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Colorectal cancer (CRC) is the third most common cancer and the second

most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are

resulted from sporadic tumorigenesis and are not inherited. Since adenoma-

carcinoma development is a slow process and may take up to 20 years,

diet-based chemoprevention could be an effective approach in sporadic CRC.

The Mediterranean diet is an example of a healthy diet pattern that consists

of a combination of nutraceuticals that prevent several chronic diseases and

cancer. Many epidemiological studies have shown the correlation between

adherence to the Mediterranean diet and low incidence of CRC. The goal of

this review is to shed the light on the anti-inflammatory and anti-colorectal

cancer potentials of the natural bioactive compounds derived from the main

foods in the Mediterranean diet.

KEYWORDS

Mediterranean diet, inflammation, colorectal cancer, chemoprevention, natural
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Introduction

The Mediterranean diet (MD) are one of the many studied and well-known dietary
pattern worldwide, and it has been associated with a broad range of benefits for health
as well. Besides, the MD appears as the best diet pattern to reflect many characteristics
of an ideal healthy diet. The roots of the traditional MD pattern are seen in civilizations
encircling the Mediterranean Sea; historically, some of the 22 countries bordering the
Mediterranean Sea. So that this pattern has been closely associated with the social
behaviors and lifestyles of that region (1). The traditional MD is arranged from a high
intake of plant foods (fruits, vegetables, pieces of bread and other cereals, potatoes,

Frontiers in Nutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.924192
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.924192&domain=pdf&date_stamp=2022-08-04
https://doi.org/10.3389/fnut.2022.924192
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2022.924192/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-924192 August 2, 2022 Time: 7:47 # 2

Mahmod et al. 10.3389/fnut.2022.924192

beans, nuts, and seeds); or fresh fruits as a typical dessert,
and olive oil as the vital source of fat, reaching to a
low intake of foods like red meat and sweets containing
sugars or honey. The health benefits of individual foods
and components of the MD (e.g., extra-virgin olive oil
and nuts) have been well-documented (Figure 1) (2, 3).
The benefits of the MD are not due to exclusively one
component, but it is the whole food pattern as well as
the wide range of traditional cuisine and lifestyle (4). Many
factors are associated with the positive outcomes of the
MD, such as traditional cooking methods, fasting practices,
unique recipes, and using home garden vegetables (5). As
well, the MD has been subject to many changes that shaped
the current form today, those changes including culture,
religion, agriculture production, climatic conditions, poverty,
and economy (5, 6). According to the United Nations
Educational, Scientific and Cultural Organization (UNESCO),
the MD is recognized as “a set of traditional practices,
knowledge, and skills passed on from generation to generation
and providing a sense of belonging and continuity to the
concerned communities” (7). The most consistent and robust
evidence for the health benefits of MD has been observed in
cardiovascular conditions, type 2 diabetes, metabolic syndrome,
obesity, cancer, cognitive decline, and many others (8, 9).
In observational studies, higher adherence to the MD was
inversely associated with different types of cancer, including
breast, colorectal, head, neck, respiratory tract, bladder, and
liver (10).

Colorectal cancer (CRC) is the third most familiar
malignancy and the second most deadly cancer. It has been
reported about 1.9 million incidence cases and 0.9 million
deaths worldwide in the year 2020 (11). There is evidence
of higher CRC risk in Westernized society whose behaviors
are characterized by a more elevated consumption of red and
processed meat than in people living along the Mediterranean
coast, who have a decreased overall cancer mortality correlated
to their eating habits such as MD (12). Chronic intestinal
inflammation, such as Crohn’s disease and ulcerative colitis,
is predisposed to CRC (13). In addition, the upregulation of
proinflammatory factors such as cyclooxygenase-2 is observed
in inflammatory bowel disease-related CRC. The capacity
for the MD to prevent CRC is likely due in part to the
total anti-inflammatory effects exerted by the diverse food
components that contribute to this dietary pattern, specifically
those foods and beverages contributing a significant load of
phenolic compounds (i.e., olive and fish oil, and plant-based
foods) (14).

This review aims to summarize the most recent
clinical and preclinical studies of the main micronutrients
included in the components of the MD and to verify
the correlation between their anti-inflammatory, gut
microbiome modulation, and chemopreventive effects in
CRC.

Factors associated with the
development of colorectal cancer

Impact of genetic abnormalities on
colorectal cancer initiation and
progression

Colorectal cancer can be promoted when intestinal
epithelial cells are exposed to different genetic and epigenetic
modifications that make them hyperproliferative (15). There
are several distinct molecular pathways that modulate the
progression of adenoma-carcinoma sequences, including
chromosomal instability, microsatellite instability, and CpG
island methylation (15–18). Hence, chromosomal abnormalities
may associate with mutations that occur in particular oncogenes
or tumor suppressor genes like APC, KRAS, PIK3CA, BRAF,
SMAD4, or TP53 (19). Besides, when mutations happened in
DNA mismatch repair genes this is known as microsatellite
instability which is found in 10–15% of sporadic CRCs (20).
Moreover, DNA CpG methylation is involved in the early
stage of CRC development (21) and associated with BRAF
and KRAS mutations as well as MLH1 methylation (22). CRC
development begins from normal cells changed to hyperplastic
polyp and then converted to sessile serrated adenomas ending
up with cancer (Figure 2) (23). As a result, CRC is classified
into five stages: stage 0 (benign polyp), stage I (tumor invades
the muscularis propria), stage II (tumor invades tissue in the
serosa), stage III (involved of visceral peritoneum), and stage IV
(metastasis) (Figure 2) (24).

Colorectal cancer and inflammation

In humans, up to 20% of all cancers result from
chronic inflammation and persistent infections (25). CRC
can be categorized as either sporadic, with inflammation
following cancer onset, or colitis-associated CRCs induced
by chronic inflammation. Both inflammatory bowel diseases,
ulcerative colitis, and Crohn’s disease have a clear correlation
with a significantly increased CRC risk, indicating chronic
inflammation’s role in carcinogenesis (26). CRC that comes
from inflammatory bowel disease (IBD) is responsible for about
2% of CRC mortality yearly. Despite optimal medical treatment,
the chronic inflammatory condition associated with IBD raises
the chance for high-grade dysplasia and CRC, along with the
effect of the genetic and environmental risk factors and the
microbiome (27).

Several studies have demonstrated the strong correlation
between chronic inflammation and tumorigenesis. Chronic
inflammation could be prompted by: infections (viruses and
bacteria), environmental factors (smoking and pollution),
dietary factors, stress, and obesity (28). Besides, inflammation
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FIGURE 1

The Mediterranean diet intake level.

plays a role in tumor development, which mediates epigenetic
alteration and modulation of oncogenes expression, DNA
damage induced by oxidative stress and mutagens, as well
as unrestricted tissue regeneration and proliferation (16,
29). In particular, chronic intestinal inflammation triggered
different signaling pathways that augment tumor initiation
and progression in CRC (Figure 3) (16). On the other hand,
significant data have been associated between unbalanced
gut microbiota and gastrointestinal tumorigenesis (30). The
function of the intestinal epithelial barrier is affected by both
chronic inflammation and microbial pathogens (31). They
expanded gut permeability leading to ease in the translocation
of microbial substances and stimulating an immune response
(30, 31).

Colorectal cancer and microbiome

The gut microbiota is categorized into commensal and
pathogenic bacteria. There are four distinct groups of bacteria
found in the gut microbiota, including Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria (32, 33). Healthy gut
microbiota plays an essential role in keeping the immune
system active and able to attack opportunistic bacteria through
particular receptors (e.g., Toll-like receptors) or gut microbiota’s
metabolites (e.g., short-chain fatty acid) (34). Dysbiosis is
the state of an imbalanced microbiome which can lead to
a wide range of digestive problems such as irritable bowel
syndrome (IBD) and CRC. An unhealthy gut microbiome can
initiate inflammation and modify several signaling pathways
resulting in the carcinogenesis of CRC (35). However, there
are specific bacterial strains associated with the development
of CRC, including Fusobacterium nucleatum, Escherichia coli,

and Bacteroides fragilis (32). Tumorigenesis effects of dysbiosis
can be summarized as the following: the genotoxicity (DNA
damaging and mutations) effect of some bacteria and their
metabolites, disrupting the gut surface permeability, which
may promote inflammation, and modulation of the immune
response (16, 32). Several studies have shown that modulation
of the gut microbiome can improve the prognosis, treatment,
and prevention of CRC (32).

Selected components of the
Mediterranean diet and their effect
on reducing colorectal cancer risk

Extra virgin olive oil: Phenolic
compounds

Olive oil (OO) is an essential component of the MD with
high nutritional values due to the presence of various bioactive
compounds (36). Simple phenols, fatty acids, flavonoids,
lignans, hydrocarbons, triterpenes, and phytosterols are the
main chemical compositions of olive oil (37). Moreover,
extraction methods play a critical role in determining the natural
nutrients in (OO). Thus, applying cold extraction methods will
produce extra virgin olive oil (EVOO), which is recognized
with high phenolic content and low free fatty acids (38, 39).
Extra virgin olive oil is known for its protective effect on CRC,
conquers intestinal inflammation, and improves gut microbiota
(40–42).

Hydroxytyrosol (3,4-DHPEA) and its secoiridoid
derivatives are the main polyphenolic compounds in EVOO,
and it originated from the hydrolysis of oleuropein during
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FIGURE 2

Colorectal cancer development, stages, and the main genetic modifications all along tumor progression.

FIGURE 3

The correlation between chronic inflammation and the development of CRC. ROS, reactive oxygen species; TNF-α, tumor necrosis
factor-alpha; IL, interleukin; NF-kB, nuclear factor kappa B; HIF, hypoxia-inducible factor; COX-2, cyclo-oxygenase-2; iNOS, inducible nitric
oxide synthase; MMP-9, matrix metalloproteinases-9.

the ripening of olives (43). Hydroxytyrosol (HT) is known
for its diverse pharmacological effects, including antitumor,
anti-inflammatory, immunomodulatory, antimicrobial, and

neuroprotective potential (44–48). Recently, Hydroxytyrosol
has been tested in mice subjected to dextran sulfate sodium
(DSS)-induced colitis (49). The study revealed a high potency
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of (HT) in suppressing inflammation and alleviating colitis
symptoms via downregulation of IL-6, IL-1β, TNF-α, and
myeloperoxidase enzyme. Moreover, hydroxytyrosol was able to
reduce NLRP3 inflammasome expression, and thus suppressed
the expression of IL-18, IL-1β, and caspase-1 in DSS-induced
ulcerative colitis (50). It also improved oxidative biomarkers
and downregulated colon malondialdehyde, myeloperoxidase,
and NO levels along with a significant reduction in mortality
rate and disease activity index of albino rats with induced
ulcerative colitis (51).

