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Abstract: Pulp regeneration is one of the most successful areas in the field of tissue regeneration,
despite its current limitations. The biocompatibility of endodontic biomaterials is essential in securing
the oral microenvironment and supporting pulp tissue regeneration. Therefore, the objective of
this study was to investigate the new light-curable calcium silicate (CS)-containing polyethylene
glycol diacrylate (PEGDA) biocomposites’ regulation of human dental pulp stem cells (hDPSCs)
in odontogenic-related regeneration. The CS-containing PEGDA (0 to 30 wt%) biocomposites are
applied to endodontics materials to promote their mechanical, bioactive, and biological properties.
Firstly, X-ray diffraction and Fourier-transform infrared spectroscopy showed that the incorporation
of CS increased the number of covalent bonds in the PEGDA. The diameter tension strength of the CS-
containing PEGDA composite was significantly higher than that of normal PEGDA, and a different
microstructure was detected on the surface. Samples were analyzed for their surface characteristics
and Ca/Si ion-release profiles after soaking in simulated body fluid for different periods of time. The
CS30 group presented better hDPSC adhesion and proliferation in comparison with CS0. Higher
values of odontogenic-related biomarkers were found in hDPSCs on CS30. Altogether, these results
prove the potential of light-curable CS-containing PEGDA composites as part of a ‘point-of-care’
strategy for application in odontogenesis-related regeneration.

Keywords: calcium silicate; polyethylene glycol diacrylate; light curing; dental pulp stem cells;
odontogenesis

1. Introduction

The main purpose of endodontic surgery is to seal tooth defects with suitable root
canal filling materials to prevent bacterial overgrowth and colonization [1]. Therefore,
bioceramics have been developed and modified to be the first-choice biomaterial for the
filling of tooth defects [2]. The ideal root canal filling material should have excellent bio-
compatibility, bioactivity, sealing capability, X-ray opacity, and antibacterial properties [3].
Of the various bioceramics, mineral trioxide aggregate (MTA) is one of the most widely
used filling materials for root canal treatment [4]. MTA is a calcium-silicate-based material
that is biocompatible, non-neurotoxic, and does not cause any severe side effects on other
organs [5]. In addition, in vivo and clinical studies have confirmed that MTA has a role
to play in activating signaling molecules for downstream cellular activities, thus having
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osteoinductive effects on dental pulp tissues [6]. Today, MTA is also used for tooth discol-
oration issues, as patient demand for dental aesthetics is increasing. Even though MTA is a
popular material for dental applications, a main disadvantage of MTA is that it has a long
curing duration of at least 2–5 h. Therefore, although MTA is often used in patients with
massive gum bleeding, its long curing duration greatly decreases its sealing performance
for bleeding patients [7].

Traditional ceramics are mainly classified as bio-inert ceramics (e.g., alumina, zirco-
nia), absorbable ceramics (e.g., tricalcium phosphate), or biologically active ceramics (e.g.,
hydroxyapatite and bioglass) [8]. In order to further enhance the biological characteris-
tics of bioceramics, scientists have attempted to load growth factors or related proteins
onto bioceramics in order to guide cellular migration to enhance tissue regeneration [9].
Calcium silicate (CS) is another type of bioceramic commonly used in pulp capping or
regeneration [10]. Silicon (Si) ions are among the indispensable elements in the develop-
ment of human bones. Research has found that Si ions are not only responsible for the
development of bones and joints, but are also closely related to immune regulation and
connective tissue. In addition, Si ions can also induce the formation of calcium matrices,
such as bone tissues [11–13]. Shie et al. found that a concentration of 4 mM Si ions can
enhance bone regeneration via the ERK signaling pathway, and enhance the secretion of
type I collagen (Col I) [14]. In addition, some studies have confirmed that Si ions are able
to activate the WNT and SHH pathways of bone marrow stromal cells and, thus, promote
cell proliferation, differentiation, and expression of osteogenic-related proteins [15]. In our
previous studies, we developed CS scaffolds and evaluated them for their potential in bone
tissue engineering [16,17]. It was reported that Si ions released from the scaffolds were
able to promote odontogenesis of human dental pulp cells and cementogenesis of human
periodontal ligament cells [16,18]; in addition, the release of calcium ions from the CS scaf-
folds facilitated cell attachment and proliferation, enhanced the secretion of growth factors,
and promoted bone regeneration. Calcium ions are known to combine with phosphate
radicals to form hydroxyapatite (HA) on the surfaces of CS scaffolds, and the breakdown
of CS byproducts has also been reported to increase the pH of the microenvironment, thus
giving it an additional antibacterial tool. It is important to note that the angiogenesis of
human umbilical vein endothelial cells is beneficial to the regeneration of hard tissues [19].

