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C H A P T E R  8
The Administration of Vaccines

Although vaccine manufacturers produce high quality products, these will not be effective if  
administered by the wrong route, in the wrong dose, or at the wrong time. Thus careful and  
appropriate administration is required if maximum benefit is to be afforded by vaccination.

One must not lose sight of the objectives of vaccination. Vaccines are given to protect animals 
against significant infectious diseases to which they have a risk of exposure. Vaccines should 
therefore only be given when these benefits are obvious and outweigh any possible adverse effects. 
Potential risks include adverse reactions, the likelihood of acquiring the disease, and the severity 
of the disease. On the other hand, benefits include protection from infection and death, reduction 
in disease severity, and any contribution to herd immunity. Vaccines should be administered no 
more frequently than necessary to confer protection. It is of course equally inappropriate to  
vaccinate animals in such a way that any immunity conferred is insufficient to protect them. 
Veterinarians assessing vaccine risk must also consider any benefits to human health that might 
result from protection against zoonotic infections.

Since the 1990s, there has been a concerted effort to classify vaccines into those essential for 
animal health and thus mandatory (CORE vaccines) and those whose use depends upon specific 
risk assessment (nonCORE vaccines). That terminology is used here although it may be consid-
ered a false dichotomy. The use of every vaccine should be based on an objective and thorough 
risk assessment. The veterinarian must make their own professional judgment and an informed 
decision regarding vaccine use. Designation of core vaccines does not absolve them from their 
professional responsibilities in this respect.

Veterinarians should only use effective vaccines licensed by their national authorities and the 
vaccines must be used in accordance with the label directions. They should not be used unless the 
veterinarian has either diagnosed a specific disease or is aware of its presence in an area, because 
otherwise it is not possible to determine the benefits and risks of vaccination.

Vaccination Principles
VACCINATION SCHEDULES

Certain principles are common to all methods of active immunization. Most vaccines require an 
initial series in which the immune system is primed and protective immunity initiated, followed 
by revaccination (booster shots) at intervals to ensure that this protective immunity remains at an 
adequate level.
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Initial Series

Because maternal antibodies passively protect newborn animals, it is not usually possible to  
vaccinate very young animals successfully. If protection is deemed necessary at this stage, the 
mother may be vaccinated during pregnancy. Maternal vaccinations should be timed so that peak 
antibody levels are achieved at the time of colostrum formation. Once an animal is born, success-
ful active immunization is effective only after maternal antibodies have waned. Animals should 
be revaccinated 12 months later or at 1 year of age. It is unclear whether maternal antibodies can 
always block antibody responses to intranasal vaccines. Despite high levels of circulating maternal 
antibodies, maternal interference does not always occur and nasal antibody production is often 
unimpaired.

The timing of initial vaccinations may also be determined by disease epidemiology. Some 
diseases are seasonal, and vaccines may be given before outbreaks are anticipated. Examples of 
these include the vaccine against the lungworm, Dictyocaulus viviparus, given in early summer just 
before the anticipated lungworm season; the vaccine against anthrax given in spring; and the vac-
cine against Clostridium chauvoei given to sheep before turning them out to pasture. Bluetongue 
of lambs is spread by midges and is thus a disease of midsummer and early fall. Vaccination in 
spring will therefore protect lambs during the susceptible period. Similar considerations apply to 
mosquito-borne/wet season diseases.

Vaccination Intervals

When deciding on the optimal interval between the first immunization and the booster shot it is 
important to consider how B cells and T cells differentiate. These cells respond rapidly to antigen 
and generate effector cells or plasma cells. Once this phase is over, most effector cells die while 
the survivors differentiate into memory cells. Memory T cells may take several weeks after the 
primary immune response to reach maximal numbers. Only when this memory phase develops 
can a significant secondary response be induced. As a general rule it is better to wait for as long 
as possible between prime and boost. Boosting too soon may well result in suboptimal secondary 
responses. (But boosting too late may open a window of vulnerability). Excessive boosting of mice 
appears to drive T cells toward terminal differentiation and deplete the population of central 
memory cells. Similar considerations apply to B cell responses. They need time to develop 
memory cells and premature boosting runs the risk of generating suboptimal memory. Computer 
modeling suggests that an interval of several weeks is necessary to obtain optimal secondary  
responses. In children, 4 to 8 weeks is considered to be the minimal interval between the first two 
doses by the Centers for Disease Control and Prevention (CDC), whereas six months is the 
recommended interval between the second and third vaccine doses. Studies on revaccination with 
Clostridial vaccines in sheep also suggest that an interval of 8 weeks between vaccine doses is 
optimal. A study on boosting cattle with rabies vaccine suggested that the optimal response was 
obtained with a 180-day interval between vaccine doses.

