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Leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4/GPR48), a member
of the GPCR (G protein-coupled receptors) superfamily, subfamily B, is a common
intestinal crypt stem cell marker. It binds R-spondins/Norrin as classical ligands and
plays a crucial role in Wnt signaling potentiation. Interaction between LGR4 and R-
spondins initiates many Wnt-driven developmental processes, e.g., kidney, eye, or
reproductive tract formation, as well as intestinal crypt (Paneth) stem cell pool
maintenance. Besides the well-described role of LGR4 in development, several novel
functions of this receptor have recently been discovered. In this context, LGR4 was
indicated to participate in TGFb and NFkB signaling regulation in hematopoietic
precursors and intestinal cells, respectively, and found to be a new, alternative receptor
for RANKL (Receptor Activator of NF kappa B Ligand) in bone cells. LGR4 inhibits the
process of osteoclast differentiation, by antagonizing the interaction between RANK
(Receptor Activator of NF kappa B) and its ligand-RANKL. It is also known to trigger
anti-inflammatory responses in different tissues (liver, intestine, cardiac cells, and skin),
serve as a sensor of the circadian clock in the liver, regulate adipogenesis and energy
expenditure in adipose tissue and skeletal muscles, respectively. The extracellular domain
of LGR4 (LGR4-ECD) has emerged as a potential new therapeutic for osteoporosis and
cancer. LGR4 integrates different signaling pathways and regulates various cellular
processes vital for maintaining whole-body homeostasis. Yet, the role of LGR4 in many
cell types (e.g. pancreatic beta cells) and diseases (e.g., diabetes) remains to be
elucidated. Considering the broad spectrum of LGR4 actions, this review aims to
discuss both canonical and novel roles of LGR4, with emphasis on emerging research
directions focused on this receptor.
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LGRs, MEMBERS OF GPCR SUBFAMILY
B: MOLECULAR CHARACTERISTICS AND
EXPRESSION PATTERN

LGR4 (Leucine-rich repeat (LRR)-containing G-protein-
coupled receptor 4) or GPR48 (G-protein- coupled receptor
48), together with LGR5 and 6, is a member of the receptor
GPCR superfamily, LGR subfamily B (II), highly homologous
to glycoprotein hormone receptors, e.g., LHR (Luteinizing
Hormone Receptor), TSHR (Thyroid Stimulating Hormone
Receptor) (1–3). LGR4, 5, and 6, are critical regulators of
embryonic development, and also have been shown to
contribute to several cancers (4–6). They are responsible for
adult stem cell maintenance in vivo and stem cell survival ex
vivo (7, 8), via direct interaction with ZNRF3 (Zinc And Ring
Finger 3), LRP5/6 (LDL Receptor Related Protein 5) and
Frontiers in Endocrinology | www.frontiersin.org 2
Frizzled receptors, the components of the Wnt signaling
pathway (9).

Structurally, all three LGRs (4–6) have highly conserved
seven-transmembrane (7TM), rhodopsin-like regions and
either 18 (LGR4 and 5) or 13 (LGR6) horseshoe-like leucine-
rich repeats in the N-terminal (NT) extracellular domain
responsible for ligand-binding, flanked with cysteine-rich
sequences known as LRRNT and LRRCT (10). The
intracellular region of LGRs ends with the C-terminal (CT)
sequence, and is responsible for ligand-mediated signal
transduction (Figure 1).

All three members of the human GPCR subfamily B share
some genetic similarities. LGR4 and 5 have 46% homology,
whereas LGR4 and 6 share 44% sequence similarity. LGR5 and
6 are molecularly closer to one another and share 54% identity
(13). All three receptors are also evolutionarily conserved across
A

B

C

FIGURE 1 | LGR4 gene and protein structure. (A) LGR4 gene contains three main domains: leucine-rich repeats-containing N-terminal domain encoded by exons
1-17, responsible for binding ligands (RSPOs, NORRIN, RANKL); seven-transmembrane (7TM) domain encoded by exon 18, anchoring the receptor within the cell
membrane; C-terminal domain encoded by exon 18, responsible for signal transduction. (B) Full-length LGR4 is composed of 951 aa, of which LGR4-ECD
comprises aa. 28-528. Within LGR4-ECD aa.28-249 (LRRNT-LRR8) are responsible for RSPO1, whereas aa.80-396 (LRR1-12) for RANKL binding [modified from
reference (11)]. (C) 3D structure of LGR4-ECD binding to RSPO1 and RANKL [modified from (12)].
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vertebrate species, e.g., human LGR4/LGR5/LGR6 share 90%,
82%, and 84% similarity with their mouse orthologs: Lgr4/Lgr5/
Lgr6, respectively (13). Two paralogs (lgr4 and lgr6) are also
found in Teleosts (13), the Actinopterygii intraclass representing
96% of all the existing fish species. Besides vertebrates, the
orthologs of Lgrs are also found in invertebrates, e.g., Dlgr2 in
a fruit fly, Drosophila melanogaster, is involved in exoskeleton
morphogenesis and hardening (14). As indicated by the NCBI
gene database, in humans, LGR4 is located on chromosome 11,
in the domestic mouse (Mus musculus) on chromosome 2 and in
fruit flies on the sex chromosome X.