At present, the most common light-curable MTA material is mainly composed of MTA
ceramic powder mixed with bisphenol A-glycidyl methacrylate (Bis-GMA) [20]. Bisphenol
A is derived from Bis-GMA, which is routinely used for the repair of decayed, fractured,
and poorly formed teeth [21]. Bisphenol-A can greatly enhance and improve the existing
shortcomings of MTA, such as its low strength, lack of resistance, difficulty to handle,
and insufficient gloss and polishing ability [22]. However, many studies still point out
that bisphenol A is a harmful estrogen endocrine-disrupting substance. In order to solve
these issues, trimethylene glycol- or methacrylate-containing Bis-GMA-free biopolymers
have been studied. However, the use of endodontic clinical therapy, whether or not it has
sufficient physical/chemical properties, is still criticized by users.

In this study, a new light-curable endodontic material incorporating CS powder
with polyethylene glycol diacrylate (PEGDA) was examined. This study investigated the
chemical and physical properties of different CS ratios of the light-curable endodontic
material. Moreover, the cell behaviors—such as the adherence, proliferation, differentiation,
and odontogenic-related markers—of human dental pulp stem cells (hDPSCs) cultured on
the new light-curable CS material were examined.

2. Materials and Methods
2.1. Preparation of the Light-Curable CS Specimens

Calcium silicate (CS) powder was prepared according to methods published previ-
ously [23]. In brief, reagent-grade calcium oxide (CaO, Sigma-Aldrich, St. Louis, MO,
USA), silicon dioxide (SiO2, Sigma-Aldrich, St. Louis, MO, USA), and aluminum oxide
(Al2O3, Sigma-Aldrich, St. Louis, MO, USA) powders were weighed and mixed in a ball
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mill according to specific proportions, after which the mixture was dried in an oven and
heated in a 1400 ◦C high-temperature sintering furnace for 2 h, where the temperature
was raised in increments of 10 ◦C per minute for the purpose of sintering, after which the
temperature was then naturally cooled to room temperature.

To make the light-curable composite, CS powder and PEGDA (MW = 700, Sigma-
Aldrich, St. Louis, MO, USA) were mixed according to different weight percentages (CS
ratio: 0/10/20/30 wt%) with 0.25 wt% lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate
(LAP, Sigma-Aldrich, St. Louis, MO, USA) at room temperature in the dark. The specimens
were prepared using a light-curing 3D printer (MiiCraft+, MiiCraft™, Hsinchu, Taiwan)
according to an STL file prepared using drawing software. The scaffolds were designed
to have a diameter of 8 mm and a height of 2 mm for the following tests (except for the
diameter tension strength assay), and the curing parameters were set at 90 s per layer
(100 µm) using 405 nm UV light.