Besides the anti-inflammatory effects of (HT), it is also
known to have anticancer properties and is involved in cancer
hallmarks modification and tumor regression effect (52, 53).
Hormozi et al. reported that (HT) induced apoptosis via
upregulation of the caspase-3 gene and increased BAX/Bcl2
ratio in a human CRC cell line (LS180 cells) (54). It enhanced
the expression of the antioxidant enzymes, which emphasized
the antiproliferation effect (54, 55). As well, another anticancer
mechanism of hydroxytyrosol was the inhibition of thioredoxin
reductase 1(TrxR1) enzyme and promoted G1/S cell cycle arrest
(48). It is noteworthy that a high level of (TrxR1) enzyme
has been detected in CRC cells, which correlated with poor
prognosis and chemotherapy response (56, 57). Moreover,
hydroxytyrosol repressed the growth of human colorectal
adenocarcinoma cells (HT-29) in both models in vitro and
in vivo through downregulation of epidermal growth factor
receptors (58). As well, it increased the expression of the CRC
-associated-1 gene (COLACA1) in the same cell line leading to
reduce tumorigenesis and an upraised survival rate (59).

Oleuropein is the ester form of hydroxytyrosol with β-
glucosylated elenolic acid. It is found in olive leaves and
EVOO with different content, and it gives olives a bitter and
pungent taste (39, 60). Oleuropein has been involved in many
pharmacological applications due to its properties, such as
antioxidant, anti-inflammatory, and antineoplastic properties
(61, 62). Oleuropein exhibited an anti-inflammatory effect via
the suppression of inflammatory mediators, including NF-Kβ,
COX-2, caspase-3, TNF-α, and Inos (61, 63, 64). Besides, it
conquers inflammation by inhibiting of MAPK/NF-κB signaling
pathway (65) and reduces the expression of IL-6, TNFR60,
TNFR80, and ICAM-1 (66). In a recent study, Motawea
et al. suggested that oleuropein was effective in reducing the
following pro-inflammatory cytokines: IL-1β, TNF-α, IL-10,
COX-2, iNOS, TGF-β1, MCP-1, and NF-κB in an induced colitis
rat model (67). Besides, nanostructured lipid carrier-oleuropein
was tested in the DSS-induced colitis experimental model and
it exhibited a modulation of the inflammatory biomarkers via
decreasing the level of TNF-α, IL-6, and hindering neutrophil
infiltration (68). As well, oral intake of a diet supplemented
with olive cream and probiotics revealed a synergistic anti-
inflammatory effect in DSS-induced chronic colitis (69).

Previous studies also demonstrated the anticancer effect
of oleuropein, including cell proliferation and migration

inhibition, apoptosis induction, and growth signals modulation
(39, 62, 70). Cárdeno et al. suggested that oleuropein
significantly improved apoptotic mediators and decreased HIF-
α expression in human CRC (HT-29 cells) (71). Besides,
oleuropein repressed the activity of the main transcription
proteins, including NF-κB, STAT3, PI3K/Akt, and β-catenin in
AOM/DSS-induced CRC mice (72).

Tomato: Lycopene

Vegetables are consumed in the MD abundantly, and
tomatoes are one of the universal MD components in the
countries of the Mediterranean basin (73). Tomatoes are the
edible fruits of the tomato plant (Solanum lycopersicum) that
belongs to the Solanaceae family (74). The consumption of
tomatoes has been related to a low incidence of chronic
degenerative diseases, and various types of cancer (74, 75).
These health benefits are expected to be associated with
the presence of a wide range of phytochemicals, including
carotenoids (lycopene and β-carotene), and polyphenolic
compounds (flavonoids, flavanones, and flavones). Besides, high
concentrations of other nutrients such as vitamin A, ascorbic
acid, potassium, and folate have been reported in the chemical
composition of tomatoes (73, 76). According to the chemical
structure of the carotenoids, they are classified into carotenes
(purely hydrocarbons such as lycopene and β-carotene) and
xanthophylls (having oxygen in their structure such as lutein,
zeaxanthin, and β-cryptoxanthin) (77, 78). Lycopene (LC) is a
lipid-soluble pigment of natural carotenoids, which could be
found in fresh tomatoes and processed tomato products (79,
80). Moreover, it is responsible for the red color of many fruits
and vegetables like tomatoes, pink grapefruit, red guava, and
watermelons (77). Many epidemiological studies have shown
the biological activities of lycopene, including antioxidant,
anti-inflammatory, cardioprotective, and anticancer effects (73,
81, 82).

From an anti-inflammatory perspective, lycopene was able
to reduce the following inflammatory biomarkers: TNF-α, IL-
1β, and IL-6 in the acetic acid-induced ulcerative colitis rat
model (83). As well, it has significantly suppressed the level
of NF-kB, TGF-β1, and caspase-3 along with upregulation of
GSH expression and catalase activity in the same experimental
model (84). A recent study has shown the effect of lycopene
on colitis progression by lowering the disease activity index
score, improving the colon length, and rising the expression of
catalase, GSH-Px, and SOD (85).

On the other hand, several studies have described the
antiproliferation activity of lycopene in CRC cells. Lin et al. have
shown the chemo-preventive effect of lycopene in human colon
cancer cells (HT-29). It downregulated the MMP-7 expression
and hindered tumor development and tumor cell invasion (86).
In a mouse xenograft model, LC decreased the expression
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of PCNA and β-catenin proteins, which are associated with
tumor growth and progression. As well, lycopene attenuated
the level of MMP-9 in tumor-bearing mice (87). MMPs are
known to enhance the tumor microenvironment and promote
cell invasion resulting in poor prognosis and low survival rate in
CRC patients (88).

Herbs and spices

Medicinal plants have remained the primary source of
medications; many of the pharmaceuticals that are now
accessible were derived from them, either directly or indirectly.
Many plants have been shown to have vital roles in the treatment
and prevention of various illnesses in various regions of the
globe (89, 90). The bioactive phytochemical elements of many
plants have traditionally been employed in Asian medicine
(91, 92). Health care services are provided by the traditional
healer plants, which are founded on religious and cultural
backgrounds, knowledge, attitudes, and beliefs (90, 91, 93).
Recent years have seen a surge in interest in assessing plant
foods and discovering phytochemicals with the potential to
inhibit carcinogenesis.

Onion: Quercetin
Onions (Allium cepa) are members of the Liliaceae (94). The

Liliaceae family has around 250 genera and 3700 species (95–
97). Allium cepa is one of the world’s oldest and most frequently
grown vegetables, growing in practically every climate zone,
from tropical to cold temperate (98). Although A. cepa is
referred to as the "Queen of the Kitchen," it is distinguishable
by the color of its outer scales (yellow, red, or white), its taste
(sweet or bitter), and whether it is consumed fresh or powdered
(99, 100).

Onion is roughly 90% water, with a significant concentration
of nutritional fiber and carbohydrates. In terms of vitamins
and minerals, onion has a low salt level while being rich
in vitamin B6, vitamin C, folic acid, and minerals (Ca,
Fe, S, Se, Mg, Ph, and k) (101–103). On the other hand,
has a low lipid content and a pool of free amino acids
(104, 105). Onions are high in a range of phytochemicals
with beneficial properties, including organosulfur compounds,
phenolic compounds, polysaccharides, and saponins (106–113).
Sulfur compounds such as DATS, diallyl disulfide (DADS),
ajoene, and sallylmercaptocysteine (SAMC), onionin A (114).
Two flavonoid subgroups are abundant in onion: anthocyanins,
which give certain kinds of their Reddish-purple color, and
the primary pigments are flavonols, which include quercetin,
which is found conjugated as quercetin 4′–O-glycopyranoside,
quercetin 3,4′–O-diglycopyranoside, and quercetin 3,7,4′–O-
triglycopyranoside (115–117). Along with quercetin, additional
flavonols found in onions include kaempferol, luteolin, and
isorhamnetin (118, 119).

Onion bulbs are used not only for their taste and aroma
but also for the nutritional value they provide to the human
diet. Several studies have demonstrated that onion and its
bioactive components have a variety of pharmacological effects
(120), including anti-inflammatory (121), anti-obesity (121),
anti-spasmodic agent (100, 122), anticancer (123–125), and
wound healer (126). Additionally, it has long been recognized as
a helpful therapy for a variety of medical conditions including
diabetes (95, 127), cardiovascular disease (128), hypertension
(106), anxiety (129), and asthma (130). Furthermore, A. cepa
demonstrated that it suppressed gram-positive bacteria more
efficiently than gram-negative bacteria (131) and that it reduces
DNA damage and breaking owing to the presence of quercetin,
a potent antioxidant (109, 132).

The onion bulb extract has been shown to both prevent
and reverse colitis by modulating several pro-inflammatory
signaling pathways, including the mechanistic target of
rapamycin (mTOR), the mitogen-activated protein kinase
family (MAPK), cyclooxygenase-2 (COX-2), and tissue
inhibitors of metalloproteinases (TIMP), as well as several
molecules involved in the apoptotic pathway (121, 133, 134).
They also found several phytochemicals such as saponins,
tannins, and anthocyanin can help fight inflammation (104,
105). In the MC3T3-E1 preosteoblastic cell line, quercetin in a
dose-dependent manner strongly inhibited the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-jB) (135).
Furthermore, in animal and human investigations, quercetin
lowered TNFa/IL-10 and IL-8/IL-10 ratios (136–138). Umoh
et al. showed that red onion may reduce inflammation by
inhibiting NF-jB, MARK, and STAT-1, perhaps via the action
of its active component quercetin (139). Besides, quercetin was
able to reduce inflammation in DDS-induced colitis mice via
upregulation of GSH levels (140).

