Spain Microarray 34 9.19 0.4928 18 8.86 0.2342
GSE133039 2020 Spain RNA-seq 33 4.87 1.0734 32 3.98 0.4945
GSE151347 2020 Germany RNA-seq 11 7.73 0.7281 11 6.43 0.3717
GSE81928 2019 USA RNA-seq 23 6.63 0.8835 9 5.79 0.8992
GSE89775 2019 USA RNA-seq 10 9.93 0.9598 3 9.22 1.052
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(Figure 4(a)) further revealed that overexpressed 
NR2F6 might act as a potential biomarker to dis-
tinguish hepatoblastoma and non-cancer liver tis-
sues with a sensitivity of 0.76 (Figure 4(b)) and 
a specificity of 0.89 (Figure 4(c)), suggested by the 
summarized ROC integrated by 440 samples. Odds 
ratio (OR) forest plot also suggested that the popu-
lation with upregulated NR2F6 levels was more 
likely to suffer from hepatoblastoma (OR = 25.1; 
95% CI:10.45, 60.26; Figure 4(d)).

3.3 Targets of NR2F6 in residual tumor

Compared with untreated samples, 1,060 genes 
were upregulated and 289 genes underexpressed 
in residual hepatoblastoma after incomplete abla-
tion (Figure 5(a-b)). Of note, the overexpression 
of NR2F6 was also detected in residual tumor 

(log2FC = 1.590, p = 0.03), suggesting that 
NR2F6 might also play an important role in resi-
dual tumor. Besides, an upward trend of NR2F6 
expression could still be observed in residual 
tumor when compared to an untreated group, 
although nonparametric t tests did not indicate 
a significantly statistical p-value (p = 0.057; 
Figure 5(c)). Meanwhile, NR2F6 protein was 
found to interact with 2,233 target genes in hepa-
toblastoma HepG2 cells from 4 ChIP-seq studies 
(Figure 5(d)). To reveal the role of NR2F6 in 
residual tumor, we selected the overlaps that 
were both upregulated in residual tumor and 
targeted by NR2F6, and we eventually figured 
out 150 promising genes regulated by NR2F6 in 
residual tumor (Figure 5(e)). The expression of 
these genes in HepG2 xenografts is displayed in 
Figure 6.

Figure 1. NR2F6 expression between hepatoblastoma and normal livers in per studies.
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3.4 Molecular mechanism of genes targeted by 
NR2F6

According to GO analysis (Table S1; Figure 7(a)), 
the genes targeted by NR2F6 in residual hepato-
blastoma were clearly involved in the processes of 
basement membrane organization, reverse choles-
terol transport, and high-density lipoprotein par-
ticle remodeling (biological process; Figure 7(b)). 
Besides, for a cellular component, proteins 
encoded by these genes seem to be the structure 
of the plasma membrane protein complex, an 
intrinsic component of the plasma membrane, 
and an integral component of the plasma mem-
brane. From molecular function annotation, these 
genes were shown to participate in the activity of 
serine-type endopeptidase, serine-type peptidase, 

serine hydrolase, et al. Further, as suggested by 
both KEGG and Reactome pathways (Table 2; 
Figure 7(c,d)), the upregulated NR2F6 and its tar-
gets notably exert a crucial influence on metabo-
lism-related pathways for residual hepatoblastoma, 
especially cholesterol metabolism, retinoid meta-
bolism and transport, and lipid-soluble vitamins 
metabolism. In addition, the ChIP-seq peak of 
NR2F6 for the targets involved in the KEGG bile 
secretion pathway is displayed in Figure 8.