2.2. Physicochemical Properties

X-ray diffraction (XRD, Bruker D8 SSS, Karlsruhe, Germany) was used to analyze
the phase structure of the prepared materials. The diffractometer was set at 30 kV and
20◦ to 60◦ (2θ) at a rate of 1◦/min. In addition, a Fourier-transform infrared spectrometer
(FTIR, Vertex 80v, Bruker, Karlsruhe, Germany) was used to analyze the various functional
groups in the prepared materials. An EZ-Test instrument (Shimadzu, Kyoto, Japan) was
used to evaluate the mechanical properties of the samples by determining their diameter
tension strength (DTS). Firstly, the samples were printed into cylindrical shapes with a
diameter of 6 mm and a height of 2 mm. A compressive speed of 1 mm/s was applied from
above until the specimens were crushed. Six independent scaffolds were prepared for this
test, and the test was repeated thrice, with the average recorded. The data were recorded
in distance (mm) and load (N), and the corresponding stress–strain graph is presented
in our results. To observe the surface morphology, the specimens were first dried, then
dehydrated in ethanol and coated with platinum prior to observation. A scanning electron
microscope (SEM, JEOL JSM-7800F, Tokyo, Japan) at an acceleration voltage of 20 kV was
used to observe the surface topography of the specimens.

2.3. Swelling Analysis

To determine the degree of the swelling behavior in the light-curable CS, different
concentrations of CS-containing specimens were fabricated with a determined diameter
of 12 mm and a thickness of 1 mm, and cured under UV lighting, with uncured material
being removed with phosphate-buffered saline (PBS, Invitrogen, Carlsbad, CA, USA).
Afterwards, the light-curable CS specimens were dried at 60 ◦C and weighed again to
obtain the dry weight (Wd) of each specimen. Then, the specimens were immersed in
PBS for different time intervals and removed from the PBS, dried using filter paper, and
weighed to obtain the wet weight (Ws) of the samples, after which the swelling ratio was
calculated using the following formula:

Swelling ratio(%) =
(Ws–Wd)

Wd
× 100% (1)

2.4. In Vitro Immersion Test

The samples were immersed in simulated body fluid (SBF) for this test. The contents
of the SBF were as follows: 7.9949 g of NaCl, 0.2235 g of KCl, 0.147 g of K2HPO4, 0.3528 g of
NaHCO3, 0.071 g of Na2SO4, 0.2775 g of CaCl2, and 0.305 g of MgCl2·6H2O. The contents
were dissolved in 1000 mL of distilled water in a specific order, and tris buffer and HCl were
used to adjust the pH to 7.4. Each sample was immersed in a centrifuge tube containing
50 mL of SBF at 37 ◦C for various durations. Degradation was presented as the change in
weight percentage (∆%), as measured with a balance. The test was repeated thrice, with the
average recorded according to ISO 6876. The samples were dried, immersed in SBF, and
weighed to obtain an initial weight. After various periods of immersion, the samples were
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removed, dried, and weighed to obtain the second weight after immersion. The following
formula was used to calculate for the degradation rate:

Degree of degradation (%) = [(weight at time − initial weight)/initial weight] × 100 (2)

In addition, inductively coupled plasma atomic emission spectroscopy (ICP-AES,
PerkinElmer OPT 1MA 3000DV, Shelton, CT, USA) was used to measure the Ca and Si ions
released after periods of immersion.

2.5. Cell Viability and Morphology

For the cell viability and morphology assay, the cell seeding was performed in the as-
prepared samples after 75% EtOH treatment for 30 min and washing 3 times with PBS. The
hDPSCs used in this study were purchased from Lonza (PT-5025, Lonza, Basel, Switzerland)
and cultured with a commercially available human dental pulp stem cell bullet kit (PT-3005,
Lonza, Basel, Switzerland) to passage 4–7 in a 37 ◦C humidified atmosphere with 5%
CO2. The hDPSCs were trypsinized using TrypLE™ (Invitrogen, Grand Island, NY, USA),
collected using a hemocytometer, and seeded on different light-curable CS specimens at a
density of 5 × 104 cells/mL in a 48-well plate with 1 mL of medium per well. The cells were
seeded in the cell suspension, along with medium cultured on the surface of the specimens.
After culturing for different time intervals, PrestoBlue assay (Invitrogen, Grand Island, NY,
USA) was used to evaluate the proliferation of hDPSCs cultured on these samples. In brief,
after 1, 3, 5, and 7 days of culture, the medium was mixed with PrestoBlue reagent at a ratio
of 9:1, and then added to the culture well for 50 min in a 37 ◦C incubator. Next, 100 µL of
the solution was transferred to new 96-well plate. For this study, the hDPSCs cultured on
plates were used as a control group (Ctl). The optical density of the solution was assessed
at a wavelength of 570 nm (reference wavelength of 600 nm) using a spectrophotometer
(Infinite Pro M200, Tecan, Männedorf, Switzerland).