In recent years, scientists have concentrated their efforts
in vitro, in vivo, and human investigations on the prevention
of cancer through diets with a high percentage of onion.
Inhibiting cell cycle, triggering apoptosis, inhibiting tyrosine
kinase, regulating p53 protein, and inhibiting antioxidant
activity that interferes with several phases of cancer cell creation,
development, differentiation, and metastasis (117, 139, 141–
145). Onion extracts or their key bioactive constituents have
shown strong anticancer activity against prostate, stomach,
breast, lung, colorectal, laryngeal, and esophageal cancers,
pancreatic, adenocarcinoma, and glioblastoma (146, 147).
Quercetin, a novel onion component, might cause G (2)
phase arrest, reduce colon cancer cell growth, and trigger
autophagic cell death (148). In particular, it has been
detected the endocannabinoid receptor (CB1-R) expression,
PI3K/Akt/mTOR pathways, and the pro-apoptotic JNK/JUN
pathways in Caco2 and DLD-1 cells. It was found a
considerable increase in the expression of the endocannabinoid
receptor (CB1-R), as well as suppression of important survival
signals including PI3K/Akt/mTOR (145). The administration
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of quercetin was obsessively monitored for 48 h. In both the
Colo-320 and Colo-741 cell lines, there was an increase in
BAX immunoreactivity after quercetin treatment, but only in
the Colo-320 main cell line was there existing a substantial
reduction in Bcl-2 immunoreactivity (149). By a remarkable
mechanism, quercetin (5 M) was able to significantly reduce the
migratory and invasive potential of Caco-2 cells, resulting in
decreased MMP-2 and MMP-9 expressions, whereas E-cadherin
was downregulated. furthermore, quercetin has been shown
to inhibit the production of inflammatory mediators such
as TNF-α, COX-2, and IL-6 (150). Male Wistar rats were
given (200 mg/kg, 28 days) or (0.5 g, 27 weeks) of onion-
rich of quercetin had a big impact on ACF formation, mucin
depletion, mitosis, and increasing the apoptosis percent in
the treatment group. Although significant influence on cell
proliferation and the expressions of p53 and BAX (151). (152)
demonstrated the quercetin-loaded MPEG–PCL nanomicelles
(Qu-M) dispersed entirely in water and released quercetin for
a long time in vitro and in vivo. In vitro, Qu-M enhanced
apoptosis induction and inhibited cell proliferation in CT26
cells. Furthermore, the mice (BALB/c) subcutaneous CT26
colon cancer model was constructed to assess the therapeutic
effectiveness of Qu-M in greater detail. Qu-M investigates a
high impact on cell death, preventing tumor angiogenesis, and
limiting cell proliferation (152). Supplying quercetin (30 mg/kg,
4 weeks) to AOM/DSS-induced colon cancer mice (Wild-type
C57BL/6J mice) decreased the number and size of tumors
by a significant margin including, reduce the inflammation
produced by AOM/DSS, recovered leukocyte numbers, also
reduces oxidative stress indicators such as lipid peroxide (LPO),
nitric oxide (NO), superoxide dismutase (SOD), glucose-6-
phosphate (G6PD), and glutathione (GSH) (153).

Garlic: Allicin
Garlic or Allium sativum L. is a bulbous plant of the

Alliaceae family that grows in the Mediterranean region (154,
155). In addition to its medicinal properties, garlic is also widely
used as a food and spice (156, 157). Garlic is distinguishable
from other members of the allium family by its clove-shaped
bulbs and flat leaves (158, 159). Garlic includes at least 33 sulfur
compounds, various enzymes such as peroxidase, allinase, and
myrosinase, 17 amino acids, and minerals such as selenium,
calcium, copper, iron, potassium, magnesium, and zinc, as well
as vitamins A, B1, and C, fiber, and water (156, 160–163).
It has the highest concentration of sulfur compounds of all
Allium species (158, 163). Sulfur compounds are responsible for
garlic’s strong odor as well as many of its therapeutic properties
(163). Saponins (proto-eruboside B, eruboside B, sativoside),
lectins, and flavonoids are some of the other elements found
in this plant (159, 160). A compound called allicin is one
of the most important biologically active compounds. Garlic
does not have allicin until it is crushed or cut. The enzyme
allinase, which breaks down alliin into allicin, is activated

when the garlic bulb is damaged. Once it’s made, it quickly
breaks down, but the speed of this reaction changes depending
on the temperature. Allicin can still be found in garlic that
has been refrigerated for a few days. At room temperature,
it breaks down into smelly sulfur compounds like diallyl di-
and tri-sulfides, ajoene, and vinyldithiins in just a few hours
(164–168).

Garlic was highly prized in ancient Egyptian, Greek,
and Chinese cultures as a food and medicinal (169, 170).
It has been studied clinically for a variety of illnesses,
including hypertension, hypercholesterolemia, diabetes,
common cold, and cancer prevention (171–178). This
plant has antibacterial, antifungal, antioxidant, immune
system stimulant, and anti-parasitic properties (159, 162,
176). Garlic’s medicinal potential has also been investigated
in a variety of inflammatory illnesses, including allergic
rhinitis, allergic asthma, IBD, rheumatoid arthritis, and
atherosclerosis (158, 177). Breath odor is a common
adverse effect of using garlic, both orally and intravenously
(162, 179).

A person’s risk of developing malignant tumors may be
increased or decreased depending on the amount of some
foods consumed or the number of others omitted from their
diet. On this premise, dietary treatments are regarded to have
the capacity to prevent or modify malignancies. One of these
natural compounds, garlic (Allium sativum), has been studied
for medicinal purposes. Allicin, a compound found in garlic,
has been shown to inhibit CRC metastasis by strengthening the
immune system and limiting the growth of tumor arteries (180).

Using allicin, an active ingredient derived from the popular
seasoning agent or condiment Allium sativum L., was able
to reduce the secretion of pro-inflammatory factors such as
interleukin-6 (IL-6), prostaglandins (PG), nitric oxide (NO),
interleukin-1 (IL-1), interleukin-6 (IL-6), and TNF-a, while
simultaneously increasing anti-inflammatory cytokines such
as IL-10 (181–184). Rats with Acrylamide (AA)-induced
intestinal damage were used to examine the possible therapeutic
benefits of allicin food supplementation. Allicin significantly
reduced the expression of Toll-like receptor 4 (TLR4), NF-
kB signaling pathway proteins, and proinflammatory cytokines
in AA-treated rats by boosting the synthesis of SCFAs
(185). In Caco-2 cells, allicin (25 mg/ml) can significantly
inhibit p-38 and the JNK pathway activation. Allicin also
suppressed the production of TNF-α and IL-6 generated by
IL-1 at the mRNA and protein level in a dosage-dependent
manner (186). According to Li et al. (186), an oral dose
of allicin enhanced the colonic histopathology score and
investigated the synergistic effects of allicin (30 mg/kg)-
mesalazine (30 mg/kg) and allicin (30 mg/kg)-sulfasalazine
(100 mg/kg) on TNBS (50 mg/kg) induced Wistar rats. Therapy
with allicin-mesalazine decreased the colonic histopathology
score from 5.83 to 2.10, whereas treatment with allicin
sulfasalazine decreased it to 3.38. TNF-a levels were lowered by
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allicin-mesalazine therapy to 2.65 (pg/ml) from 6 (pg/ml), while
allicin or mesalazine treatment alone reduced them to roughly
3.8 (pg/ml). TNBS therapy decreased IL-4 concentration
to less than 4 (pg/ml), while mesalazine-allicin treatment
increased their concentration to 5.76 (pg/ml), but neither
allicin nor mesalazine alone could boost their expression to
synergistic levels.

It was investigated the impact of allicin on cell proliferation
in colon cancer cell lines HCT-116, LS174T, HT-29, and
Caco-2 in vitro, as well as the underlying processes. Allicin
has been demonstrated to have chemo-preventive effects on
critical cellular processes such as mitochondrial membrane
potential maintenance, intracellular redox control, and cell
division. Allicin triggers G2/M arrest alters intracellular
glutathione (GSH) levels (187) and causes a transitory decrease
in intracellular GSH levels (187). Allicin treatment caused
apoptotic cell death in HCT-116, as shown by increased
hypodiploid DNA content, reduced levels of B-cell non-
Hodgkin lymphoma-2 (Bcl-2), increased levels of BAX, and
increased capacity to release cytochrome c from mitochondria
to the cytosol. Allicin also caused NF-E2-related factor-2
(Nrf2) to be translocated to the nucleus of HCT-116 cells.
Although Allicin’s cytotoxic effects were considerable when
evaluated in four distinct human colon cancer cell lines (188).
Experiments on animal models of carcinogenesis showed that
components of garlic (e.g., allyl sulfides) suppress both the
start and promotion phases of tumorigenesis in a wide range
of malignancies including colorectal, lung, and skin (189).
Perez-Ortiz et al. (190) Test the efficacy of a thiosulfinate-
enriched garlic extract in combination with 5-fluorouracil
(5-FU) or oxaliplatin chemotherapy in colon cancer cells
as a new chemotherapy regimen that may also lower the
cost of clinical treatment. The cytotoxic effects of an Allium
sativum extract enriched in thiosulfate were investigated in
two distinct human colon cancer cell lines, Caco-2 and HT-29,
respectively. The doses of allicin (43–60 g/mL) were discovered
to substantially decrease colon cancer cell growth and induce
apoptosis. The impact of Allicin on the azoxymethane/dextran
sodium sulfate (AOM/DSS) CRC mice model on STAT3 is being
studied. Through various ligand-mediated phosphorylation,
STAT3 plays key roles in cytokine signaling pathways, as well
as cell proliferation and death. STAT3 activation causes the
transcription of target genes such as Bcl-2, Bcl-xL, Mcl-1, and
p21, all of which are important in cell survival and proliferation
(180, 191). STAT3 activation may increase cell proliferation,
angiogenesis, and inhibit apoptosis in human cancer cells.
According to the western blot results, Allicin reduced the levels
of phosphorylated STAT3. Allicin also inhibited the expression
of Mcl-1, Bcl-2, and Bcl-xL. Therefore, allicin may be able
to prevent colonic carcinogenesis in AOM/DSS mice in vivo
(180). As an example, Diallyl trisulfide (DATS), an organosulfur
compound isolated from garlic, has shown anticancer activity
both in vitro and in vivo by reducing tumor mitosis and

enhancing histone acetylation of H3 and H4 in both tumors and
healthy cells (168).

Oregano: Carvacrol
Oregano is one of the most highly prized spices in the world,

both commercially and culinary (192). oregano is formed from
the terms "Oros" and "Ganos," which both refer to the beauty of
the mountains in ancient Greek (193). Oregano is the common
name for at least 61 different species spread over 17 different
genera and six different families (194). The family Lamiaceae
contains the genus Origanum, which is the primary source of
well-known oregano spice (194). All of the other plant families
(Rubiaceae, Scrophulariaceae, Apiaceae, and Asteraceae) play a
minor role (194–196). Monoterpenes and sesquiterpenes make
up the majority of the essential oils in the Lamiaceae family.
Their action is linked to the presence of carvacrol and thymol,
which are combined with the primary elements of oregano,
p-cymene, and terpinenes (196–198). Also, Oregano has a
high nutritional value since it includes considerable quantities
of vitamins and minerals while having a low salt level (195,
199, 200). Numerous studies have demonstrated the beneficial
effects of oregano on human health, including its use in the
treatment of a wide range of ailments, including respiratory tract
disorders, gastrointestinal disorders (anti-stomachic and tonic
agent), as an oral antiseptic, analgesic, urinary tract disorders
(as a diuretic and antiseptic agent), anti-inflammatory, and even
anticarcinogenic properties (201–205).