UCSC Genome browser data (published in 2019) indicates
LGR4 is commonly expressed in different human tissues, e.g.
kidney, heart, gastroesophagus, pancreas, achieving the highest
expression level in the ovary. A comprehensive atlas of LGR4
protein expression in different mouse and human tissues was
generated by Yi et al. (15). Using custom-made antibodies
against LGR4 and employing immunostaining technique, these
authors showed that LGR4 is present in the epidermis and hair
follicle of the skin, kidney, pancreatic b-cells, and epithelial cells
of both male and female reproductive organs. Besides assessing
tissues from healthy subjects, Yi et al. also examined colon tumor
samples extracted from colon cancer-suffering patients,
confirming high expression of LGR4 in the biopsies of this
type of cancer. The role of LGR4 expression in development
and progression of different types of cancer has also been
recently reviewed by Ordaz-Ramos et al. (4).
LGR4 AND WNT SIGNALING

Traditionally, members of the LGR subfamily are described as
Wnt (Wingless-related integration site) signaling facilitators,
since they enable signal transduction by the WNT ligands. In
this context, the most critical is interaction of the N-terminus of
LGRs (the extracellular domain) with R-spondins (Roof plate
specific spondins, RSPOs), first defined as LGR4 and 5 ligands in
2011 (16, 17). The RSPO family comprises of four members:
RSPO1 to 4, sharing between 40-60% homology with one
another (18, 19). Structurally, RSPOs interact with LGRs via
their Furin-like domains. All four RSPOs can induce canonical
Wnt signaling via all three members of the GPCR subfamily B
(19). RSPO3 is capable of inducing the non-canonical planar cell
polarity Wnt pathway during gastrulation, head cartilage
formation, and craniofacial development (20). Notably, RSPOs
typically do not possess signaling activity on their own and
require WNT ligands to execute their functions (21).

Traditionally, the WNT-mediated signal potentiation by
LGRs is possible due to RSPOs interaction with E3 ubiquitin
homologous ligases RNF43 (Ring finger 43) or ZNRF3, which
inhibit activation of Frizzled- the WNT protein receptor (22).
Interaction of RSPOs with the extracellular domains of RNF43
and ZNRF3 leads to their clearance from the cell membrane and
thus enables Wnt signaling to proceed (22, 23). Interestingly a
recent paper by Park et al. (24), indicates LGR4 and LGR5 have
distinct roles in Wnt signaling potentiation. LGR4 does not
Frontiers in Endocrinology | www.frontiersin.org 3
require RSPOs to interact with ZNRF3 and RNF43 ligases and
LGR5 does not interact with either of the ligases and is thus a
weaker activator of this pathway than LGR4. Besides RSPOs,
Wnt signaling potentiation via LGR4 can also be mediated by
NORRIN (Norrie Disease Protein), a ligand structurally distinct
from RSPOs which does not interact with either LGR5 or 6 (25).
LGR4 FUNCTION IN HEALTH
AND DISEASE

Development
Wnt signaling potentiation is essential for proper development as it
regulates cell migration, differentiation and polarization during
embryogenesis (26). LGR4, together with LGR5 and 6 are involved
in the maintenance of stem cells in different tissues, e.g. skin (hair
follicle) (27) or intestine (7). LGR4 regulates the formation of the
kidney, gut, and skin epithelium (28). Lgr4 (as well as Lgr5, but not
Lgr6) null mice exhibit intrauterine growth retardation and neonatal
lethality (29), indicating its critical role in development. Many
phenotypes resulting from LGR4 deficiency were also observed in
humans. Based on genome-wide association (GWAS) studies,
Styrkarsdottir and colleagues (30) found a non-sense mutation
within LGR4 (c.376C.T) which results in multiple impairments,
e.g. reduced birth weights, electrolyte imbalance, late onset of
menarche and decreased levels of testosterone (15, 30). Similar
effects of this mutation were observed in mice.

Tissue-Specific Role
In the context of canonical Wnt signaling, Luo et al. (31)
demonstrated that LGR4 is involved in the formation of the
skeletal system. Using a whole-body mouse Lgr4 knockout, these
authors showed that the process of osteo-, but not chondro-genesis
is severely impaired in mice lacking Lgr4, both during development
and in postnatal life. Mechanistically, Luo et al. demonstrated that
LGR4-mediated Wnt signaling targets ATF4 expression via cAMP-
PKA-CREB, to drive osteogenesis. Most recently, Mancini et al. (32)
described the importance of LGR4 in puberty. By using GWAS
analyses, these authors identified 3 rare missense variants in LGR4
(NM_018490.3: c.286A>G (rs757351670) p.Ile96Val;
NM_018490.3: c.1087G>T (rs117543292) p.Gly363Cys; and
NM_018490.3: c.2531A>G (rs34804482) p.Asp844Gly) in 6
unrelated families, in which 17 individuals were diagnosed with
delayed puberty. Further, animal (mouse- and zebrafish-based)
studies by these authors revealed lgr4 to play a significant role in
formation and migration of the Gonadotropin-releasing hormone
expressing neurons (GNRH), which control the secretion of
reproductive hormones from the pituitary gland. In the study of
Mancini et al., Lgr4 knockout mice exhibited a significant delay in
the onset of puberty, similar to human subjects carrying LGR4-
related mutations. This suggests a conserved role of LGR4 in
puberty regulation across species.