4 Discussion

Ultrasound-guided thermal ablation has become 
a first-line option that has made great progress in 
treating liver tumors because of minimally invasive 

Figure 2. The overall evaluation of NR2F6 expression. (a) The pooled level of NR2F6 expression between hepatoblastoma and 
normal livers with 440 samples and detection of publication bias of Begg’s (b) and Egger’s plots (c).
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injury and a lower rate of complications than 
surgical resection [4,8,30,31]. In recent years, 
many kinds of research have manifested the potent 
advantages of minimally invasive ablation for liver 
tumors [32–34]. However, of note, ultrasound- 
guided thermal ablation enables locoregional treat-
ment for hepatic tumors, but with the weaknesses 
of recurrent residual tumors and inferior out-
comes caused by incomplete ablation [35–37]. 
Although several studies have aimed to elucidate 
the mechanism of worse malignancy for 
recurrent residual liver tumor, more specific mole-
cular indicators still await exploration [38–40]. In 
the current study, overexpressed NR2F6 in hepa-
toblastoma tissues was confirmed through 440 
samples. Subsequently, a higher NR2F6 was also 

detected in residual tumor following insufficient 
ablation. We therefore deduced the important role 
of NR2F6 in residual liver tumor of incomplete 
ablation, and further transcriptome analysis and 
ChIP-seq data were combined to probe its poten-
tial molecular mechanism.

Gene transcription of eukaryotes relies on the 
regulation of transcription factors. Nuclear recep-
tors, a superfamily of transcription factors, are 
distributed in a variety of human tissues and 
organs and are widely involved in many kinds of 
physiological events, such as cell growth, develop-
ment, and metabolism [41–43]. The characteriza-
tion of nuclear receptors has a strong history in 
drug discoveries and encourages the development 
of precise therapy targeting these receptors for 

Figure 3. ROC curves indicating the latent value of NR2F6 in the diagnosis of hepatoblastoma in per studies.
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several diseases, including cancer, autoimmunity, 
and atherosclerosis [44–46]. NR2F6, a member of 
nuclear receptors, has been suggested to play 

a crucial role in several human cancers [16–20]. 
Liu’s study indicated that NR2F6 overexpression 
was related to poor overall survival and also 

Figure 4. The overall evaluation of latently diagnostic value of NR2F6 in hepatoblastoma. (a) Summarized ROC curve with 440 
samples and pooled forest plots of sensitivity (b) and specificity (c) in distinguishing hepatoblastoma and normal livers, as well as 
the odds ratio of NR2F6 between hepatoblastoma and normal livers.

Figure 5. Determination of potential targets in residual hepatoblastoma after incomplete ablation. (a) ablation-treated model group 
(T, N = 4) and normal untreated group (N, N = 4); (b) differentially expressed analysis of ablation-treated model and untreated 
group; (c) an upregulated tendency of NR2F6 expression induced by incomplete ablation; (d) selection of potential targets using 4 
datasets of ChIP-seq detection in liver cancer HepG2 cells; and (e) the latent targets regulated by NR2F6 in residual hepatoblastoma 
treated by incomplete ablation.
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Figure 6. The heatmap displaying the level of 150 potential targets regulated by NR2F6 in residual hepatoblastoma after incomplete 
ablation. Note: the ‘test’ represents the ablation-treated model group, and ‘Ctal’ indicates the untreated group.
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Figure 7. Molecular mechanism for the 150 potential targets regulated by NR2F6 in residual hepatoblastoma after incomplete 
ablation. (a) Gene ontology analysis, including biological process, cellular component, and molecular function, (b) interactions of 
biological processes, as well as KEGG (c) and reactome (d) pathway analysis.