Oregano plant species have been extensively utilized in
traditional medicine to treat inflammation-related disorders
via a variety of mechanisms, including Reduced synthesis of
proinflammatory cytokines such as TNF-α, IL-1, and IL-6,
and increased production of anti-inflammatory cytokines such
as IL-10 (206), as well as inhibition of aldose reductase and
lipoxygenase (206, 207). Oregano, which is high in essential
oils, has been shown to inhibit the COX-2 enzyme, which is
linked to tissue inflammation (208). Carvacrol may also play a
role in reducing the side effects of chemotherapy, in addition to
its anticancer properties. The anticancer medication irinotecan
hydrochloride causes a condition in which inflammation and
cell damage are triggered by the transient receptor potential
cation channel subfamily A, member 1 receptor. Carvacrol is
an agonist of this receptor leading to an effective reduction
of inflammation biomarkers, such as nuclear factor b and
cyclooxygenase 2, as well as oxidative stress, as measured by
glutathione, malondialdehyde, and NOx levels in a mouse model
of inflammatory arthritis (209).

There are a lot of different Flavonoids and phenolic
compounds in species of oregano, and some of them have
been shown to fight colon cancer (210). As a result, research
has looked into whether oregano flavonoids and phenolic
compounds could be used as anti-colon cancer.

The "shutting down" of many cancer survival pathways,
including the ERK/MAPK and PI3K/Akt pathways, may be
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responsible for the overall suppression of colon cancer cell
growth following treatment with Origanum syriacum ethanol
extract (211). The whole extract of Origanum vulgare is
responsible for the apoptosis-inducing action (212). Carvacrol
significantly slowed the growth, migration, and invasion of
colon cancer cells by stopping cells at the G2/M phase and
causing them to die, reduced Bcl-2 expression, phosphorylated
extracellular regulated protein kinase (p-ERK) and p-Akt, and
increased BAX and c-Jun N-terminal kinase (p-JNK) expression
(LoVo and SW620 metastatic cells line) (213). Showcase of
Mexican oregano in colon cancer cells, there was an increase
in the expression of BAX (apoptotic protein) and a decrease
in the expression of Bcl-2, PARP, and Survivin (anti-apoptotic
proteins), as well as an increase in the expression of caspase-
3 in various oregano cultured plants (wild type, in vitro and
ex vitro plant tissue culture) (202). Thymol, another phenolic
component typically found in O. syriacum, was discovered to
suppress the growth of bladder and colon cancer cells (HCT116,
LoVo, and Caco2 cells line) in vitro, which was promising
(214, 215). The key mechanistic activity of thymol’s action was
identified to be the inhibition of JNK and p38 as the main
mediators (214, 215). In another investigation, oregano aqueous
infusion had the strongest radical scavenging efficacy in HT29
cells. Oregano’s strong antioxidant activity has been linked to
a variety of substances including carvacrol and other phenolic
compounds (202).

Saffron: Crocin
Saffron, the world’s most expensive botanical spice,

commonly known as "red gold," is made from the dried
stigmas of Crocus sativus L., a member of the broad Iridaceae
family (216, 217). It is an autumn-flowering, high-value,
low-volume spice crop plant that originated in the Middle
East and is now farmed in China, India, Iran, Azerbaijan,
Turkey, Egypt, Morocco, Greece, Spain, Italy, France, and
Mexico (218–221). In addition to the elements that already
contained in saffron, such as protein, fiber, lipids, vital minerals,
and vitamins B1 and B2 (222–224). There are various key
metabolite components, including carotenoids (crocetin,
crocin, zeaxanthin), monoterpene aldehydes (picrocrocin
and safranal), monoterpenoids, and phenolic compounds
(anthocyanins and flavonoids) that contribute to the diverse
pharmacological effects of this substance (216, 225–227). Three
major bioactive chemicals (crocin, picrocrocin, and safranal)
are found in significant amounts among these metabolites,
and they are responsible for the Safran’s distinctive red color
(crocin), bitter taste (picrocrocin), odor, and aroma (safranal),
and other characteristics (146, 228, 229).

Saffron consumption correlates with a lower risk of many
types of cancer (227, 230–232), improvement of depression
and memory loss (226, 227), regulation of menstruation (233),
accelerated wound healing in burn injuries, and relief of cough
and asthmatic breathing (229, 230). It has also been shown

to be an antihypertensive (225, 234), antianxiety (233), insulin
resistance lowering agent (233, 235), cardioprotective (236), and
gastroprotective properties (233).

Various research has shown that the anti-inflammatory
and antioxidant effects of saffron constituents are due to
their significant inhibitory effects against cyclooxygenase
1 and 2 enzymes and prostaglandin E2 production (237),
attenuating endoplasmic reticulum stress signaling, blocking
pro-inflammatory cytokine production such as TNF-α,
inhibiting transcription factors such as nuclear factor kappa
B (NF-kB), which exacerbates chronic inflammation, and
suppressing inflammatory gene expression (223, 238).
Additionally, the anti-inflammatory properties of saffron
derivatives affect neuroinflammation (237). Following the
study (239), the researcher concluded that crocin protects rat
gastric mucosa ethanol-induced injury through the expression
of anti-inflammatory, antioxidant, antiapoptotic, and mucin
secretagogue mechanisms, which are most likely mediated
through increased PGE2 release. After only 4 weeks, Kawabata
et al. found that crocin feeding could prevent Dextran Sulfate
Sodium (DSS)-induced colitis and decrease TNF-α expression,
IL-1β, IL-6, IFN-γ, NF-kB, COX-2, and iNOS in the colorectal
mucosa and increased nuclear factor (erythroid-derived 2)-like
2 (Nrf2) expression (240). Concerning the effectiveness of
saffron in the treatment of ulcerative colitis (US), studies
have shown that oral administration of crocetin to mice
(25–100 mg/kg per day) for 8 days significantly ameliorated
TNBS-induced UC, as evidenced by a reduction in NO,
neutrophil infiltration, and lipid peroxidation in the inflamed
colon, favorable expression of TH1 and TH2 cytokines, and
down-regulation of the NF-kB (241).

According to the literature, saffron and its components have
chemopreventive activity via the inhibitory effect of saffron
on cellular DNA and RNA synthesis, modulation of lipid
peroxidation, antioxidants, immune modulation, enhancement
of cell differentiation, inhibition of cell proliferation,
modulation of carcinogen metabolism, cell cycle arrest
through p53 dependent and independent mechanisms causing
apoptosis, the interaction of carotenoids with topoisomerase II
(227, 242–247). While the majority of in vivo and in vitro studies
focused on isolated bioactive compounds from saffron, Aung
et al. (248) revealed that C. sativus and its primary ingredient,
crocin, effectively reduced the proliferation of CRC cell lines
(HCT-116, HT-29, SW-480) and non-small cell lung cancer
cell lines (NSCLC) by MTS test while not affect normal cells.
Aung et al. (248) demonstrated that saffron crudes and its main
compound crocin can be used to supplement current CRC
treatments by limiting cancer cell proliferation and motility
progression by targeting the Metastasis-Associated in Colon
Cancer 1 (MACC1) as a major causal metastasis-inducing gene.
Crocetin (0.8 mmol/L) significantly triggered cell cycle arrest
and P21 induction and caused cytotoxicity in SW480 cells by
increasing apoptosis and lowering DNA repair capability in a
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time-dependent manner (249). Another research revealed that
long-term intraperitoneal injection of crocin (400 mg/kg body
weight) improves survival and inhibits tumor development
in female rats with colon cancer generated by subcutaneous
injection of rat adenocarcinoma DHD/K12 PROb cells (227).
Crocin exhibited antiproliferation activity against the HCT116
cell line via induction of apoptosis and attenuation of the ratio
of p-STAT3/STAT3 (250). As well, it suppressed tumor growth
in colitis-associated CRC mouse model via modulation of the
Wnt/PI3K pathway. Crocin was also able to lower disease-
activity index and mucosal ulcer inflammation by regulating
antioxidant markers, including catalase (CAT) activity and
malondialdehyde (MDA) (251).

Rosemary: Rosmarinic acid
Rosmarinus officinalis (Rosemary) is a typical houseplant

growing around the globe that belongs to the Lamiaceae family
(252, 253). The chemical composition of rosemary extract was
examined to determine its active principles, which indicated the
existence of many compounds, including rosmarinic acid (RA),
caffeic acid (CA), chlorogenic acid, carnosic acid, rosmanol, and
carnosol (252, 254–256). Therefore, three types of chemicals
have been linked to the biological activity of R. officinalis L.: a
volatile fraction, phenolic compounds, and di and triterpenes
(254, 255).

Rosemary has a long history of usage in food to change
and improve tastes. On the other hand, rosemary extracts
have anti-inflammatory, antioxidant, antimicrobial, antitumor,
antispasmodic, and anti-diabetic bioactivities. The low toxicity
and strong cardioprotective, hepatoprotective, neuroprotective,
diuretic effect, estrogenic effect, as well as memory enhancement
and pain relief have been investigated in the reviewed literature
(253, 257–262). On the other hand, rosmarinic acid (RA) was
able to reduce inflammation in AOM/DSS-induced colon cancer
mouse model by inhibiting NF-kB and STAT3 pathways (263).
(264) suggested that RA alone or in combination with black
rice extract can suppress colitis disease in DSS-induced colitis
mice. The results of the study have shown a reduction in the
inflammatory mediators expression, including IL-6, IL-1β, TNF-
α, iNOS, and COX-2 (264).

Rosemary has been shown anticancer properties in both
models: in vitro and in vivo. Several of these properties have been
ascribed to its principal constituents, including carnosic acid,
carnosol, ursolic acid, and rosmarinic acid (252, 265). Rosemary
has been shown to have significant antiproliferative activity
against several human cancer cell lines (266–269), induce
apoptosis via nitric oxide production (270, 271), antioxidant
activity (265, 266, 272), decreased TNF-α, IL-6, and COX2 levels
(273, 274), suppress lipid peroxidation (261, 275, 276), prevent
carcinogen-DNA formation (265), stimulation of p53 and BAX
(277), reduction of Bcl-2, Mdm2, and Bcl-xL expression, and
stimulation of caspase-3 and -9 expression (272, 274, 277, 278).
Another probable method is via inhibiting Akt phosphorylation,

which is required for cancer cell proliferation, growth, and
survival (279). A study has tested the antiproliferation activity of
rosemary extract on HT-29 and SW480 cells. Rosemary extract
suppressed tumor cell growth via increasing intracellular ROS,
reducing in G0/G1 phase, and improving cells accumulation
in the G2/M phase (280). Moreover, Valdés et al. reported
that carnosol-enriched extract showed significant inhibition
of cell growth by inducing G2/M cell cycle arrest in colon
cancer cells (SW480 and HT-29 cell lines) (281). A recent
study suggested that rosmarinic acid (RA) can reduce the rate
of adenocarcinoma formation in azoxymethane-induced CRC
in rats. It upregulated the total antioxidant status (TAS) and
decreased the expression of IL-6 and MCP-1 (282). Using male
Wistar rats with DMH-induced colon cancer, RA exhibited a
chemoprotective effect via suppressing tumor formation and
decreasing lipid peroxidation (276). Figure 4 summarized the
anticancer effect of herbs and spices in CRC.