In Disease
Both, LGR4 deficiency as well as overexpression, may lead to
diseases. Yi et al. (33) suggested LGR4 deficiency, resulting from
May 2022 | Volume 13 | Article 867001
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the deletion of chromosome 11 regions 11p12–11p14, to be
crucial for development of a human genetic syndrome known
as WAGR (Wilm’s tumor, aniridia, genitourinary anomalies, and
intellectual disability), associated with multiple organ (kidney,
eyes) abnormalities and intellectual disability.

As mentioned before, when overactivated later in life, LGR4
can contribute to cancer (4, 15). Yue et al. (6) showed that LGR4
participates in breast cancer progression by stimulating increased
Wnt signaling, such that high levels of LGR4 in breast tumors
correlate with a patient’s poor prognosis. Corresponding to this,
knockdown of LGR4 specifically in breast cells led to reduced
tumor growth and invasiveness in vitro and in vivo, together with
a decrease in the number of functional cancer stem cells.
Recently, Zeng et al. (34) defined LGR4 as a relevant
prognostic marker in serous ovarian cancer, correlating its
high expression levels with poor prognosis in Chinese
population. LGR4 overexpression also leads to squamous cell
carcinoma (35).

Some cancers, e.g. multiple myeloma employ atypical
overexpression of LGR4 on plasma cells (a type of B cell
responsible for antibody production, in the bone marrow). B
cells normally do not express LGR4. However, when
overexpressing LGR4, plasma cells take over RSPOs produced
by pre-osteoblasts, to over-activate Wnt signaling and this leads
to progression of multiple myeloma (36).
TISSUE-SPECIFIC LGR4 SIGNAL
TRANSDUCTION MECHANISMS

Besides direct effects of LGR4 on the Wnt pathway, many reports
indicate the involvement of this receptor in the crosstalk between
Wnt and other pathways, e.g., NFkB (Nuclear Factor-kappa-
light-chain-enhancer of activated B cells). Using intestinal cells,
Lai et al. (10) recently observed that the intracellular domain of
LGR4 and 5 can also trigger N-terminus-(ligand-binding)-
independent NFkB signaling on their own. Li et al. (37),
showed that LGR4 plays a protective role against liver injury.
These authors demonstrated that functional LGR4 is expressed
in mature hepatocytes and that RSPO1 protects hepatocytes
from Tumor Necrosis Factor-a-induced cell death. When Lgr4
is specifically deleted in hepatocytes, the liver becomes more
susceptible to acute injury (see section 7). The authors concluded
that LGR4 protects hepatocytes from injury by inhibiting NFkB
signaling. As shown by Han et al. (38), Wnt signaling potentiated
by RSPO2 and LGR4 also interacts with Transforming Growth
Factor beta (TGFb) signaling via Follistatin (FS) (TGFb
antagonist) to drive early myogenesis. These authors showed
that LGR4 is critical for a proper myogenic differentiation
mediated by RSPO2. Using a mouse model, in vitro and in
vivo, Han et al. showed that there exists a positive feedback loop
between RSPO2, LGR4 and FST in the context of myogenesis,
where FST enables Wnt signaling via RSPO2 and LGR4 at the
same time being a primary target gene of their interaction.
Recently, Wang et al. (39) revealed an alternative function of
LGR4-RSPO binding related to early mammalian hematopoiesis
Frontiers in Endocrinology | www.frontiersin.org 4
regulation, both in vitro and in vivo, which is unrelated to Wnt.
These authors have shown that LGR4 targets TGFb signaling to
modulate human pluripotent stem cell (hPSC) hematopoietic
differentiation. Deletion of Lgr4, but not Lgr5, is detrimental for
mesoderm development and therefore disables hematopoietic
differentiation both in vitro and in vivo. Wang et al.
demonstrated that RSPO1-3, but not RSPO4 interact with
LGR4 to promote hematopoietic differentiation. Interestingly,
they also showed some differences in receptor binding capability,
with RSPO2 acting solely via ZNRF3 independently of LGR4, as
opposed to RSPO1 and 3. Capability to manipulate LGR4 and
RSPOs in the context of hematopoiesis may facilitate the large-
scale generation of functional Hematopoietic Stem Cells (HSCs)
for potential clinical applications. The study by Luo et al. (11)
performed on osteoclasts showed that at the intracellular level,
LGR4 can activate Gaq pathway to inhibit GSK3b (Glycogen
Synthase Kinase 3 Beta) phosphorylation independently of Wnt
signaling, thus preventing NFATC (Nuclear Factor of Activated
T-Cells)-mediated osteoclastogenesis (see section 5). In
invertebrates (e.g., D. melanogaster), DLGR2, the equivalent of
LGR4, interacts with bursicon proteins: BURS/PBURS, activating
cAMP pathway (14, 40). These reports altogether suggest that
LGR4 participates in multiple signaling pathways, dependent on
tissue and cell type.
LGR4, A NOVEL RECEPTOR FOR RANKL
(LIGAND OF RECEPTOR-ACTIVATOR OF
NFΚB)- NEW PATHWAY WITH
CLINICAL IMPLICATIONS