Although experimental data suggest that vaccination intervals be somewhat longer than  
currently recommended, one must also remember that it is essential not to leave a window of 
susceptibility between vaccine doses. For practical purposes, it is generally recommended that in 
dogs and cats the minimal interval should be 2 to 3 weeks. For larger animals such as horses it is 
generally a minimum of 3 to 4 weeks. In general, the longer the interval between booster shots, 
the better it is for the induction of a maximal protective response. Decisions on vaccination  
frequency however must be at the discretion of the vaccinating veterinarian.

Revaccination

It is the persistence of memory cells after vaccination that provides an animal with long-term pro-
tection. The presence of long-lived plasma cells is associated with persistent antibody production  
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so that a vaccinated animal may have antibodies in its bloodstream for many years after exposure to 
a vaccine.

Revaccination schedules depend on the duration of effective protection. This in turn depends 
on specific antigen content, whether the vaccine consists of living or dead organisms, and its route 
of administration. In the past, relatively poor vaccines may have required frequent administration, 
perhaps as often as every six months, to maintain an acceptable level of immunity. Modern vac-
cines usually produce a long-lasting protection, especially in companion animals. Many require 
revaccination only every three or four years, whereas for others, immunity may persist for an 
animal’s lifetime. Even inactivated viral vaccines may protect individual animals against disease 
for many years. Unfortunately, the minimal duration of immunity has rarely been measured, 
until recently, and reliable figures are not available for many vaccines. Although serum antibodies 
can be monitored in vaccinated animals, tests have not been standardized, and there is no con-
sensus regarding the interpretation of these antibody titers. Even animals that lack detectable 
antibodies may have significant cell-mediated resistance to disease. Nor is there much detailed 
information available regarding long-term immunity on mucosal surfaces. In general, immunity 
against feline panleukopenia, canine distemper, canine parvovirus, and canine adenovirus is con-
sidered to be relatively long lasting (.5 years). On the other hand, immunity to feline herpesvi-
rus, feline calicivirus, and Chlamydia is believed to be relatively short. One problem in making 
these statements is the variability among individual animals and among different types and 
brands of vaccine. Thus recombinant canine distemper vaccines may induce shorter duration im-
munity than conventional, modified live vaccines. There may be a great difference between the 
shortest and longest duration of immunological memory within a group of animals. Duration of 
immunity studies are confounded by the fact that many older animals have increased innate  
resistance. Different vaccines within a category may differ significantly in their performance,  
and although all vaccines may induce immunity in the short term, it cannot be assumed that all 
confer long-term immunity. Manufacturers use different master seeds and different methods of 
antigen preparation. A significant difference exists between the minimal level of immunity required 
to protect most animals and the level of immunity required to ensure protection of all animals.

Annual revaccination was once the rule for most animal vaccines because this approach was 
administratively simple and had the advantage of ensuring that an animal was seen regularly by 
a veterinarian. It is clear, however, that modern vaccines such as those against canine distemper 
or feline herpesvirus induce protective immunity that can last for many years and that annual 
revaccination using these vaccines is excessive. A growing body of evidence now indicates that 
most modified live viral vaccines induce lifelong sterile immunity in dogs and cats. In contrast, 
immunity to bacteria is of much shorter duration and often may prevent disease but not infection. 
Old dogs and cats rarely die from vaccine-preventable disease, especially if they have been vac-
cinated as adults. In contrast, young animals die from such diseases, especially if not vaccinated 
or vaccinated prematurely.