To observe the cell morphology of the light-curable CS specimens, the specimens were
washed several times with cold PBS and fixed in 1.5% glutaraldehyde (Sigma-Aldrich,
St. Louis, MO, USA) for 4 h after 1 day of seeding. The samples were then dehydrated
using a graded ethanol series for 15 min at each concentration, and dried with liquid
CO2 using a critical point dryer device (LADD 28000; LADD, Williston, VT, USA). The
dried specimens were mounted on holders, coated with gold, and viewed by SEM. In
addition, a cytoskeleton observation was conducted using fluorescent staining. The cells
cultured on specimens for 1 and 3 days were washed with cold PBS several times and
fixed with 4% paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) for 20 min at room
temperature. The samples were permeabilized with 0.1% Triton X-100 (Sigma-Aldrich, St.
Louis, MO, USA) in PBS for 15 min. The fluorescent staining was performed by incubating
the specimens with phalloidin conjugated to Alexa Fluor 488 (1:500, Invitrogen, Grand
Island, NY, USA) for 2 h in the dark. Then, the specimens were gently rinsed with cold PBS
solution to remove excess solution, and DAPI fluorescent dye (Invitrogen, Grand Island,
NY, USA) was used and left to react for 20 min in the dark. The specimens were then
removed, washed thrice with PBS, and the confocal microscope (Leica TCS SP8, Wetzlar,
Germany) was used to observe the cell morphology of the hDPSCs.

2.6. Odontogenesis Differentiation Assay

In order to evaluate the levels of odontogenesis differentiation, all specimens loaded
with hDPSCs cells were cultured in a differentiation-promoting culture medium (StemPro™
osteogenesis differentiation kit, Invitrogen, Grand Island, NY, USA) for 3, 7, and 14 days,
after which the cell-adhered specimens were immersed in NP40 cell lysis solution (Sigma-
Aldrich, St. Louis, MO, USA) and centrifuged at 6000 rpm for 15 min. Then, pNPP
(Sigma-Aldrich, St. Louis, MO, USA) was used to evaluate the alkaline phosphatase
(ALP) activity. Each sample was mixed with pNPP and 1 M diethanolamine buffer for
30 min before the addition of 5 M NaOH to terminate the reaction. The absorbance of each
sample was analyzed under 405 nm wavelength light with a spectrophotometer. All data
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were standardized with references according to the protein quantitative detection reagents
(BCA, Thermo Fisher Scientific, Waltham, MA, USA). In addition, the production of dentin
sialophosphoprotein (DSPP, MBS2022855, MyBioSource, San Diego, CA, USA) and dentin
matrix protein-1 (DMP-1, MBS167298, MyBioSource, San Diego, CA, USA) secretion from
the hDPSCs was determined using ELISA kits, following the manufacturer’s instructions.
The protein concentrations were measured based on correlations with a standard curve.
All experiments were performed in triplicate.

2.7. Data Analysis

A one-way analysis of variance and Scheffe’s multiple comparisons test were used in
this study to evaluate differences between each group and scaffold. A value of <0.05 was
considered to be statistically significant.

3. Results and Discussion
3.1. Synthesis and Characterization of the Light-Curable CS Composite

A schematic diagram depicting the fabrication and cell culture of the specimens is
shown in Figure 1. Different concentrations of light-curable CS were prepared according to
the methods described in the section above. The fabricated light-curable CS composites
were then loaded with hDPSCs, cast in pre-fabricated molds, and cured using UV light.
This concept arose from the idea that we could inject the light-curable CS into tooth defects
of patients, and further cure it using UV light to fabricate personalized scaffolds for unique
individuals. CS itself is a synthetic material, thus possessing good mechanical properties,
but poor flexibility. By adding a light-curable component to CS, we can implement liquidity
and viscosity to it, thus making it injectable, able to take up specific shapes and sizes to
act as a tooth filling material. In addition, an image of the light-cured scaffold is shown
in Figure 1.
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Figure 1. Schematic diagram of fabrication and light-curing of CS-containing PEGDA composites for endodontic applications.