In 2016 Luo et al. (11) described LGR4 as a novel receptor for
RANKL in the context of osteoclastogenesis. RANK (Receptor-
Activator of NFkb), the known classic receptor for RANKL, induces
osteoclast activation upon RANKL interaction. LGR4, on the other
hand, inhibits osteoclastogenesis upon RANKL binding, thus tightly
regulating bone resorption, which when excessive leads to
osteoporosis. In the study by Luo et al., a conditional knockout of
Lgr4 (Lgr4Fl/Fl-LysMCre mice) specifically targeting osteoclast
precursors, caused increased bone loss and increased activity of
osteoclasts as measured by their specific marker TRAP (Tartrate-
Resistant Acid Phosphatase). At the molecular level, Luo et al.
demonstrated that upon binding RANKL, LGR4 activates Gaq-
mediated signaling to stabilize GSK3b and prevent its
phosphorylation at Ser9 (i.e. inactivation). Stabilized
(unphosphorylated) GSK3b, a known inhibitor of osteoclast
differentiation (41), leads to NFATC phosphorylation and its
arrest in the cytoplasm, resulting in the deactivation of the
osteoclast differentiation program (Figure 2). By using the ligand
binding extracellular domain of LGR4 (LGR4-ECD, aa 28-528),
truncated in different regions, Luo et al. deciphered that the
fragment containing aa 80-396 specifically interacts with RANKL.
They tested the therapeutic potential of LGR4-ECD against
osteoporosis, through binding RANKL and thus, preventing its
binding to RANK on osteoclasts (see section 6). Very recently, Jang
et al. (42) and Ko et al. (43) demonstrated the effects of RANKL
May 2022 | Volume 13 | Article 867001
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point-mutations (RANKL-MT3, having 2 histidine residues in the
extracellular domain aa. 220-230 replaced by phenylalanine and
tyrosine), which rendered RANKL unable to interact with RANK,
but did not interfere with its interaction to LGR4 caused its high
affinity to LGR4. As expected, this RANKL mutation had an
inhibitory effect on osteoclastogenesis. Both authors showed that
when applied in vitro or in vivo together with the wild-type RANKL,
RANKL-MT3 counteracts the effects of the wild-type RANKL and
inhibits osteoclast activation. RANKL-MT3 preferably binds LGR4
and reduces NFATC nuclear translocation, a process responsible for
osteoclast maturation. Interestingly, Jang et al. (42) demonstrated
that RANKL-MT3 administration in vivo generates natural anti-
wild type RANKL antibodies in mice, therefore acts as a vaccine
preventing excessive bone resorption. They also showed that
RANKL-MT3 can reverse ovariectomy-induced osteoporosis.

LGR4, however, does not always act as a sponge neutralizing
RANKL/RANK interaction. A recent publication by the group of
Yue et al. (44) indicated RANKL-RSPO2-LGR4 interaction

in breast cancer cells is crucial for DKK1 production via
activation of Gaq and b-catenin, enabling further breast cancer
metastasis into the bones. Inhibition of this pathway can have a
therapeutic potential against tumor spread.
Frontiers in Endocrinology | www.frontiersin.org 5
EXTRACELLULAR DOMAIN OF LGR4 AS A
SIGNALING MOLECULE AND A
POTENTIAL THERAPEUTIC

LGR4 interacts with its ligands- RSPOs, Norrin and RANKL via
its extracellular domain- LGR4-ECD [also alternatively called
LGR4-ED (45)]. LGR4-ECD is a part of the membrane bound
form of LGR4, but interestingly, it can also be encountered in
nature as a circulating (free) form of LGR4. As such, LGR4-ECD
was first described by Hsu et al., who identified a natural Lgr4
splice variant encoding specifically only the ectodomain of
LGR4. Hsu et al. (45) showed LGR4-ECD to play an important
role as a tight regulator of Wnt signaling during mammalian
gonadal development. When administered exogenously in vitro,
LGR4-ECD inhibited the Wnt signaling in HEK 293 cells in a
dose-dependent manner, whereas in vivo, LGR4-ECD treatment
decreased ovarian development and steroidogenesis in rats. In
the paper already discussed above, Luo et al. (11) tested the
potential of LGR4-ECD as an anti-osteoporotic drug. They used
three mouse models characterized by high levels of bone
resorption and osteoporosis, namely ovariectomy, RANKL
injection (46), and Tnfrsf11b-deficiecy (which leads to a lack of
FIGURE 2 | Molecular mechanism of osteoclastogenesis inhibition by LGR4. RANKL (Ligand of Receptor-Activator of NFkB), a common ligand for the two
receptors, RANK (Receptor-Activator of NFkB) and LGR4, has opposite effects on osteoclastogenesis. RANKL/RANK interaction (depicted in blue arrows) promotes
the process through NFATC dephosphorylation, which allows it to enter the nucleus and stimulate gene expression for osteoclastogenesis. RANKL/LGR4 interaction
(depicted in orange), on the other hand, inhibits osteoclastogenesis through activation of Gaq-mediated signaling to stabilize GSK3b and prevent its phosphorylation
(inactivation). Activated GSK3b phosphorylates NFATC preventing its entry into the nucleus, thus inhibiting osteoclastogenesis. Excessive stimulation of the RANKL/
RANK pathway induces Lgr4 expression as a negative feedback mechanism to finely control the process (11).
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osteoprotective Osteoprotegerin-OPG) (47). In all three models,
the authors observed improved bone mass and decreased
osteoclast activity in response to LGR4-ECD administration.
The fact that LGR4-ECD has an anti-osteoporotic effect
indicates its direct interference with RANKL-RANK pathway,
which triggers osteoclastogenesis and when excessive, leads
to osteoporosis.