A veterinarian should always assess the relative risks and benefits to an animal in determining 
the timing of any vaccination. It is therefore be good practice to use serum antibody assays such 
as rapid test ELISAs (enzyme-linked immunosorbent assays) or lateral flow assays, if available, 
to provide guidance on revaccination intervals. Persistent antibody titers determine whether an 
animal requires additional protection. These tests not only identify those animals that have re-
sponded to vaccination, they can determine if an animal is a nonresponder. They can determine 
if an animal that previously suffered from an adverse event really requires revaccination. They can 
determine whether an animal with an undocumented vaccine history needs to be vaccinated  
and with which vaccines. They can determine which animals in a shelter undergoing a disease 
outbreak are susceptible and so require vaccination. They can also determine whether revaccina-
tion is really necessary at three years. It should be pointed out, however, that animals with low  
or undetectable serum antibody levels may still be protected as a result of persistence of  
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memory B and T cells capable of responding rapidly to reinfection. “Blind” revaccination should 
be avoided if appropriate serum antibody assays are available.

Notwithstanding this discussion, animal owners should be made aware that protection against 
an infectious disease can only be maintained reliably when vaccines are used in accordance with 
the protocol approved by the vaccine-licensing authorities. The duration of immunity claimed by 
a vaccine manufacturer is the minimum duration of immunity that is supported by the data avail-
able at the time the vaccine license is approved. This must always be taken into account when 
discussing revaccination protocols with an owner.

MATERNAL IMMUNITY

Mothers transfer antibodies to their offspring through feeding colostrum in most domestic mam-
mals (Fig. 8.1). Once absorbed from the intestine, these maternal antibodies inhibit neonatal 
antibody synthesis by acting through regulatory pathways that ensure that the body does not 
make more antibodies than it needs. They inhibit B cells, not T cells. As a result, they prevent 
the successful vaccination of very young animals. This inhibition may persist for many months. 
Its duration depends primarily on the amount (titer) of antibodies transferred and the half-life of 
the immunoglobulins involved. This problem can be illustrated using the example of vaccination 
of puppies against canine distemper.

Maternal antibodies, absorbed from the puppy’s intestine, reach maximal levels in serum by 
12 to 24 hours after birth. These levels then decline slowly through normal protein catabolism. 
The catabolic rate of proteins is exponential and is expressed as a half-life. The half-life of specific 
antibodies against distemper and canine infectious hepatitis is 8.4 days. Experience has shown 
that, on average, the level of maternal antibodies to distemper in puppies declines to insignificant 
levels by about 10 to 12 weeks, but this may range from 6 to 16 weeks. (The titer of maternal 
antibodies, not the animal’s age is the determining factor.) In a population of puppies, the propor-
tion of susceptible animals therefore increases gradually from a very few or none at birth, to  
most puppies at 10 to 12 weeks. Consequently, very few newborn puppies can be successfully 
vaccinated, but most can be protected by 10 to 12 weeks. Rarely, a puppy may reach 15 or  
16 weeks before it can be successfully vaccinated. If virus diseases were not so common, it would 
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Fig. 8.1  ​The transfer of maternal antibodies from mares to foals. In this case antibodies to Cl. perfringens were 
measured in mare’s serum, colostrum, and milk, and also in their foal’s serum from birth to five months. �(From 
Jeffcott, L.B. [1974]. Studies on passive immunity in the foal. I. g-globulin and antibody variations associated 
with the maternal transfer of immunity and the onset of active immunity. J. Comp. Pathol, 84, 93–101.).
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be sufficient to delay vaccination until all puppies were about 12 weeks old, when success could 
be almost guaranteed. In practice however, a delay of this type means that an increasing propor-
tion of puppies, fully susceptible to disease, would be without immune protection—an unaccept-
able situation. Nor is it feasible to vaccinate all puppies repeatedly at short intervals from birth  
to 12 weeks, a procedure that would also ensure almost complete protection. Therefore a  
compromise must be reached.