The XRD patterns of photo-cured PEGDA containing different amounts of CS are
revealed in Figure 2A. A strong and broad peak in the 2θ range between 20◦ and 25◦ can
be seen in the XRD pattern of CS0, indicating the amorphous nature of PEGDA specimens.
In contrast, newly formed characteristic peaks located at 29.6◦ and 32.6◦/34.2◦, which
could be attributed to the presence of tricalcium silicate (C3S) and dicalcium silicate (C2S),
respectively, emerged when CS particles were introduced to the PEGDA solution [24]. As
expected, the intensities of the peaks corresponding to the calcium silicate were increased,
while those corresponding to the PEGDA were decreased, when the CS content in PEGDA
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was increased from 10 wt% (CS10) to 20 wt% (CS30) [25]. However, a negligible difference
was observed while comparing the patterns of CS20 and CS30, which could be attributed
to the agglomeration of CS particles. As shown in Figure 2B, characteristic peaks at
2869, 1732, 1638, and 1104 cm−1—corresponding to C–H, C=O, C=C, and C–O stretching
vibrations, respectively—can be observed in the FTIR spectrum of CS0 [26]. Regarding
to the CS/PEGDA groups, it can be clearly observed that the stretching signals of C=O
and C=C gradually decreased with increasing CS content, along with the emergence of
characteristic peaks at 950 and 858 cm−1, attributed to O–Si–O and Si–OH, respectively,
while the CS content was not higher than 20 wt% [27]. However, the intensities related
to CS decreased when the CS content was increased from 20 wt% to 30 wt%, which may
also result from the diminished dispersity of CS in PEGDA. Despite the fact that CS30 was
still photocurable, it was considered to be the critical content, owing to the fact that higher
content than CS30 may disrupt the integrity of PEGDA, as well as elevating the opacity of
the composite, impeding the quantum yield of the photochemical reaction.
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3.2. The Mechanical Properties and the Swelling Behavior of the Light-Curable CS Composite

The mechanical strength of dental filling materials is considered to be one of the major
attributes that determine the applicable indications in tissue regeneration. [28]. For instance,
the pulp capping and coronal restorative materials should possess as much mechanical
strength as possible in order to withstand the occlusal load on the restored teeth, whereas
the mechanical strength is a minor consideration for root-end filling materials, where
minimal loading is exerted [29]. Thus, the mechanical properties of the photocurable
PEGDA/CS hydrogels were assessed via a diametral tensile strength test. As seen in the
stress–strain curves (Figure 3), the results reveal that the DTS values of CS0, CS10, CS20, and
CS30 were 0.72 ± 0.06, 1.13 ± 0.11, 2.22 ± 0.17, and 6.32 ± 0.42 MPa with Young’s moduli
of 5.55 ± 0.33, 6.08 ± 0.25, 14.14 ± 0.96, and 23.22 ± 1.42 MPa, respectively, indicating that
the presence of CS could be considered as a reinforcing agent to enhance the stiffness of the
composite. The mechanical properties including DTS, Young’s modulus, and toughness are
summarized in Table 1. Interestingly, a CS-content-dependent enhancement in toughness
was observed, of which the toughnesses of CS10, CS20, and CS30 were approximately 2.0,
4.6, and 16.7 times higher than that of CS0. In the present study, the PEGDA and LAP
system was selected as the basal component in the photocurable hydrogel, owing to its
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favorable biocompatibility and rapid photocuring ability [30]. Despite the fact that the
mechanical properties of PEGDA can be tailored through tuning the molecular weight and
concentration of the prepolymer, type of photoinitiator, and the intensity and exposure
time of curing radiation, the fabrication of photocured PEGDA with mechanical strength
that matches the clinical requirements of dental and orthopedic applications is challenging.
Strategies based on introducing a secondary natural network were evident as an effective
route to address this hurdle, and the raised swelling ability may be beneficial to the sealing
performance of the filling material [30]; it may also simultaneously enhance the solubility
of the composite, due to the degradation of the secondary natural polymer network [31].
Regarding this, CS particles may be considered to be a superior reinforcing agent for
developing the photocurable root-filling materials, attributed to their low-solubility nature
and superior reinforcing efficiency.
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Table 1. Mechanical properties of the light-curable CS composites.