As mentioned before, upregulation of Wnt signaling
accompanied by the increased levels of LGR4 and RSPOs
marks a variety of tumors. Thus, neutralizing LGR4 activity
with LGR4-ECD may have clinical utility in cancer therapy,
particularly in the context of new strategies based on checkpoints
inhibitors. Such an approach was tested in the study by Tan et al.
(48), who demonstrated that RSPO1-LGR4 interaction promotes
the immunosuppressive M2 phenotype in tumor-associated
macrophages and is associated with a decreased recruitment of
CD8+ T cells capable of neutralizing cancer cells. Using either
LGR4-ECD or anti-RSPO1 antibody, Tan et al. were able to
revert immunosuppression and inhibit the growth of LLC (Lewis
lung carcinoma) tumors and B16F10 melanomas. Also, in the
paper by Yue et al. (44), LGR4-ECD was shown to hold
therapeutic potential against breast cancer metastasis into
Frontiers in Endocrinology | www.frontiersin.org 6
bones. These studies demonstrate a significant and a tissue
context-dependent therapeutic potential of LGR4-ECD, which
is summarized in Figure 3.

LGR4-ECD mediates its therapeutic effects differentially in
different tissues, through binding RSPOs in cancer cells, and
binding RANKL in osteoclasts. Therefore, identifying the biding
sites for each ligand on LGR4-ECD could enable specificity of its
therapeutic effects. In 2013 Wang et al. (12) and then in 2015 Xu
et al. (49) described LRRs 3-9 and 4-9, respectively, as the
essential domains of LGR4-ECD responsible for binding the
furin-like domains of RSPO1). In 2016, by testing 4 differentially
truncated forms of LGR4-ECD, Luo et al. (11) concluded that at
the primary structure level the region between LRR-NT and
LRR8 of LGR4-ECD, corresponding to aa. 28-249, binds RSPO1.
Regarding RANKL binding, in silico modeling used by Luo et al.
predicted that it binds to aa. 108-346 of LGR4-ECD. Data
obtained from experiments with 4 differentially truncated
forms of LGR4-ECD indicated that RANKL binds to LGR4-
ECD in the region within the aa. 80-369 (LRR1-12). Current
knowledge on the structural and three-dimensional interaction
between LGR4-ECD and NORRIN is very limited. Based on the
paper by Deng et al. (25), NORRIN seems to interact with LGR4
FIGURE 3 | Significance of natural and synthetic extracellular domain of LGR4 (LGR4-ECD). Naturally occurring LGR4-ECD controls gonadal development by
binding RSPO1 and preventing its participation in Wnt signaling activation in gonadal cells. Synthetic LGR4-ECD by binding RANKL and preventing its interaction
with RANK has an anti-osteoporotic effect. Synthetic LGR4-ECD by neutralizing RSPO1 disables its interaction with LGR4, overexpressed by cancer cells, and thus,
holds an anti-cancer potential.
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via its b-sheets 3 and 4 (aa. 95-123) since mutations within these
particular fragments of NORRIN impair its interaction with
LGR4. However, to the best of our knowledge, there is no
information available on specific sites within LGR4 protein
structure, responsible for NORRIN binding. Specific LGR4-
ECD domains responsible for RSPO1 and RANKL binding are
depicted in Figure 1B and Figure 1C, in the linear and 3D form.
LGR4: A NEGATIVE REGULATOR OF
INFLAMMATION