Whole grains and cereals: β-D-glucan

Whole grains are cereals that have the complete grain kernel
(bran, germ, and endosperm) in contrast with refined grains
that contain the endosperm only. There is considerable evidence
that chronic diseases could be avoided by the consumption
of whole-grain cereal products, which can reduce the risk of
obesity, metabolic syndrome, type 2 diabetes, cardiovascular
disease, cancer, and mortality from these chronic diseases (283,
284). Whole-grain cereals are an abundant source of fiber and
bioactive compounds. For example, whole-grain wheat consists
of 13% dietary fiber and at least 2% bioactive compounds
excluding fiber. In the bran and germ fractions, still greater
proportions are attained: about 45 and 18% of dietary fiber, and
about 7% and at least 6% of bioactive compounds, respectively
(285). The total dietary fiber of wheat ranges from 9 –to 20% and
it consists of both soluble and insoluble portions. The two major
components of dietary fiber in wheat are arabinoxylan (AX) and
β-D-glucan (283). While barley and oats contain β-glucan as the
primary fiber in the whole kernel, AX is present in much less
content (286). As well, cellulose and hemicellulose are the major
fiber components of corn bran and brown rice (287).

Dietary fibers provide numerous benefits, including a lower
risk of cancer and enhanced colon health, Where low dietary
fiber consumption has been linked to both local and systemic
chronic inflammation (288). Recently, a study using a synbiotic
composed of arabinoxylan (AX) and Lactobacillus fermentum
HFY06 was tested to determine its ability to relieve DSS-
induced colitis. AX and L. fermentum HFY06 inhibited the
activation of the NF-κB signaling pathway, downregulated the
mRNA expression levels of NF-kBp65 and inhibited the TNF-
α, and exerted anti-colitis effects (289). As well, the short-chain
fatty acids (SCFA), particularly butyrate, are byproducts of
dietary fiber fermentation by certain microorganisms in the
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FIGURE 4

The mechanisms of anticancer activity for some types of MD herbs and spices. ROS, reactive oxygen species; TNF-α, tumor necrosis
factor-alpha; IL, interleukin; COX-2, cyclo-oxygenase-2; MMP-9, matrix metalloproteinases-9; JNK, Jun N-terminal kinase; BAX,
Bcl-2-associated X protein; PARP, poly adenosine diphosphate ribose polymerase; Nrf2, nuclear factor-erythroid factor 2; STAT3, signal
transducer and activator of transcription 3; GSH, glutathione; CB1-R, cannabinoid receptor type 1; Mdm2, mouse double minute 2 homolog;
MCP-1, monocyte chemoattractant protein-1; Wnt, wingless-related integration; PI3K, phosphoinositide 3-kinase.

intestinal colon, and they exhibited anti-inflammatory actions
on both gut epithelial and immune cells. Hence, inflammation
signaling pathways involving nuclear factor kappa-B (NF-kB)
and deacetylase are inhibited by SCFA (288, 290). Several studies
have been established to investigate the anti-inflammatory effect
of the major types of dietary fibers. Such as the beneficial
effect of oat β-D-glucan has been tested on Sprague–Dawley
rats with TNBS-induced colitis. The results showed a significant
reduction in IL-6, IL-10, C reactive protein (CRP), and IL-
12. As well, β-D-glucan reduces some selected inflammatory
markers, including COX, PGE2, and thromboxane A2 (TXA2).
The results indicate the therapeutic effect of dietary oat beta-
glucan supplementation in colitis (291). In another study, oat
beta-glucan has been tested also on male Sprague Dawley
rats with TNBS-induced colitis. The results proved the in-
direct antioxidant effect of beta-glucans by agonistic binding of
immune cells to membrane receptors, which results in increased
antioxidant response and removing systemic effects of colon
inflammation (292).

Another well-known function of dietary fiber is to lower the
CRC incidence, as it reduces the concentrations of carcinogens
and procarcinogens in the feces. Furthermore, it shortens the
residence time of carcinogens in the lower gastrointestinal
tract, reducing their absorbance and contact time with colon
epithelium cells (293). As previously stated, dietary fibers
digested by intestinal bacteria produce SCFA which has a
protective effect against the growth of cancer cells (294, 295).

(296) examined the role of dietary fiber in polyposis by using
TS4Cre × cAPCl◦x 468 mice. The results showed that a high
fiber diet significantly increased SCFA-producing bacterium as
well as SCFA levels. This was associated with an increase in
SCFA butyrate receptor and a significant decrease in polyposis.
The prebiotic activity of fiber could be the key mechanism for
the protective effects of fiber on colon carcinogenesis. Overall,
the findings revealed that insoluble fermentable fiber may
protect against CRC (296). As well, a dietary fiber (β-glucan)
with quercetin anti-colonic cancer effect has been tested. The
findings demonstrated that alternating β-glucan and quercetin
consumption alleviated colon damage and reduced mortality in
CRC mice, with a 12.5% reduction in mortality. Consumption
of β-glucan and quercetin alternated dramatically reduced
TNF-α, increased the relative frequency of Parabacteroides,
and downregulated three genes linked to inflammation and
cancer (Hmgcs2, Fabp2, and Gpt) (297). Moreover, β-glucan
was tested in human colon cancer cells (SNU-C4) and it
exhibited antiproliferation activity by reducing Bcl2 expression
and upregulation of BAX and caspase-3 levels (298).

Fish: PUFA/n-3 fats

Fish is another important component of the traditional MD
diet. In recent years, there has been a lot of emphasis on the
positive effects of fish eating, which has been reinforced by the
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idea that the ocean is a fantastic source of new compounds. Fish
meat is abundant in anti-inflammatory n-3 polyunsaturated
fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA), which have been proven to reduce
the risk of cardiac mortality by 30–45%, and lessen ischemic
stroke incidence (299, 300). As well, n-3 PUFA appears to
be protective against dementia and Alzheimer’s in the elderly
(301). It has been proven to affect various types of cancer,
including breast, ovarian, prostate, lung, skin, colon, colorectal,
pancreatic, and stomach cancers. These benefits of n-3 PUFA are
a result of their antioxidant, anti-inflammatory, anti-apoptotic,
and neurotrophic properties (302). As recently reviewed, n-
3 PUFAs have anti-inflammatory effects against inflammatory
diseases, including IBD, psoriasis, and rheumatoid arthritis
by lowering arachidonic acid (AA) proinflammatory activities,
increasing the production of endocannabinoids with EPA or
DHA in their structure and thus anti-inflammatory properties,
lowering the production of inflammatory cytokines like IL-1, IL-
6, and TNF-α, lessening in T-cell proliferation and the formation
of IL-2 (303). Moreover, they increase the production of anti-
inflammatory markers; e.g., soluble IL-6r, IL-10, transforming
growth factor-β (TGF-β) and lowering the expression of
adhesion molecules on immune cells and endothelium. As well,
the homeostasis of tissues has been restored after inflammation
as a result of n-3 PUFA metabolites production such as
resolvins, protectins, and maresins, which act as specialized
pro-resolving mediators. These pro-resolving bioactive lipids
act as "stop-signaling" of the inflammatory response and have
important anti-inflammatory and anti-carcinogenic properties,
by increasing macrophage phagocytosis, efferocytosis, and
leukocytes egress (304, 305).

Recently, the impact of n-3 PUFA and probiotics
have been investigated in BALB/c mice subjected to 2,4-
Dinitrobenzenesulfonic acid (DNBS) induced-chronic colitis.
Administration of combination reduced the concentrations of
inflammatory mediators such as IFN-γ, TNF-α, and IL-17A.
The findings showed that the combined effect of probiotics and
n-3 PUFA might have a protective effect against colon injury and
inflammation by creating synergistic effects (306). Moreover,
the anti-inflammatory effect of n-3 PUFA was investigated in
a rat model of acetic acid-induced UC. The results showed
that after administration of n-3PUFAs, the expression levels
of IL-1 and Caspase-3 were downregulated, whereas Bcl-2 was
upregulated. These findings imply that n-3 PUFAs protect the
colonic mucosa of rats against acetic acid-induced UC, and may
aid in the repair of UC via anti-inflammatory and anti-apoptotic
properties, as well as a regenerative endogenous antioxidant
mechanism (307).

Interestingly, n-3 PUFA is also known to have anticancer
potentials and is associated with the alteration of cancer
hallmarks and tumor regression activity. It can modulate
cyclooxygenase (COX) metabolism and reduce the production
of several prostanoids including prostaglandin (PG) E2 in

tumors whilst possibly increasing the production of lipid
mediators involved in the resolution of inflammation such as
lipoxins and resolvins, which may have anti-cancer properties
(308). As well, n-3 PUFA has been found to bind to the
plasma membrane of cancer cells, changing the content
and fluidity of the lipid membranes. This can cause signal
transduction to be inhibited, reducing cancer cell viability
and encouraging apoptosis (309). Other CRC-promoting
signaling pathways, including the Wnt/ß-catenin pathway, the
MAPK/ERK pathway, and the PI3K-PTEN system have been
reported to be downregulated by n-3 PUFA (310). In a recent
study on CRC cells, SW620 and HCT-116 parental and HCT-
116 mutant cells isogenic for constitutively active PI3K were
treated with free or ethyl esterified n-3 PUFA. The results
showed the ability of n-3 PUFA ethyl esters to inhibit PI3K
activity confers their potency to reduce CRC cell invasion, but
not proliferation. (311) Furthermore, n-3 PUFAs can activate
pro-apoptotic signaling by interacting with G protein-coupled
receptors (GPCRs), resulting in an anti-CRC activity. Non-
epithelial cells including adipocytes and macrophages have been
found to express these GPCRs. Activation has the potential
to change macrophage polarization and reduce inflammation,
both of which are critical for n-3 PUFA anti-cancer action
(312). Additionally, in the LS174T human CRC cell line, the
effect of EPA derived from n-3 PUFAs on cell number, cell
proliferation rate, and caspase-3 enzyme activity was studied.
When EPA concentrations were increased, caspase-3 activity
rose by 3.4 times relative to untreated control cells at 200 mol
EPA and reduces the number of CRC cells and their growth
rate (313). A further study examined the effect of DHA on
migration in CRC cell lines and found that 100 mM DHA
inhibited Granzyme B expression in three human CRC cell lines
(HCT116, CSC4, and HT-8), limiting their capacity to undergo
epithelial-mesenchymal transition (EMT) (314).