The earliest recommended age to begin vaccinating a puppy or kitten with a reasonable  
expectation of success is at six weeks. Colostrum-deprived orphan pups lacking maternal anti-
bodies, may be vaccinated at two weeks of age. Because it is impossible to predict the exact time 
of loss of specific maternal antibodies, any initial vaccination series will generally require admin-
istration of at least three doses. Current guidelines for essential canine and feline vaccines, for 
example, indicate that the first dose of vaccine should be administered as early as 6 to 8 weeks of 
age, and revaccinated at 2 to 4 week intervals until they are about 16 weeks of age. Strictly speak-
ing these are not booster doses. They are simply designed to trigger a primary response as soon 
as possible after maternal antibodies have declined. Rabies is a core vaccine that should be given 
at 14 to 16 weeks. In kittens the half-life of maternal antibodies to feline panleukopenia is  
9.5 days. The appropriate protocol would be to use three doses of the core vaccines (herpesvirus, 
calicivirus, and panleukopenia) at 8 to 9 weeks, 3 to 4 weeks later, and at 14 to 16 weeks; feline 
leukemia vaccine can be given at 8 weeks and 3 to 4 weeks later; and rabies vaccine can be given 
at 8 to 12 weeks, depending on the type of vaccine used (Fig. 8.2).

Similar considerations apply when vaccinating large farm animals (Fig. 8.3). The prime factor 
influencing the duration of maternal immunity is the level of antibodies in the mother’s colos-
trum. In foals, maternal antibodies to tetanus toxin can persist for six months and antibodies to 
equine arteritis virus for as long as eight months. Antibodies to bovine viral diarrhea virus may 
persist for up to nine months in calves. The half-lives of maternal antibodies against equine in-
fluenza and equine arteritis virus antigens in the foal are 32 to 39 days respectively. As in puppies, 
a young foal may have nonprotective levels of maternal antibodies long before it can be vacci-
nated. Maternal antibodies, even at low titers, effectively block immune responses in young foals 
and calves, so premature vaccination may also be ineffective. The effective response to vaccines 
increases progressively after the first six months of life. A safe rule is that calves and foals should 
be vaccinated no earlier than three to four months of age, followed by one or two revaccinations 
at four-week intervals. The precise schedule will depend on the vaccine used and the species to 
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Fig. 8.3  ​The effect of maternal antibodies on the response of young animals such as puppies. Although im-
munoglobulins decline exponentially based on their half-life, the precise time at which they lose immunity and 
the time when they can be vaccinated depend upon the antibody titer. This protective titer varies between 
infectious agents and thus the time when the animal becomes susceptible will also vary. The presence of 
maternal antibodies also suppresses the puppy immune response to vaccination. The higher the maternal 
antibody titer, the greater the suppression. The time when a puppy can respond to a vaccine may not be the 
same as the time when it becomes disease susceptible. Ig, Immunoglobulin.

be vaccinated. Animals vaccinated before six months of age should always be revaccinated at  
six months or after weaning, to ensure protection.

Some live recombinant vaccines such as canarypox-vectored distemper in dogs or influenza in 
horses appear to be able to prime young animals in the presence of significant maternal antibod-
ies. DNA vaccines against pseudorabies also appear to be effective in priming cell-mediated re-
sponses in piglets in the face of maternal immunity, whereas a DNA plasmid vaccine against 
bovine respiratory syncytial virus vaccine is not. Thus the ability of DNA vaccines to overcome 
maternal antibodies varies among species and agents.

Vaccination Strategies
Although the principles of vaccination have been known for many years, vaccines and vaccination 
procedures are continuing to improve in efficacy and safety. The earliest veterinary vaccines were 
often of limited efficacy and some had significant adverse effects, although these were considered 
acceptable when measured against the risks of acquiring disease. The vaccination protocols  
developed at that time reflected the inadequacies of these vaccines. Ongoing developments in 
vaccine design and production have resulted in great improvements in both safety and effective-
ness. These improvements permit a reassessment of the relative risks and benefits of vaccination. 
Vaccination is not always a totally innocuous procedure. For this reason, the use of any vaccine 
should be accompanied by a risk/benefit analysis conducted by the veterinarian in consultation 
with the animal’s owner. Vaccination protocols should be determined for each individual animal, 
giving due consideration to the seriousness of the disease, the zoonotic potential of the agent, the 
animal’s susceptibility and exposure risk, and any legal requirements relating to vaccination. The 
success of mass vaccination programs depends both on the proportion of animals vaccinated and 
on the efficacy of the vaccine. Neither of these factors will reach 100%, so it is essential to target 
the vaccine effectively. It is also the case that vaccines do not confer immediate protection, so the 
strategy employed will depend on the rate of spread of an infection.
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HERD IMMUNITY

The main purpose of vaccinating animals, especially companion animals, is to protect each  
individual animal. It is expected that clinical disease will be minimized. It is also expected that 
vaccinated animals will shed fewer pathogens. In an animal population such as a herd or flock, 
the benefits of vaccines result from the collective impact of the procedure on all individuals and 
the collective decline in pathogen shedding. This decline in shedding, together with collective 
immunity, contributes to herd immunity (Fig. 8.4).