LGR4 has been shown to protect different types of cells against
inflammation, most notably in the digestive system. As
mentioned above (see section 4), LGR4 protects differentiated
hepatocytes against injury (37). By knocking down Lgr4, Li et al.
demonstrated that LGR4 is essential for hepatocyte survival
against TNFa-induced damage in primary cultures and in in
vivo- models of hepatic injury. The authors demonstrated the
activation and internalization of LGR4 upon RSPO1 binding in
the hepatocytes. RSPO1 significantly decreased TNFa-induced
hepatocyte death, coupled with reduced levels of NFkB-p65 and
Caspase-3. Li et al. also showed that RSPO1 protective effects
depend onWNT/b-catenin signaling. An earlier study by Planas-
Paz (50) described the role of LGR4 and RSPO1 (and ZNRF3/
RNF43) in liver zonation and regeneration. The study of Liu et al.
indicated Lgr4 deficiency also leads to more pronounced
inflammation (inflammatory bowel disease) of the intestine
under Dextran Sodium Sulfate (DSS) administration (51). The
authors associated LGR4 deficiency with impaired WNT/b-
catenin signaling. Reactivation of WNT/b-catenin signaling
with genetic or chemical methods caused a significant
reduction of inflammation in the Lgr4 mutant mice. This study
suggests diagnosis of LGR4 levels may have a potential clinical
significance in the context of colitis therapy in humans. LGR4
has also been demonstrated to regulate kidney development (52).
By knocking down Lgr4 in mice, the authors revealed that lack of
LGR4 during embryogenesis progression promotes increased cell
death in the renal peripheral mesenchyme, accompanied by
decreased levels of anti-apoptotic protein PAX2 (Paired Box 2).
This results in an overall kidney hypoplasia. Wu et al. (53)
demonstrated the role of LGR4 in prevention of venous ulcer
formation and suppression of inflammation during skin wound
healing. In this study, Lgr4 ko mice exhibited poor skin healing
and increased proinflammatory profile within the wounds. They
also noted a significant drop in LGR4 mRNA levels with the
appearance of venous ulcers in human subjects, accompanied by
an increase in microRNAs 34a and c, directly targeting LGR4
(see section 9) and causing its downregulation at both, mRNA
and protein levels. A recent paper by Chen et al. (54) revealed the
role of LGR4 in protection against myocardial ischemia-
reperfusion (I/R) injury. When Lgr4 was knocked down in rat
cardiac cell line (H9c2), the authors observed increased apoptosis
and mitochondrial dysfunction, accompanied by elevated ROS
production, decreased ATP production, and inhibition of ERK
pathway activation.
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A common phenomenon in the studies described above was
either impaired Wnt signaling or increased NFkB activity. This
seems to be responsible for the detrimental phenotype of Lgr4
knockout in different tissues. On the other hand, as shown by Ge
et al. (55) Lgr4 overexpression in the osteoarthritic rat
synoviocytes, helps diminish the secretion of proinflammatory
cytokines [Interleukin 1 (IL1), TNFa, and Interleukin 6 (IL6)]
and the activation of NFkB, resulting in an overall decrease in
joint inflammation. These studies collectively highlight the
clinical potential of Lgr4 overexpression.
LGR4 AND REGULATION OF
METABOLISM IN HEALTH AND DISEASE

Besides having anti-inflammatory properties, LGR4 plays an
important role in metabolism regulation, acting as a positive or
negative regulator of various metabolic cues.

Circadian Clock
Wang et al. (56) described LGR4 as a linker between circadian
clock and production of triglycerides in the liver. By using
homozygous Lgr4 knockout mice (whole body knockout mice,
Lgr4m/m), these authors showed that LGR4 regulates the
circadian oscillations in fat metabolism. The Lgr4 ko mice had
an impaired plasma triglyceride rhythm compared to controls.
They also observed circadian clock driven Lgr4 expression
changes in hepatocytes. At the mechanistic level, this study
revealed that LGR4 targets Microsomal triglyceride transfer
protein (MTTP) to regulate plasma triglyceride oscillations
in mice.

Energy Expenditure
Another study published by the same group (57) focused on the
importance of LGR4 in energy expenditure regulation in the
adipose tissue and skeletal muscle. By using the same model, as
described above-whole body knockout mice, Lgr4m/m (56), as
well as combined Lgr4 and Leptin double knockout (m/m: Ob, a
mouse model prone to obesity) mice, Wang et al. demonstrated
decreased adiposity and improved glucose metabolism in single
Lgr4 knockout mice, as well as resistance to diet- and double
Lgr4/leptin manipulation-induced obesity. Mechanistically, Lgr4
ko mice exhibited a switch from white to brown adipose tissue
which caused an increased energy expenditure.

Glucose vs. Fat metabolism
Another study performed by the same group again on Lgr4m/m

mice, described LGR4 as a potential regulator of the glucose to fat
metabolism switch in skeletal muscle, according to nutrient
availability. Sun et al. (58) showed that when fasted, Lgr4m/m

mice exhibit an increase in the expression of lipid oxidation-
involved genes and a decrease in GLUT4 (Glucose Transporter
Type 4) transporter in the skeletal muscles. These authors (59)
also discovered a human gain-of-function LGR4 A750T (c.2248
G > A) variant, significantly correlating with waist circumference
and/or with waist-to-hip ratio in two cohorts- young subjects
May 2022 | Volume 13 | Article 867001

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Filipowska et al. LGR4 and its Systemic Role
(≤30y.o) with obesity (BMI >30kg.m2) or older subjects (≥40y.o,
BMI>30kg.m2), both cohorts coming from the population of
Eastern China. Zou et al. concluded that the presence of this
variant may be contributing to central obesity characterized by
abdominal visceral fat accumulation.