Grapes: Resveratrol

Grapes have been associated with health benefits for many
years, despite a lack of scientific evidence, and have been
closely linked with diet since ancient times, particularly in
Mediterranean countries. Several studies conducted around the
world over the last two decades have shown that consuming
grapes have beneficial impacts on antioxidant capacity, lipid
profile, and the coagulation system (315).

Grape juice is made mostly from European (Vitis vinifera)
and American grape species (Vitis labrusca). Both species have
high levels of polyphenolic compounds, such as caffeic acid,
gallic acid, p-coumaric acid, and stilbenes (trans-resveratrol).
Resveratrol (RV) is one of the most important polyphenols
found in grapes. As well as, Flavonoids such as quercetin, rutin,
myricetin, catechin, and epicatechin (315, 316). The amount
of RV in grapes varies by grape genotype, cultivar, growing
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season, and climatic factors. It can be found in the leaf, skin,
bud, stem, seed, bud, and root. Regardless, the majority of
it is found in the grape skin, with much less in the juice
and wine. Grape skin and juice contain more glycosylated
RV than free RV (317). The benefits of RV are numerous.
The most well-known benefits include anti-inflammatory, anti-
proliferative, and chemopreventive. Multiple lines of evidence
from in vivo and in vitro laboratory research suggest that
the anti-inflammatory properties of RV can be explained by
preventing the synthesis of anti-inflammatory factors (318).
Chronic inflammation is one of the main mechanisms involved
in colon cancer. Therefore, the anti-inflammatory effect may be
beneficial in the treatment of CRC.

Resveratrol has been shown in vitro to reduce the
production of pro-inflammatory mediators such as IL-1 and
IL-6, as well as to down-regulate both mRNA expression
and protein secretion of IL-17 in a dose-dependent manner.
Resveratrol is also associated with the inhibition of 5-
lipoxygenase, cyclo-oxygenase-2 (COX-2), and Nuclear Factor-
kB (NF-kB). As well, suppressing the expression of tumor
necrosis factor α (TNF-α), interleukin 8 (IL-8), and interferon-γ
(IFN-γ) will lead to a decrease in the ulcerative colitis process
(319–321). Ren et al. investigated the anti-inflammatory effect
of RV on HEK-293T cells and HeLa cells the results have
shown that RV suppressed endogenous NF-kB activity and
TNF-α induced NF-kB activation (322). Another study has
demonstrated the anti-inflammatory activity of RV in the DSS-
induced colitis mouse model. The results exhibited a reduction
in IL-2, IFN-γ, GM-CSF, IL-1β, IL-6, KC/GRO, and TNF-α,
along with a significant effect on gut microbiota by increasing
the abundance of Bifidobacterium (323).

Besides the anti-inflammatory effect of resveratrol in grapes,
it also has a high potential for inhibiting tumor initiation,
development, and promotion. The majority of research on
grapes’ cancer-preventive properties focuses on resveratrol
(324). The anticancer activity of resveratrol is mediated by
a variety of molecular mechanisms and signaling pathways.
Such as activation of the mitochondrial and caspase cascade
enzymatic systems, as well as death-induced cytokines and
their receptors are upregulated, as are cyclin-dependent
kinase inhibitors, and tumor suppressor genes. Additionally,
resveratrol will lead to downregulation of survivin, cFLIP, cIAPs,
and antiapoptotic proteins (Bcl-2 and Bcl-xL), all of which
are linked to the development of chemoresistance. Although
resveratrol suppresses tumor cell proliferation by activation
of proapoptotic proteins (P21 and P53) and suppression of
hippo–YAP, inhibition of MAPK, phosphoinositide 3-kinase
(PI3K)/Akt, nuclear factor β (NF-β), activating protein-1 (AP-
1) HIF-1α and signal transducer and activator of transcription 3
(STAT3) (325–327).

Several studies were conducted to investigate the effect of
resveratrol on different cancer cell lines. Such as in vitro study
on human CRC cells HCT116 and SW620, the results indicated

that RV dose-dependently upregulated the expression of several
proapoptotic proteins such as BAX, cytochrome c, cleaved
caspase-9, and caspase-3, while anti-apoptotic protein Bcl-2
expression levels was reduced in RSV-treated CRC cells. Overall,
resulted in the suppression of CRC cell viability, increased
cell apoptosis, and ROS levels compared with the control
group, as well as activated the mitochondrial apoptotic pathway
(328). In another in vitro study of resveratrol on HCT116,
a human CRC cell line, the treated cells showed cell growth
inhibition and apoptosis induction, as well as downregulation
of intracellular AKT1 and IL-6 expression (329). Moreover, an
in vitro cellular model of aggressive and resistant colon cancer
enriched in CSCs was chosen as doxorubicin-resistant LoVo/Dx
cells (a subline of the LoVo cell line), which were treated with
RV and celastrol. The results have shown that celastrol and
resveratrol produce an antitumor activity against metastatic
LoVo cells and cancer stem-like by inducing apoptosis and cell
cycle arrest, by increasing SIRT1 gene expression, resulting in
overcoming apoptosis resistance in LoVo colon cancer cells
(330). Furthermore, a study using CRC-derived cell lines, LoVo
and HCT116, found that resveratrol inhibited CRC invasion
and metastasis by suppressing Wnt/-catenin signaling and, as a
result, the expression of its target genes such as c-Myc, MMP-
7, and MALAT1, which leads to the inhibition of CRC invasion
and metastasis (331).

Nuts: Hazelnuts/β-sitosterol

Hazelnuts (HN) produced by Corylus avellana L., a member
of the genus Corylus of the Betulaceae family, are widely
consumed around the world, and the common hazel is widely
dispersed along the southern European coast and the Black
Sea region (332). HN has several health benefits. Many studies
showed the effect of HN on the reduction of LDL-C levels,
and a tendency to lower total cholesterol accumulation. Besides,
it reduced the incidence of certain chronic diseases such as
cancers (333). The main chemical compositions of HN are
simple phenols, lipids, and monounsaturated fatty acids, as well
as, a source of minerals, tocopherols, tocotrienols, squalene,
triterpenes, and phytosterols. The total phytosterol content of
HN varies between 133.8 mg/100 g and 263 mg/100 g of oil. The
most common is β-sitosterol (BS), which accounts for 83.6% of
the total (334, 335).

β-sitosterol has immunomodulatory and anti-inflammatory
activity, several studies suggested that BS can suppress
inflammation through the NF-κB pathway (336, 337).
Furthermore, BS stimulates the activity of T helper (Th)
cells, as well as T cells and natural killer cells (338). A study
investigated the effects of both stigmasterol and BS on DSS-
induced colitis in C57BL/6J male mice. The results showed
that both BS and stigmasterol significantly inhibited colon
shortening, minimized fecal hemoglobin contents, and lowered

Frontiers in Nutrition 13 frontiersin.org

https://doi.org/10.3389/fnut.2022.924192
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-924192 August 2, 2022 Time: 7:47 # 14

Mahmod et al. 10.3389/fnut.2022.924192

FIGURE 5

The Mediterranean diet components with their effects on cancer biomarkers. (→, activation; >, inhibition; ROS, reactive oxygen species; TNF-α,
tumor necrosis factor-alpha; IL, interleukin; MMP-9, matrix metalloproteinases-9; BAX, Bcl-2-associated X protein; Wnt, wingless-related
integration; PI3K, phosphoinositide 3-kinase; PCNA, proliferating-cell nuclear antigen; TrxR1, thioredoxin reductase 1; COLACA1, colorectal
cancer associated-1 gene; Bcl2, B-cell lymphoma 2; GPCRs, G protein-coupled receptors; MAPK, mitogen-activated protein kinase; AP-1,
activator protein-1; c FLIP, cellular (FAAD-like IL-1β-converting enzyme)-inhibitory protein; cIAPs, cellular inhibitory of apoptosis proteins; BCRP,
breast cancer resistance protein.

the severity of colitis in the middle and distal colon. As well,
they significantly suppressed the activation of the inflammatory
master regulator NF-kB (339). Moreover, the effect of BS on
2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in
mice was also examined to see if it also exhibits anti-colitis
properties. The study showed that BS inhibited colon shortening
and resulted in lower macroscopic scores and myeloperoxidase
activity. In the colons of TNBS-induced colitis mice, BS reduced
the expression of proinflammatory cytokines TNF-α, IL-1,
and IL-6, as well as COX-2 and activation of NF-kB. These
data suggest that BS may help with colitis by suppressing the
NF-kB pathway (340). Furthermore, in DDS-induced colitis in
male C57BL/6 mice, BS was able to reduce the levels of TNF,
IL-6, and IL-1 in intestinal tissue, indicating that β-sitosterol
administration significantly reduced inflammatory damage
to colonic tissues, including colon edema, crypt distortion,
goblet cell loss, and mononuclear cell infiltration. These
findings suggest that it could be useful in treating chronic
colitis (341).

Besides the anti-inflammatory effects of BS found in
hazelnuts, it has also been shown to protect against cancers
such as breast, colon, colorectal, and prostate cancer. BS can
halt tumor development and promote programmed cell death
in cancer cells (342). A recent study tested the anticancer
effect of BS-mediated silver nanoparticles (AgNP) on human
colon cancer (HT-29) cells. The results suggested that BS
improved apoptosis via inducing p53 expression in HT-29 cells
(343). Furthermore, it inhibited the expression of breast cancer
resistance protein (BCRP) and restored oxaliplatin (OXA)
sensitivity in drug-resistant CRC cells. The study also found that
BS could activate p53 by disrupting the p53–MDM2 interaction,
resulting in increased p53 translocation to the nucleus and
silencing the NF-κB pathway, which is required for BCRP
expression. These findings showed that β-sitosterol can regulate
CRC response to chemotherapy by mediating the p53/NF-
B/BCRP signaling axis (344). Shen et al. (345) have reported
that liposomal β-sitosterol can prevent tumor migration of
colon carcinoma via downregulation of MMP-9 expression
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FIGURE 6

The effect of the Mediterranean diet on the cellular signaling pathways that regulate colorectal cancer progression.

and modulation of Th1 immune markers. Additionally, BS,
campesterol, and stigmasterol have been tested on colon cancer
cells (Caco-2). The results revealed BS and other polyphenols
induced reversible arrest in phase G0/G1 of the cell cycle (346).
In HCT116 cells, BS induced apoptosis was accompanied by
a decrease in anti-apoptotic Bcl-2 protein and mRNA and a
concurrent rise in proapoptotic BAX protein and mRNA, as
well as cytochrome c release from the mitochondria into the
cytoplasm. The expression of cellular inhibitor of apoptosis
protein-1 (cIAP1) was also suppressed by BS treatment (347).
As well, the anti-CRC effects of BS were investigated in BALB/c
nude mice. The study has proved that the treatment of mice
with β-sitosterol decreased tumor growth by lowering PI3K/Akt
expression, promoting Bad activation, decreasing Bcl-xl, and
increasing cytochrome-c release, resulting in caspase-9 and
caspase-3 activation, PARP cleavage, and apoptosis.