CS0 CS10 CS20 CS30

Yield strength (MPa) 0.72 ± 0.06 1.13 ± 0.11 2.22 ± 0.17 6.32 ± 0.42
Young’s modulus (MPa) 5.55 ± 0.33 6.08 ± 0.25 14.14 ± 0.96 23.22 ± 1.42

Toughness (J·m−3) 4.36 8.56 21.31 84.83

The swelling rates of the photocured PEGDA containing different amounts of CS
were recorded during immersion in PBS for 24 h, and are shown in Figure 4. Equilibrium
swelling for all specimens was attained after 12 h of immersion. Swelling capacity was
markedly increased for the CS30 in the first 6 h as compared to the rest of the CS composites.
All samples were noted to have similar swelling behavior except for their rate of swelling
capacity. After 6 h of immersion, CS30 was noted to have approximately 7% water content,
as compared to 4.3%, 2.2%, and 0.8% water content for CS20, CS10, and CS0, respectively.
In addition, there was no de-swelling noted for any of the scaffolds after 24 h of immersion.
The swelling capacity of the dental restorative material depends on the composition and
hydrophilicity of the composites. Based on the results above, it can be seen that CS30 had
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better swelling capability, thus indicating that it also had higher porosity, both of which are
important factors for cellular activities.
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3.3. Effects of Degradation Properties on the Soaking Experiments

The degradation rates of the CS-containing light-curable composites were evaluated
by assessing the pre- and post-immersion weights of the specimens, as shown in Figure 5A.
As can be seen, the degradation rates of the CS-containing PEGDA varied between the
various groups. CS30 showed the highest degradation rate in all groups. All groups
displayed rapid degradation during the first 2 and 4 days of immersion, before slowing
down to a gradual degradation rate until 14 days of immersion. CS0, -10, -20, and -30 were
noted to have a weight loss of 6.5 ± 0.5%, 8.7 ± 0.5%, 9.1 ± 0.6%, and 9.9 ± 0.4% of their
total weight, respectively, after 14 days of immersion. In vivo degradation rates are an
important factor in determining the ideal biomaterials for tissue regeneration [32]. These
biomaterials should ideally match the regeneration rates of tissues in order to provide ample
structural support and nutrient transport. Hard tissues typically take 2 weeks to a month
for sufficient regeneration; therefore, it was hypothesized that CS30 composites would be
able to efficiently support tissue regeneration based on the degradation results above.
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The levels of Ca and Si ions released over 14 days of immersion were recorded, and
are shown in Figure 5B,C, respectively. As can be seen, CS30 exhibited a gradual decline in
Ca release and a gradual increase in Si release over the 14 days of immersion. The levels
of Ca and Si ions from the CS30 scaffolds after 14 days of immersion were 0.37 ± 0.05
and 0.72 ± 0.04 mM, respectively, whilst CS0 had 0.76 ± 0.05 and 0.41 ± 0.05 mM of Ca
and Si, respectively. It was hypothesized that the decrease in Ca release was due to the
pH of the solution used. There are reports stating that Ca release is highest in an acidic
environment and lowest in a neutral environment [12]. Ca is mainly found stored in native
bones, and has an important role to play in regulating angiogenesis and osteogenesis. It has
been reported that Ca concentrations at the lower range of 0.2–0.4 mM facilitate osteoblast
proliferation and differentiation, whilst higher concentrations tend to favor extracellular
matrix mineralization and remodeling [33]. Ca is reported to regulate bone remodeling
via the calcium-sensing receptor (CaSR) and upregulation of insulin-like growth factor
II and osteoblastic glutamate. On the other hand, Schwarz et al. first reported on the
potential benefits and roles of Si ions in bone tissue regeneration [34]. Si ions are usually
absorbed in the form of metasilicate, and are reported to be involved in bone calcification
and inhibition of osteoclasts. Recent studies have demonstrated that Si ions are involved
in regulating the proliferation and differentiation of stem cells, as well as downstream
collagen secretion [35]. Most importantly, it is noted in the present study that the presence
of Si ions alone stimulates the osteogenic differentiation of human mesenchymal stem cells
in the absence of osteogenic-inducing factors [36]. In addition, the presence of aqueous
Si was shown to enhance hydroxyapatite formation on the surfaces of scaffolds, which
is known to increase the osteoblast secretion of the extracellular matrix and improve
bone–scaffold integration.