Adipogenesis
Most recently, Dong et al. (60) described RSPO2/LGR4 as critical
regulators of progenitor cell differentiation towards adipocytes.
In mice, elevated plasma RSPO2 levels were additionally
associated with insulin resistance, also plasma RSPO2 levels in
humans (specifically in men only) correlated with insulin
resistance and fat distribution (elevated RSPO2 levels were
associated with obesity). This altogether indicates a negative
effect of LGR4 in the adipose tissue.

Food Intake
LGR4 and its ligands-RSPO1-3 were shown by Li et al. (61) and
others to regulate food intake in the brain. The paper by Li et al.
and earlier one by Van Schoore et al. (62) demonstrated Lgr4 is
highly expressed in different parts of the rat and mouse brain,
respectively. Regions with the highest levels of Lgr4 are the
cortex, hippocampus, amygdala, and hypothalamus, the latter
being a central part of the brain regulating appetite and
metabolism. By using in situ hybridization, Li et al. showed
that in the rat hypothalamus, LGR4 is expressed in the VMH
(Ventromedial Hypothalamus), regulating hunger (63), namely
the feeling of fullness, the ARC (Arcuate nucleus), regulating
hunger and satiety (64), median eminence [ME, releasing e.g.,
GnRH (65)], and the ependymocytes [ependymal cells,
supporting neuroglia (66)]. Dark field microphotographs
revealed that among these brain structures, ME and
ependymocytes have the highest levels of LGR4 expression,
followed by VMH and ARC. Data deposited in the Human
Protein Atlas (202 human subjects analyzed) also indicate similar
trend in humans (with high LGR4 mRNA levels in the
hypothalamus). High LGR4 expression in hypothalamic energy
homeostatic regions indicates its importance in food intake/
metabolism regulation.

Li et al. also identified high expression of RSPOs in the
hypothalamic nuclei and suggested RSPOs may have an
anorexigenic (food intake-inhibiting) effect in the brain, since
their expression is downregulated during fasting and upregulated
in satiety states. Similarly, food intake-suppressing effect of LGR4
was observed by Otsuka et al. (67). These authors showed that
LGR4 is critical for activation of arcuate proopiomelanocortin
(POMC) neurons which regulate food intake.

Pancreatic Beta Cells
Another metabolic tissue that expresses LGR4 is the insulin-
producing pancreatic beta cell (15). However, the functional
significance of this receptor in the pancreas remains unknown.
Wong et al. (68, 69), and Chahal et al. (70), by manipulating
RSPO1- a classical LGR4 ligand, found a controversial role in
maintaining beta cell function. In a study published in 2010 by
Wong et al. (68) RSPO1 acted as a mitogen for pancreatic beta
cells (MIN6 cell line and primary mouse islets) in vitro, protecting
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them against proinflammatory cytokines [IL1b, TNFa, Interferon
gamma (IFNg)]-induced cell death and stimulated insulin
secretion, in a glucose-independent manner. As shown by the
authors, Rspo1 expression is regulated by EXENDIN-4 (EX4), an
agonist of the glucagon-like peptide-1 receptor, mechanistically
stimulating downstream signaling via PI3K, in a glucose-,
stimulation time-, and concentration-dependent manner.
Surprisingly, in the following study by Wong et al. (69) whole
body Rspo1 knockout mice exhibited improved beta cell mass and
better glycemic control compared to control mice. Also, when
whole body Rspo1 knockout mice were exposed to STZ in a study
by Chahal et al. (70), the Rspo1 knockout mice were more insulin
sensitive, had a lower number of apoptotic b-cells and increased b-
cell neogenesis and maturation compared to the wild type
littermates. Contradictory findings from the in vitro (68) and in
vivo whole body Rspo1 knockout mice (69, 70) render RSPO1
controversial in the context of b-cells. None of these reports
examine the direct role of LGR4 in b-cells, making it an
interesting area for further studies.

Systemic Metabolic Diseases
In the context of systemic diseases, Li et al. (71) observed a
negative correlation between LGR4 levels in the plasma and
complications often accompanying type 2 diabetes, such as
hypertension. These authors noted plasma LGR4 levels to
decline with an increase in blood pressure in the hypertension-
suffering subjects with type 2 diabetes, as compared to their non-
hypertensive counterparts.
MECHANISMS OF LGR4 EXPRESSION
REGULATION- THE ROLE OF miRNAs,
RANKL CONCENTRATION AND
ALTERNATIVE SPLICING