When vaccines are used to control disease in a population of animals rather than in individu-
als, herd immunity must be considered. Herd immunity refers to the resistance of an entire group 
of animals to a disease as a result of the presence of many immune animals in that group. Herd 
immunity reduces the probability of a susceptible animal meeting an infected one so that the 
spread of disease is slowed or prevented. If it is acceptable to lose individual animals from disease 
while preventing epizootics, it may be possible to do this by vaccinating only a proportion of the 
population. Veterinarians should seek to ensure that as many animals as possible are vaccinated 
to maximize herd immunity.

No immune animals.
Infection spreads to all.

50% immune animals.
Chances of spread halved.

85% immune animals.
Chances of spread 15%.

Infected

Susceptible

Immune

Fig. 8.4  ​The principle of herd immunity. This figure is based on an infectious agent that is highly efficiently 
transmitted. If the agent has a low R0, herd immunity need not be 100% for its transmission to be completely 
blocked.
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The spread of an infectious disease is, of course, dependent upon the close proximity of  
susceptible individuals. Solitary animals are much less likely to encounter other infected indi-
viduals. On the other hand, animals living in herds, flocks, or shelters will encounter numerous 
individuals. If all these other animals lack immunity, then there is nothing to prevent the spread 
of infection. If all these other individuals are soundly immune then the infection cannot spread. 
This is not, however, an all-or-nothing phenomenon. If most of the animals in the herd are  
immune then the chances of an infected animal encountering a susceptible one are reduced and 
the chances of the disease spreading is drastically reduced.

The most important factor that influences herd immunity is the basic reproductive number of 
the disease, termed R0 and pronounced “R nought”. R0 is the expected number of secondary cases 
resulting from each primary case in a completely susceptible population. In other words, the 
probability of transmission of an infectious agent.

R0 is not a constant. For example, it will vary according to population density, animal behavior, 
and seasonality. An R0 of 1 indicates that each individual primary case generates one secondary 
case and the prevalence of the disease will remain static. An R0 of less than 1 means that one case 
will on average, generate fewer secondary cases. As a result, the prevalence of disease will decline. 
Conversely, an R0 greater than 1 means that each primary case will generate an increased number 
of secondary cases, then the numbers of such cases will increase. The higher the R0 the more 
difficult it is to prevent an infectious disease. R0 depends on the effective contact rate between 
individuals over time, the size of the population, and the duration of infectivity. Thus R0 will vary 
as a result of stocking density, environmental effects, any biosecurity practiced, the introduction 
of susceptible animals, and the nature of the production system.

Vaccines, by reducing the number of susceptible animals in a population, reduce the number 
of contacts between infectious and susceptible animals. This reduction will be determined by the 
efficacy of the vaccine in reducing transmission and the amount of vaccination coverage within 
the population. As a result, the “effective population density” of susceptible animals is reduced 
and the quantity of pathogen available to infect the nonvaccinated animals decreases. Each vac-
cinated individual therefore contributes to herd immunity and a reduction in the effective repro-
ductive number, R will occur. R is similar to R0 but does not assume complete susceptibility in a 
population. It is not necessary for all the animals in a herd to be protected in order for R to be 
reduced to less than 1 and so result in disease elimination. R may be calculated by multiplying 
the R0 by the proportion of susceptible animals. For example, if a vaccine protects 80% of a herd 
then the organism can only infect the unprotected 20% and R will drop by 80%. If there are insuf-
ficient susceptible animals in a population, R may drop to less than 1, transmission will be inter-
rupted, and the disease will be eliminated.