CS is known to possess in vitro bioactivity and biocompatibility by precipitation
apatite formation with the physiological environment [37]. SEM was used to capture
images of the scaffold surfaces after immersion, as shown in Figure 6. On day 0, it could
be noted that CS30 had rougher surface contours as compared to CS0 and CS10. It was
hypothesized that the rough contours on the surfaces were caused by the addition of CS.
Studies have been carried out investigating the effects of surface roughness on cellular
behavior [38]. Interestingly, it was reported that the rougher the surfaces, the higher the
cellular proliferation and differentiation, due to better cellular adhesion contacts for cells.
In addition, clusters of hydroxyapatite agglomerates could be seen on the surface of CS30
after 3 and 7 days of immersion. On the other hand, CS0 had little-to-no hydroxyapatite
formation on its surface, whilst the sizes of hydroxyapatite agglomerates were obviously
smaller than those on CS30. Hydroxyapatite minerals are known to have similar chemical
structures to native bones; therefore, the capacity to induce hydroxyapatite formation on
scaffolds is commonly used as an indicator for subsequent bone regeneration. The Ca ions
released from CS-containing composites interact with H+ ions in the solution, leading to an
increase in the SBF’s pH. A series of downstream reactions involving Si, Ca, and P ions
resulted in a layer of hydroxyapatite formation on the surfaces of materials [39]. Shie et al.
demonstrated that the hydroxyapatite layer enhances the proliferation and differentiation
of osteoblast-like MG63 cells, and increases the expression of osteogenic-related genes [40].
Therefore, further tests are required to confirm the odontogenic capabilities of our light-
curable CS composites.

3.4. In Vitro hDPSCs Culture

The proliferation and cell morphology of hDPSCs cultured with the light-curable CS
composites were evaluated, and are shown in Figure 7. After 1 day of culture, CS30 was
noted to have significantly higher levels of cellular proliferation as compared to CS0. In ad-
dition, CS20 started having significantly higher levels of proliferation from day 3 onwards.
However, all groups showed an increase in proliferation in a time-dependent manner. After
7 days of culture, CS30 and CS20 were noted to have 40% and 20% higher proliferation,
respectively, as compared to CS0. The SEM micrographs of hDPSCs cultured on different
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surfaces (Figure 7B) demonstrated that biological adhesion of cells was achieved for all
groups within 1 day of culture. However, cells cultured on CS0 and CS10 displayed round
shapes despite the existence of filopodia. Contrastingly, specimens with higher CS contents
were able to encourage the adhesion of cells, leading to a rather flat and well-spread cell
morphology [41]. It is worth noting that the cells were tightly tethered on the apatite
adlayer, which was formed as a result of the CS-assisted nucleation of calcium phosphate
minerals, as opposed to being directly adhered to the pristine surface as with CS0 and
CS10. This implies that the excellent bioactivity and apatite-forming ability of CS are major
attributes that were responsible for the prompt achievement of cell adhesion [42]. As
can be seen from Figure 7C, hDPSCs cultured on the CS30 composites started to spread
after 1 day of culture [43,44]. After 3 days, cell spreading increased considerably for all
groups—especially for the CS30 groups. At this stage, it was hypothesized that improved
hydrophilicity, mechanical tensile strength, and release of ions played huge roles in enhanc-
ing the proliferation of various types of cells [43,45,46]. This revealed that the CS-affected
hDPSCs were well-adhered to the surface of the light-curable materials, and were more
favorable for cellular proliferation and attachment. Similarly, Mu et al. modified the
surface of a 3D-printed Ti scaffold with CS particles, and their results showed that MSCs’
proliferation improved with increased concentrations of CS particles [47]. Both Ca and
Si are potent regulators of cellular behaviors, including proliferation and differentiation.
Specifically, Zhou et al. reported that the presence of CS bioactive ceramics significantly
increased mRNA transcript levels of cyclin B1 and E, which led to a major shift in the
cell cycle from the G0/G1 to the S and G2/M phases, thus leading to increased cellular
proliferation [48]. These results indicate the potential beneficial effects of the light-curable
CS composites used in endodontics engineering, including hDPSCs, bioactive materials,
and growth factors involved in odontogenesis [49].
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3.5. Odontogenic Behaviors