So far little is known about mechanisms controlling expression of
LGR4. Published data indicate microRNAs, RANKL
concentration, and alternative splicing to be important
regulators of this process. LGR4 expression at the mRNA and
protein levels is controlled by three main microRNAs (miRNAs):
34a and c and miRNA-193-3p. In this context, the study by Cong
et al. (72) demonstrated the importance of miRNA34c
expression during osteoclast differentiation, showing that
miRNA34c suppresses LGR4, (a receptor blocking
osteoclastogenesis) and thus enables osteoclastogenesis to
proceed. Mechanistically, miRNA34c mediated LGR4
suppression, contributes to increased phosphorylation, and
thus, inactivation of GSK3b, which in turn allows NFATC-
mediated osteoclast activation. Expression of miRNA34c in
osteoclast precursors is regulated by RANKL as well as M-CSF
(Macrophage Colony-Stimulating Factor), both stimulating
osteoclastogenesis. It is worth emphasizing that negative
regulation of LGR4 has an important role in maintaining a
basal bone turnover, required for skeleton homeostasis. On the
other hand, total inactivation of LGR4 in osteoclast precursors
leads to excessive osteoporosis, as described earlier by Luo et al.
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Besides the bone, miRNA34c, together with miRNA34a
orchestrates LGR4 expression in the skin, and in this context,
it may have pathological implications. For example, data
obtained by Wu et al. (53) indicate miRNA34a and c
participate in venous ulcers (pathological skin wound healing)
formation via negatively targeting LGR4 in keratinocytes. This
disables anti-inflammatory potential of LGR4 and thus
potentiates skin wound healing pathology. At the molecular
level, the miR34-LGR4 axis regulates NFkB signaling pathway.
These authors (53) showed that when miRNA-34 a/c levels
increase during the pathological skin wound healing, it leads to
increased phosphorylation of GSK3b which results in a further
phosphorylation of a component of NFkB pathway- p65, at
serine 536. This phosphorylation exerts a pro-inflammatory
effect. Negative regulation of LGR4 is also mediated by
miRNA-193-3p, which by suppressing LGR4 and indirectly
LGR4-dependent transcription factor-ATF4 (Activating
Transcription Factor 4), tightly controls the process of bone
formation (osteoblast differentiation) (73).

Besides microRNAs, Lgr4 expression can also be modulated by
its ligands. For example, Luo et al. (11) demonstrated that
expression of Lgr4 in osteoclast precursors is regulated by
RANKL concentration and intensity of its interaction with
RANK. The authors discovered that when RANKL
concentration increases in the extracellular space and it binds
RANK to excessively initiate osteoclastogenesis, a negative
feedback loop mechanism turns on to stimulate the expression
of Lgr4 (Figure 2.). This enables a tight control of osteoclast
activation. The already discussed paper by Hsu et al. (45),
indicated alternative splicing as another Lgr4 expression
regulatory mechanism. They discovered the reading frame shift
during Lgr4 translation, resulting from the introduction of an early
Frontiers in Endocrinology | www.frontiersin.org 9
termination codon, preceding translation of seven-
transmembrane domains of Lgr4. Alternative splicing of Lgr4
leads to formation of a 500 amino acid protein, containing
solely its extracellular domain which acts as a decoy receptor for
RSPO2 and NORRIN during gonadal development (see section 6).
SUMMARY

LGR4 has emerged as a G protein-coupled receptor that controls
multiple pathways and biological processes, traditionally
regulating WNT-mediated signaling and crucial during
development of multiple organs: eye, reproductive tract, and
kidney. LGR4 is required for stem cell maintenance in the small
intestine. As recently discovered, it also plays Wnt-independent
anti-inflammatory and energy expenditure-orchestrating roles
(Figure 4). Thus, LGR4 is important at a systemic level in the
maintenance of whole-body homeostasis. At the molecular level,
LGR4 participates in different intracellular signaling pathways,
including Wnt, NFkB, TGFb, and cyclic AMP. This indicates
LGR4 to be involved in a plethora of mechanisms controlling
cellular events in a tissue-specific manner. LGR4 expression level
needs to be tightly controlled: too little or too much of LGR4 can
lead to impairments, such as osteoporosis, delayed puberty,
obesity, and cancer. Besides the significance of the membrane-
bound LGR4, its soluble form- LGR4-ECD exhibits promising
therapeutic potential in osteoporosis and cancer/metastasis
progression treatment. Altogether, this makes LGR4 an
interesting therapeutic target in several clinical contexts.
However, the role of LGR4 in many cell types and tissues, such
as the pancreatic beta cells, remains to be defined and is an
emerging area of interest.
FIGURE 4 | Systemic functions of LGR4. LGR4 plays a significant role in embryonic development/stem cell maintenance through its binding to RSPO1 and
regulation of the WNT signaling pathway. LGR4 reduces inflammation in multiple tissues through inhibition of NFkB signaling and cytokine production. LGR4 affects
metabolism through multiple mechanisms including circadian clock, oxidative and glycolytic pathways regulation.
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It might be particularly interesting to study this receptor and
its regulation in the context of autoimmune and metabolic
diseases (e.g., Type 1 and Type 2 diabetes) given the common
anti-inflammatory action of LGR4 in different tissues as well as
its emerging role in metabolism. Such studies might reveal novel
signaling functions and physiological roles of LGR4 and provide
new avenues of therapeutic interest. Studies assessing the
presence of LGR4-ECD in circulation, and its role in
physiological and pathophysiological conditions, might have
therapeutic relevance as well.
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