Hot pepper: Capsaicin

Hot pepper (Capsicum annuum L.), usually called chili,
is a diploid, facultative, self-pollinating crop that belongs to
the Solanaceae family (closely related to the potato, tomato,
eggplant, tobacco, and petunia). Hot pepper contains many
essential vitamins, minerals, and nutrients that have a significant
role in human health (348–351). Peppers are a rich origin of
both vitamins C and E (352, 353). The major components of

most capsicum species are capsaicin (69%), dihydrocapsaicin
(22%), nordihydrocapsaicin (7%), homocapsaicin (1%), and
homodihydrocapsaicin (1%), respectively (354). Capsaicin
(8-methyl-N-vanillyl-trans-6-non-enamide) is a naturally
occurring alkaloid derived from chilies. It is responsible for
its hot pungent taste, characterized by its odorless fat-soluble
compound that is rapidly absorbed via the skin.

Lycium barbarum polysaccharides and capsaicin have a
protective effect in rats with dextran sulfate sodium-induced
ulcerative colitis through anti-inflammation and antioxidation
actions (355). Oral capsaicin has downregulated IL-6 and
protein expression of TRPV1 and TRPA1 as well as increased
SOD level and catalase activities (356). Besides, dietary capsaicin
exhibited an anti-colitis effect in DSS-induced colitis wide-type
(WT) mice by improving Na+ absorption, and reducing Cl−

level. It ameliorated intestinal inflammation by suppressing the
hyperactivity of TRPV4 channels (357).

Capsaicin has an anticancer impact on HCT116 and LoVo
cells (human colon cancer cells) through influencing cell cycle
G0/G1 phase arrest and apoptosis, which was associated with an
elevate of p21, BAX, and cleaved PARP. The capsaicin anticancer
mechanism was attributed to the stabilization and activation of
p53. It lengthened the half-life and boosted the transcriptional
activity of p53 (358). Synergistic induction of both apoptosis and
inhibition of cell proliferation was shown in HCT116, SW480,
LoVo, Caco-2, and HT-29 (human CRC cells) that were treated
with the combination of capsaicin and 3,3’-diindolylmethane.
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Also, these two compounds activated the transcriptional activity
of NF-kB and p53 synergistically. The combination treatment
stabilized nuclear p53 and up-or downregulated expression
of several target genes that are downstream of NF-κB and
p53 (359).

Figure 5 demonstrated the seven MD components and their
effects on cancer biomarkers and CRC development. Figure 6
displays the molecular mechanism of the MD in CRC.

Table 1 summarized the anti-inflammatory effects of all the
discussed MD components. Table 2 summarized the anticancer
effects of the MD components.

Role of the Mediterranean diet and
its components in modulation of
the gut microbiome

Several studies have shed the light on the role of the diet
in the modulation and improvement of the gut microbiome
(363). In particular, the MD which is recognized for its high
plant-based food has shown a remarkable impact on gut
microbiota profile (364, 365). It was found that adherence to
MD has increased the presence of SCFA and fiber-degrading
bacteria as well as reduced the presence of E. coli bacteria
(365, 366). Besides, the positive impact of the MD on the gut
microbiota content has been recognized by Garcia-Mantrana
et al. (367), it was observed an improvement in Bifidobacteria
abundance and higher production of SCFAs. Concurrent
literature has described the beneficial modulation of the
gut microbiome by the different components of the MD.
Interestingly, the intervention treatment of hydroxytyrosol,
a main phytochemical in EVOO, has modulated the gut
microbiota leading to a lower density of inflammation-related
microbes and enhancing the presence of probiotics (49, 50).
Recently, Rocchetti et al. reported that oleuropein derived from
olive leaf extract and EVOO has improved gut microbiota
and potentiated the growth of bacteria associated with healthy
metabolic markers (368). (360) reported the anti-inflammatory
effect of lycopene in DSS-induced colitis mice. The study
suggested that lycopene reduced the expression of TNF-
α, IL-1β, TLR-4, and iNOS as well as modulated the gut
microbiome by decreasing the density of proteobacteria and
improving the presence of Bifidobacterium and Lactobacillus
(360). Furthermore, allicin altered the structure of the gut
microbiota and raised the number of beneficial bacteria.
Koch and Lawson found that allicin suppresses the
development of Escherichia coli and Staphylococcus aureus
(369). Allicin (100 mg/kg/d) dramatically increased the relative
abundance of Ruminococcaceae, Clostridiales, Bacteroidales,
and Facklamiaets while decreasing the relative abundance
of Firmicutes, Corynebacteriales, and Lactobacillales (370).
Dietary supplementation with 100 mg/kg of carvacrol–thymol

(CV–TH) (1:1) blend as animal feed for 14 days reduced
weaning-induced intestinal oxidative stress and inflammation
in piglets by decreasing tumor necrosis factor mRNA levels. It
is worth noting that the CV–TH blend increased the population
of Lactobacillus species and decreased the populations of
Enterococcus and E. coli (361). Moreover, dietary fiber
consumption enhances the creation and maintenance of a
healthy, viable, and diversified colonic microbiota, acting
as prebiotics. Prebiotics are ingredients that are resistant to
gastric acidity and hydrolysis by enzymes (295). On the other
hand, β-sitosterol maintained gut microbiota compositions
leading to the production of beneficial metabolites including
SCFAs that promote tumor apoptosis (362). As well, pungent
food, particularly Capsaicin, has a positive action on gut
flora, by decreasing the disease-causing enteric pathogens and
encouraging the growth of useful bacteria (371).

Chemopreventive effect of the
Mediterranean diet and its
components: Clinical studies

Despite the effectiveness of colonoscopy screening and
recent improvements in cancer therapy, CRC remains one of
the most prevalent and deadly types of cancer (372). Many
studies have shown that a diet rich in fruits, vegetables, and
tea is associated with lower rates of cancer, particularly colon
cancer (373–375). In this context, a double-blind randomized
clinical trial, case-control study, and meta-analysis revealed
a substantial impact on colon disease and cancer patients.
Fruit and deep-yellow vegetables, dark-green vegetables, onions,
and garlic are moderately associated with a lower risk of
colorectal adenoma, a precursor to CRC (376–378). Case-
control studies generally revealed a lower risk of CRC with
onion eating. In Argentina, the effect was more pronounced
for consumption of a combination of garlic, onions, and
pepper (379). In other case-control studies, the data points
to a positive outcome. A food frequency questionnaire was
used to analyze the intake of onions and garlic in a network
of Italian and Swiss research that comprised 1037 cases and
2020 controls (380). The researchers discovered that onions
and garlic were both protective against large bowel cancer. All
levels of onion consumption were related to a lower risk of
CRC. Also, Garlic usage at intermediate and high levels was
linked to a lower risk of CRC. Several studies have indicated
that flavonols, such as quercetin, can reduce the incidence of
colon cancer with or without additional supplement therapy
such as aspirin or NSAIDs (381–383). A dose-response meta-
analysis revealed that an increase in dietary flavonols (such as
quercetin) intake of 10 mg per day was significantly related to
a reduced risk of CRC (383). Furthermore, taking 3.65 kg of
garlic supplements per year for 2 years was connected with a
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TABLE 1 Anti-inflammatory effects of the main Mediterranean diet components.

MD components Active phytochemicals Model of the experiment Result of the study References

Extra virgin olive oil Hydroxytyrosol DDS-induced colitis mice ↓ IL-6, IL-1β

↓ TNF-α
↓Myeloperoxidase enzyme
↑ Probiotics

(49, 50)

DDS-induced ulcerative colitis mice ↓ NLRP3 inflammasome
↓ IL-18, IL-1β

↓ Caspase-1

(50)

Induced ulcerative colitis albino rats ↓Malondialdehyde, myeloperoxidase
↓ NO
↓Mortality rate
↓ Disease activity index

(51)

Oleuropein Induced colitis rats ↓ IL-1β, IL-10
↓ TNF-α
↓ COX-2
↓ iNOS
↓TGF-β1
↓MCP-1
↓ NF-κB

(67)

DDS-induced colitis mice ↓ TNF-α
↓ IL-6
↓ Neutrophil infiltration

(68)

Tomato Lycopene Ulcerative colitis rat ↓ IL-6, IL-1β

↓ TNF-α
(83)

Ulcerative colitis rat ↓ NF-κB
↓TGF-β1
↓ Caspase-3
↓ GSH
↓ Catalase activity

(84)

DSS-induced colitis mice ↓ TNF-α
↓ IL-1β

↓ iNOS
↓ TLR-4
↓ Bifidobacterium and Lactobacillus
↓ Proteobacteria

(360)

DSS-induced colitis mice ↓ Disease activity index score
↓ Colon length
↓ Catalase
↓ GSH-Px
↓ SOD

(85)

Onion Quercetin MC3T3-E1 preosteoblastic cell line ↓ NF-?B (135)

DSS-induced colitis mice ↓ GSH (140)

AOM/DSS-induced colon cancer
mice

↓ LPO
↓ NO
↓ SOD
↓ G6PD
↓ GSH

(153)

Garlic Allicin Caco-2 cells ↓ p38
↓ JNK

(185)

AA-induced intestinal damage rats ↓ TLR4
↓ NF-κB
↓ SCFAs

(185)

TNBS-induced colitis Wistar rats ↓ TNF-α
↓ IL-6

(186)

Oregano Carvacrol–thymol Weaning-induced intestinal oxidative
stress and inflammation piglets

↓ TNF
↑ Lactobacillus

(361)

(Continued)
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TABLE 1 (Continued)

MD components Active phytochemicals Model of the experiment Result of the study References

Carvacrol Irinotecan-induced intestinal
mucositis mice

↓ NF-κB
↓ COX-2
↓ Oxidative stress
↓ NOx
↓Malondialdehyde

(209)

Saffron Crocin colitis-associated CRC mice ↑ Catalase
↓Malondialdehyde

(251)

DSS-induced colitis mice ↓ COX-2
↓ TNF-α
↓ NF-?B
↓ iNOS
↓ IL-6, IL-1β

↓ Nrf2

(240)

Crocetin TNBS-induced ulcerative colitis mice ↓ NO
↓ Neutrophil infiltration
↓ Lipid peroxidation
↓ NF-?B

(241)

Rosemary Rosmarinic acid AOM/DSS-induced colon cancer
mice

↓ NF-?B
↓ STAT3

(263)