Table 2. Pathway analysis for the 150 potential targets regulated by NR2F6 in ablation-treated residual tumor of hepatoblastoma.
Geneset Terms Overlap P-value Symbol

hsa04976 Bile secretion 5 0.000 NR0B2;SCARB1;SLC22A1;SLC22A7; 
PRKACA

hsa05205 Proteoglycans in cancer 6 0.009 VAV2;ERBB3;RPS6KB2;GPC3;HSPG2; 
PRKACA

hsa04979 Cholesterol metabolism 3 0.010 APOE;SCARB1;CETP
hsa00053 Ascorbate and adorate metabolism 2 0.025 RGN;UGT2B7
hsa01100 Metabolic pathways 18 0.039 AHCY;GGT1;AKR1D1;GALNT11; 

GANAB;NDUFB7;RGN;ACSS1;ASS1; 
CYP4F3;DDC;FPGS;GAMT;MAN1A1; 
MOGAT3;OGDH;PNPO;UGT2B7

R-HSA-975,634 Retinoid metabolism and transport 5 0.000 APOE;TTR;APOM;GPC3;HSPG2
R-HSA-6,806,667 Metabolism of fat-soluble vitamins 5 0.000 APOE;TTR;APOM;GPC3;HSPG2
R-HSA-2,187,338 Visual phototransduction 6 0.000 APOE;TTR;APOM;GPC3;HSPG2;RDH5
R-HSA-166,663 Initial triggering of complement 3 0.001 COLEC11;GZMM;C1S
R-HSA-6,806,942 MET Receptor Activation 2 0.001 HPN;HGFAC
R-HSA-196,854 Metabolism of vitamins and cofactors 7 0.002 APOE;TTR;APOM;FPGS;GPC3;HSPG2; 

PNPO
R-HSA-8,964,058 HDL remodeling 2 0.004 APOE;CETP
R-HSA-174,824 Plasma lipoprotein assembly, remodeling, and clearance 4 0.004 APOE;SCARB1;CETP;PRKACA
R-HSA-8,866,907 Activation of the TFAP2 (AP-2) family of transcription factors 2 0.006 CITED2;YEATS4
R-HSA-8,864,260 Transcriptional regulation by the AP-2 (TFAP2)  

family of transcription factors
3 0.006 APOE;CITED2;YEATS4
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stimulated DDA1 transcription by binding to the 
promoter region in ovarian cancer [47]. For hepa-
tocellular carcinoma (HCC), the transcription of 
NR2F6 could be activated by circRHOT1 and 
therefore promote the progression of patients 
with HCC [48]. However, the biological role of 
NR2F6 residual liver tumor after incomplete abla-
tion has not been reported.

In the current research, a higher NR2F6 expres-
sion was confirmed in hepatoblastoma than non- 
cancer liver with a combination of RNA-seq and 
microarrays samples, including 219 hepatoblas-
toma tissues and 121 non-cancer liver tissues 
(SMD = 1.04; 95% CI: 0.79, 1.29). At the same 
time, the overexpression of NR2F6 appeared to be 
an efficient indicator in distinguishing hepatoblas-
toma tissues from non-cancer liver tissues from 
the indication of summarized AUC of 0.90, with 

a pooled sensitivity of 0.76 and a pooled specificity 
of 0.89, demonstrating that overexpressed NR2F6 
might act as a promising biomarker in the diag-
nosis of hepatoblastoma. Nevertheless, whether 
serum NR2F6 could be used to diagnose NR2F6 
in clinical practice needs an in-depth investigation. 
To further study the role of residual liver tumor, 
hepatoblastoma HepG2 cells were subcutaneously 
transplanted into nude mice. Interestingly, 
increased NR2F6 was also found in the group 
treated by incomplete ablation in comparison 
with the untreated group. This finding provides 
a shred of novel evidence to reveal the underlying 
mechanism of residual hepatoblastoma.

To elucidate how NR2F6 functions as a tran-
scription factor in residual hepatoblastoma, differ-
entially expressed analyses were performed 
between incomplete ablation xenografts and an 

Figure 8. Validation for the targets of NR2F6 involved in KEGG pathway of bile secretion.
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untreated group, from which we selected 1,060 
upregulated genes through the threshold of 
a p-value < 0.05 and a log2FC > 1. Subsequently, 
genome-wide binding data (ChIP-seq) in HepG2 
cells were combined to identify which genes could 
be bound by NR2F6. Finally, NR2F6 was found to 
clearly interact with the promoter region of 150 
targets among 1,060 upregulated genes after 
incomplete ablation. According to the GO annota-
tion and pathway analysis, these 150 genes tar-
geted by NR2F6 in residual tumor are apparently 
related to the biological events of a metabolism- 
related pathway, especially lipid metabolism.