The level of herd immunity needed to bring R to this level is called the “herd immunity 
threshold (HIT)” and is calculated by HIT 5 1–1/R0. The HIT is useful in that it provides a 
target for vaccination coverage. The HIT has been calculated for the major human infectious 
diseases. It ranges from 90% to 95% for measles and rubella, to about 85% for rubella and diph-
theria, to 70% to 80% for smallpox. It has not been widely calculated for animal diseases. A figure 
of 70% is widely quoted for canine rabies (Box 8.1).

Although vaccination is a powerful tool for the control of infectious disease, its potential to 
prevent the spread of or eliminate a disease depends on selecting the correct control strategies. If 
an infectious disease outbreak, such as one caused by foot-and-mouth virus, is to be rapidly con-
trolled by vaccination, it is vitally important to select the correct population to be vaccinated. The 
success of any mass vaccination program depends both on the proportion of animals vaccinated 
and on the efficacy of the vaccine. Neither of these factors will reach 100%, so it is essential to 
target the vaccine effectively. It is also the case that vaccines do not confer immediate protection, 
so the strategy employed will depend on the rate of spread of an infection. Vaccines may thus be 
given prophylactically, in advance of an outbreak, or reactively, in response to an existing outbreak. 
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BOX 8.1  n  ​Herd Immunity and Rinderpest

As the great Rinderpest eradication program gathered momentum it became essential to determine 
what fraction of the cattle population had to be vaccinated to eliminate the disease. Mathematical 
modeling of infected, unvaccinated herds showed a R0 for rinderpest ranging from 4–5 to 1.2–1.9 de-
pending on the virus strain. This determined that the herd immunity thresholds ranged from 77% to 
33%. It was also determined that the disease could only be sustained in cattle populations greater than 
200,000. Great effort was therefore put into vaccinating at least 80% of the cattle in these populations. 
It worked and rinderpest was eradicated.

(From Mariner, J.C., McDermott, J., Heesterbeek, J.A., Catley, A., Roeder, P. (2005). A model of  
lineage 1 and lineage 2 rinderpest virus transmission in pastoral areas of East Africa. Prev Vet Med, 
69, 245–263.)

Both strategies have advantages and disadvantages. In general, prophylactic vaccination greatly 
reduces the potential for a major epidemic of a disease such as foot-and-mouth disease by reduc-
ing the size of the susceptible population. The effectiveness of this approach can be greatly  
enhanced by identifying high-risk individuals and ensuring that they are protected in advance of 
an outbreak.

It is generally not feasible to vaccinate an entire population of animals once a disease outbreak 
has occurred. However, two effective reactive vaccination strategies are ring vaccination, which 
seeks to contain an outbreak by establishing a barrier of immune animals around an infected area, 
and predictive vaccination, which seeks to vaccinate the animals on farms likely to contribute most 
to the future spread of disease. Reactive vaccination in this way can ensure that an epidemic is 
not unduly prolonged. A prolonged “tail” to an epidemic commonly results from the disease 
“jumping” to a new area. Well-considered, predictive vaccination may prevent these jumps. Thus 
a combination of prophylactic and reactive vaccination will likely yield the most effective results.

Safety and Efficacy
The two major factors that determine vaccine use are safety and efficacy. We must always be sure 
that the risks of vaccination do not exceed those associated with the chance of contracting the 
disease. Thus it may be inappropriate to use a vaccine against a disease that is rare, is readily 
treated by other means, or is of little clinical significance. Because the detection of antibodies is 
a common diagnostic procedure, unnecessary use of vaccines may complicate diagnosis based on 
serology and perhaps make eradication of a disease impossible. On the other hand, serologic tests 
may make it possible to determine animal susceptibility and rationalize vaccine usage. The deci-
sion to use vaccines for the control of any disease must be based not only on the degree of risk 
associated with the disease, but also on the availability of superior alternatives.

The second major consideration is vaccine efficacy. Vaccines may not always be effective. In 
some diseases, such as equine infectious anemia, Aleutian disease in mink, and African swine 
fever, poor or no protective immunity can be induced and vaccines are not available. In other 
diseases, such as foot-and-mouth disease in pigs, the immune response may be transient and 
relatively ineffective, and successful disease control is sometimes difficult to achieve.