The effects of light-curable CS on the expression of ALP, DSPP, and DMP-1 in hDPSCs
were investigated, and are shown in Figure 8. In addition, the ECM of teeth consists mainly
of collagens and non-collagenous proteins, such as glycoproteins and proteoglycans, of
which ALP, DSPP, and DMP-1 make up the bulk of the glycoproteins group [50]. Interest-
ingly, except for day 3 of ALP expression, CS10, CS20, and CS30 exhibited significantly
increased expression of ALP, DSPP, and DMP-1 compared to CS0. After 7 days of culture,
CS10, CS20, and CS30 were noted to have 50%, 65%, and 85% higher levels of ALP, respec-
tively, as compared to CS0. ALP is considered to be an early marker of initial osteoblast
differentiation, and is induced by the presence of Si and Ca ions, as described above. In
addition, after 14 days of culture, CS10, CS20, and CS30 were noted to have 40%, 80%, and
110% higher levels of DSPP as compared to CS0. Similar trends were noted for DMP-1,
which was mainly involved in dentin remodeling [5]. Dentinogenesis is a process whereby
mesenchymal stem cells migrate to the damaged site and differentiate into non-collagenous
proteins and collagen-secreting odontoblasts [51]. Amongst the numerous non-collagenous
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proteins, DSPP is considered to be one of the most critical proteins involved. DSPP is a
member of the small integrin-binding ligand N-linked glycoprotein family, whose mem-
bers share common biochemical characteristics, such as an Arg–Gly–Asp motif. DSPP
expression is cell- and tissue-specific, and is seen in high concentrations in odontoblasts
and dentine. DSPP is further cleaved into DMP-1, which is involved in downstream in-
tracellular signaling via the mitogen-activated protein kinase and focal adhesion kinase
ERK pathways [18]. Taken together, it could be demonstrated that our light-curable CS
hydrogels could be the next step in future dentin regeneration applications.
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4. Conclusions

In this study, a new light-curable calcium silicate powder incorporated with PEGDA
was examined. As shown above, the XRD and FTIR demonstrated that CS was successfully
incorporated into the PEGDA via covalent bonds. The current results indicate that CS30 can
have better mechanical properties than PEGDA (CS0). On the other hand, the stable release
mode of Ca and Si ions can also enhance the bioactivity of PEGDA, which can promote the
precipitation of apatite on the surface of CS-containing PEGDA in the in vitro immersion
experiment. The in vitro cell culture studies indicated that CS30 composites were also
beneficial for hDPSCs’ cell behaviors. In particular, CS30 composites exhibited excellent
differentiation ability that enhanced the expression of odontogenic-related markers—such
as ALP, DSPP, and DMP-1—in hDPSCs. We propose that CS-containing PEGDA composites
fabricated via the light-curing technique are extremely advantageous for odontogenesis and
pulp regeneration in the challengeable thin-wall dental health. Based on the above results,
we are convinced that research on translational medicine for endodontic regeneration
therapies involving light-curable CS-based PEGDA composites is also very promising in
the near future, as well as for clinical applications.
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