Lipid metabolic reprogramming is an essential 
property of tumor cells and has recently drawn 
much attention from researchers. A growing 
number of studies have shown that nuclear recep-
tors play a key role in the regulation of lipid 
metabolism reprogramming, such as NR4A1, 
which serves as a key transcriptional regulator of 
liposome and glucose homeostasis, as well as lipid 
metabolism [49]. Lipid metabolism acts as signal 
regulatory molecules, greatly affecting cell func-
tion on the proliferation, apoptosis, and differen-
tiation of normal or tumor cells [50]. It is well 
established that the biological behaviors of tumor 
cells, including liver tumor cells, are closely 
related to enhanced lipid metabolisms, such as 
lipid uptake, which contributes to the rapid 
growth of tumor cells and tumor development 
[50]. The activation of lipid synthesis, considered 
to be a sign of tumor cell invasiveness, is required 
for rapid proliferation of tumor cells and is also 
related to alteration of intracellular oncogenic 
signals and endoplasmic reticulum homeostasis 
[50–52]. Moreover, tumor cells with higher lipid 
content are easier to adapt to harmful stimuli 
(such as free radicals and chemotherapy) and 
thus reduce apoptosis induced by these stimuli 
[53,54]. Contrarily, inhibition of lipid synthesis 
helps to reduce tumor proliferation and invasion 
and enables cell death exposed by oxidative stress 
[53,54]. Therefore, the dysfunction of lipid meta-
bolism influenced by NR2F6 might be a key factor 
that contributes to the increased malignancy of 
residual liver tumor after incomplete ablation.

Despite the aforementioned findings, some 
deficiencies should still be illustrated. First, the 

expression evaluation of NR2F6 is based only on 
microarrays and high throughput sequencing. An 
additional detection technique, such as qRT-PCR, 
needs to be performed. Besides, although 
increased levels of NR2F6 mRNA were detected 
in both hepatoblastoma and residual tumor, 
changes of NR2F6 protein should be further vali-
dated by Western blot or immunochemistry. In 
addition, the targets of NR2F6 in residual hepa-
toblastoma were significantly related to the regu-
lation of lipid metabolism as indicated by GO 
annotation and pathway analysis. Therefore, we 
mainly focused on and mainly discussed the lipid 
metabolic regulation of NR2F6 in residual hepa-
toblastoma. However, whether these targets regu-
lated by NR2F6 would be involved in cell-cycle 
progression, cell apoptosis, and angiogenesis 
needs to be experimentally verified by evidence 
in our further research.

5. Conclusion

We are the first to confirm the overexpression of 
NR2F6 in hepatoblastoma tissues, utilizing large- 
sample evaluation from multi-region and multi- 
source samples. Besides, we are also the first to 
find the increased level in residual tumor received 
incomplete ablation compared with untreated xeno-
grafts. Through ChIP-seq data and transcriptome 
analysis, the targets and molecular mechanism for 
NR2F6 were disclosed by GO annotation and path-
way analysis, indicating that the rapid progression of 
residual hepatoblastoma might result from dysregu-
lation of lipid metabolism stimulated by overex-
pressed NR2F6 in residual hepatoblastoma. In the 
future, an in-depth investigation will be performed 
to validate our findings.

Highlight:

(1) This is the first study to indicate the upregu-
lated expression of NR2F6 in hepatoblastoma 
with multiregion and multisource samples.

(2) A higher level of NR2F6 was found in resi-
dual hepatoblastoma xenografts receiving 
incomplete ablation.
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(3) Upregulated NR2F6 contributes to the dys-
regulation of lipid metabolism in residual 
hepatoblastoma.
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