DSS-induced colitis mice ↓ IL-6, IL-1β

↓ TNF-α
↓ iNOS
↓ COX-2

(264)

Whole grains and cereals Arabinoxylan DSS-induced colitis mice ↓ NF-?B
↓ NF-κBp65
↓ TNF-α

(289)

β-D-glucan TNBS-induced colitis
Sprague-Dawley rats

↓ IL-6, IL-10, IL-12
↓ CRP
↓ COX
↓ PGE2
↓ TXA2

(291, 292)

Fish n-3 PUFA DNBS-induced chronic colitis
BALB/c mice

↓ TNF-α
↓ IFN-γ
↓ IL-17A

(306)

Induced ulcerative colitis rats ↓ IL-1
↓ Caspase-3
↑ Bcl-2

(307)

Grapes Resveratrol HEK-293T cells and HeLa cells ↓ NF-κB
↓ TNF-α

(322)

DSS-induced colitis mice ↓ IL-2, IL-1β, IL-6
↓ IFN-γ
↓ TNF-α
↓ KC/GRO
↓ GM-CSF

(323)

Hazelnuts β-sitosterol/stigmasterol DSS-induced colitis C57BL/6J male
mice

↓ Colon shortening
↓Hemoglobin in feces
↓ NF-κB

(339)

β-sitosterol TNBS-induced colitis mice ↓ Colon shortening
↓Myeloperoxidase
↓ TNF-α
↓ IL-1, IL-6
↓ COX-2
↓ NF-κB

(340)

DDS-induced colitis male C57BL/6
mice

↓ IL-1, IL-6
↓ TNF-α

(341)

Hot pepper Capsaicin DSS-induced colitis rats ↓ IL-6
↓ TNF-α

(355)

DSS-induced colitis rats ↓ IL-6
↓ TRPV1, TRPA1
↑ SOD
↑ Catalase

(356)

DSS-induced colitis wide-type mice ↓ TRPV4 (357)
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TABLE 2 Anticancer effects of the main Mediterranean diet components.

MD
components

Active
phytochemicals

In vitro/
In vivo

Result of the study References

Extra virgin
olive oil

Hydroxytyrosol In vitro - Upregulation of the caspase-3
- Increase BAX/Bcl2

(54)

In vitro - Inhibition of TrxR1
- G1/S cell cycle arrest

(48)

In vitro/In vivo - Downregulation of epidermal growth factor receptors
- Increased the expression of (COLACA1)

(77, 78)

Oleuropein In vitro - Decreased HIF-α expression (71)

In vivo - Repressed the activity NF-κB, STAT3, PI3K/Akt, and β-catenin (72)

Tomato Lycopene In vitro - Downregulated the MMP-7 expression
- Hindered tumor development and tumor cell invasion

(86)

In vivo - Decrease the expression of PCNA and β-catenin proteins (87)

Onion Quercetin In vitro - G 2 cell cycle arrest (148)

In vitro - Increased in the expression of CB1-R
- Suppression of PI3K/Akt/mTOR signals

(145)

In vitro - Increased in Bax immunoreactivity (153)

In vivo - Increased the apoptosis, cell proliferation and the expressions of p53 and Bax (151)

In vivo - Reduced the LPO, NO, SOD, G6PD, GSH (153)

Garlic Allicin In vitro - Decreased in intracellular GSH levels (187)

In vitro - Increased hypodiploid DNA content
- Reduced levels of Bcl-2
- Increased levels of BAX, and cytochrome c

(188)

In vivo - Reduced the levels of phosphorylated STAT3
- Inhibited of Mcl-1, Bcl-2, and Bcl-xL

(180)

Oregano Carvacrol In vitro - Increased in BAX
- Decreased in Bcl-2, PARP, Survivin
increased in the expression of caspase-3

(202)

In vitro - The G2/M cell cycle arrest
- Reduced Bcl-2
- Phosphorylated p-ERK and p-Akt
- Increased BAX and p-JNK expression

(213)

Thymol In vitro Inhibition of JNK and p38 (214, 215)

Saffron Crocin In vitro - Targeting MACC1 as a major causal metastasis-inducing gene (248)

In vitro - Modulation of the Wnt/PI3K pathway
- Regulating (CAT)and (MDA)

(251)

In vitro - Induction of apoptosis
- Attenuation of the ratio of p-STAT3/STAT3

(250)

In vivo - Improved survival rate
- Inhibited tumor development

(227).

Crocetin In vitro - Cell cycle arrest
- P21 induction
- Increasing apoptosis
- Lowering DNA repair capability

(249)

Rosemary Rosmarinic acid In vivo - Reduced the rate of adenocarcinoma formation.
- Upregulated TAS
- Decreased the expression of IL-6 and MCP-1

(282)

In vivo - Suppressing tumor formation
- Decreasing lipid peroxidation

(276)

Whole
grains and
cereals

β-glucan In vitro - Reducing Bcl2 expression
- Upregulation of BAX and caspase-3 level

(298)

β-glucan and
quercetin

In vivo - Reduced TNF-α
- Increased the Parabacteroides
- Downregulated Hmgcs2, Fabp2, Gpt

(297)

(Continued)
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TABLE 2 (Continued)

MD
components

Active
phytochemicals

In vitro/
In vivo

Result of the study References

Fish n-3 PUFA In vitro - Modulated COX metabolism
- Reduced the PGE2 in tumors -increasing lipoxins and resolvins

(308)

In vitro - Downregulated:Wnt/ß-catenin pathway, the MAPK/ERK pathway, and the
PI3K-PTEN system

(310)

In vitro - Activated pro-apoptotic signaling by interacting with GPCRs (312)

In vitro - Inhibited signal transduction
- Reducing cancer cell viability -encouraging apoptosis

(309)

Grapes Resveratrol In vitro - Activation of P21 and P53
- Suppression of hippo–YAP
- Inhibition of MAPK, (PI3K)/Akt, (NF-β)
- Activating protein-1 (AP-1) HIF-1α

- Signal transducer and activator of transcription 3 (STAT3)

(325–327)

In vitro - Upregulated BAX, cytochrome c, cleaved caspase-9, and caspase-3
- Reduced Bcl-2 expression levels

(328)

In vitro - Suppressing Wnt/-catenin signaling (331)

In vitro - Downregulation of intracellular AKT1 and IL6 expression (329)

Hazelnuts β-sitosterol In vitro - Improved apoptosis via inducing p53 expression (343)

In vitro - Decreased in Bcl-2 and mRNA -raised BAX protein and mRNA -suppressed cIAP1 (347)

In vitro - Restored oxaliplatin (OXA)
- Disrupting the p53–MDM2 interaction
- Silencing the NF-κB pathway

(344)

In vivo - Lowering PI3K/Akt expression, -promoting Bad activation
- Decreasing Bcl-xl
- Increasing cyto-c release

(362)

Hot pepper Capsaicin In vitro - The G0/G1 cell cycle arrest
- Elevated p21, BAX, and cleaved PARP.

(358)

lower incidence of colorectal adenoma, a precursor of CRC (375,
376). Epidemiological investigations of randomized controlled
trials revealed that treatment of aged garlic extract reduced
colon adenomas and CRC in patients with CRC via increasing
NK cell activity (384). In a Japanese study, patients with both
colorectal aberrant crypt foci (ACF) and colorectal polyps who
were planning polypectomy had a double-blind, randomized
controlled experiment to investigate the effectiveness of omega-
3 FAs in humans. After a month of supplementation, EPA
(2.7 g per day) was found to be more effective at inhibiting
colorectal aberrant crypt foci than the placebo control group
(385). Another clinical trial looked at how co-supplementing
with vitamin D and omega-3 fatty acids affected inflammatory
markers and the tumor marker CEA in chemotherapy-treated
CRC patients. Eighty-one patients with stage I or stage II
CRC were given two omega-3 fatty acid capsules and a
50,000 IU vitamin D soft gel once a week for 8 weeks. The
findings demonstrated that, when compared to baseline, omega-
3, vitamin D, and co-supplementation significantly reduced
serum levels of TNF-, IL-1, IL-6, IL-8, and tumor marker CEA.
In comparison to baseline, NF-kB activity was significantly
reduced in the vitamin D and co-supplementation groups (386).
Numerous clinical pilot investigations have demonstrated that
resveratrol in high doses is generally safe. Twenty CRC patients
received resveratrol before surgery, at doses of 0.5 g or 1.0 g

taken orally for 8 days. According to the findings, resveratrol
was well tolerated. In CRC resection tissue, resveratrol and
its metabolites were discovered. Resveratrol (0.5 or 1.0 g) was
sufficient to provide anticarcinogenic effects in colon cancers
by reducing tumor cell proliferation by 5% (P < 0.005) (387)
Furthermore, in nine patients with colon cancer and liver
metastases, a daily injection of 5 g micronized resveratrol
resulted in a 39% rise in cleaved caspase-3, a marker of apoptosis
(388). In a double-blind, randomized, placebo-controlled study,
tomato lycopene extract exhibited a chemopreventive effect in
colon cancer patients (n = 56) via downregulation of insulin-
like growth factor-1 levels (389). As well, an Italian case-control
study confirmed that high adherence to MD can reduce CRC
risk (390). However, more research involving human clinical
studies is needed to prove the therapeutic effects of these
phytochemical substances in the treatment of CRC.

Future prospects

The future of the MD is rather unclear, and the MD’s health-
protective qualities might be lost even before we completely
realize the activity of the chemicals and the processes by
which health results are attained. To maximize the potential
health benefits, it is also essential to pay closer attention to
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the preservation of traditional foods and a faithful reflection
on cultural traditions and the MD diet. Many studies have
shown that high adherence to the Mediterranean pattern
could significantly reduce the incidence of CRC. Hence,
the recommendation of these diet patterns is usually as
chemopreventive and in particular, cases can be applied as
a complementary treatment to reduce tumor recurrence or
protect from second tumors in recovered patients. However,
more clinical research is required to determine the suitable
and effective food patterns that can be administrated in CRC
cases either for prevention or as a therapy. Besides, focusing
on investigating the molecular mechanisms of MD components
and their phytochemicals will be essential to upgrading
the complementary therapies to the rank of established
anticancer agents.

Conclusion

The MD components are rich in phytochemicals with
spectacular medicinal properties. It is believed that these
components exert a nutritional synergy when consumed
in combination. Many preclinical and clinical studies have
demonstrated the cancer-preventive effects of the natural
compounds involved in the MD patterns. Based on the collected
facts in this review, these nutraceuticals could prevent CRC

by either reducing inflammation or preserving a healthy
microbiota in the intestine.
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63. Domitrović R, Jakovac H, Marchesi VV, Šain I, Romić Ž, Rahelić D.
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