As a result of these considerations, animal vaccines should be ranked based on their impor-
tance. The first category consists of core “essential” vaccines—those that are required because they 
protect against common, dangerous diseases and because a failure to use them would place an 
animal at significant risk of disease or death. In other words, a high benefit/risk ratio. Determina-
tion of which vaccines are core will vary based on local conditions and disease threats. A second 
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category consists of optional vaccines. These are directed against diseases for which the risks as-
sociated with not vaccinating may be low. In many cases, risks from these diseases are determined 
by the location or lifestyle of an animal. The use of these optional vaccines should be determined 
by a veterinarian on the basis of exposure risk. A third category consists of vaccines that may have 
no application in routine vaccination but are only used under special circumstances. These are 
vaccines directed against diseases of little clinical significance or vaccines whose risks do not 
significantly outweigh their benefits. Of course, all vaccine use should be conducted on the basis 
of informed consent. An animal’s owner should be made aware of the risks and benefits involved 
before seeking approval to vaccinate. This is especially important if using a vaccine in a manner 
different from that recommended by the manufacturer.

COMBINED AND POLYVALENT VACCINES

It is increasingly uncommon for vaccines directed against a single agent to be employed in do-
mestic species. In practice, it is usual to employ complex mixtures of organisms within single 
vaccines. For example, in dogs, distemper vaccine is combined with canine adenovirus 2, canine 
parvovirus, canine parainfluenza, coronavirus, leptospirosis, and Borrelia burgdorferi vaccines. In 
controlling the respiratory disease complex of cattle, bovine virus diarrhea vaccines may be 
combined with infectious bovine rhinotracheitis, parainfluenza 3, bovine respiratory syncytial 
virus, leptospirosis, Campylobacter fetus, Histophilus somni, Pasteurella multocida, and Mannheimia 
hemolytica vaccines. These vaccine combinations protect animals against several diseases with 
economy of effort. However, it can also be wasteful to use vaccines against organisms that may 
not be causing problems. When different antigens in a mixture are inoculated simultaneously, 
competition occurs between antigens. Manufacturers of combined vaccines take this into ac-
count and adjust their components accordingly. Vaccines should never be mixed indiscriminately 
because one component may dominate the mixture or interfere with the response to the other 
components.

Some have questioned whether the use of complex vaccine combinations leads to less than 
satisfactory protection or increases the risk for adverse side effects. They are concerned that the 
use of 5- or 7-component vaccines in their animals will somehow overwhelm the immune system, 
forgetting that our animals encounter hundreds of different antigens in daily life. The suggestion 
that these combined vaccines can overload the immune system is unfounded, nor is there any 
evidence to support the contention that the risk for adverse effects increases disproportionately 
when more components are added to vaccines. The success of a 15-component bluetongue vac-
cine in sheep or a 23-component pneumococcal vaccine in acquired immunodeficiency syndrome 
patients, should serve as a reassurance that multiple component vaccines are not overwhelming. 
Certainly such vaccines should be tested to ensure that all components induce a satisfactory  
response. Licensed vaccines provided by a reputable manufacturer will generally provide satisfac-
tory protection against all components.

Administration
VACCINE STORAGE AND HANDLING

Always check the package insert or the manufacturer’s recommendations regarding storage.  
Vaccines should be stored in a refrigerator or freezer as appropriate. Refrigerated vaccines should 
be stored between 2°C and 8°C with a mid-range of about 5°C (40°F). Ideally check the  
temperature twice daily with a max/min thermometer. A signed log recording this should be 
maintained to ensure that this is not ignored. Make sure that vaccines do not warm or freeze 
inadvertently by storing them in the middle, not the front or back of the shelves. Do not store in 
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vegetable drawers or in the door where temperature variation may be considerable. Liquid  
vaccines that contain an aluminum adjuvant will lose potency if frozen. Never store food in a 
refrigerator holding vaccines. Do not overstock a refrigerator because this may affect temperature 
control. A study of farm refrigerators in the United Kingdom suggests that most failed to store 
vaccines under the recommended conditions. Many (40%) inadvertently froze the vaccine, and 
59% had a temperature that rose above 8°C at least once. This part of the cold chain is very 
vulnerable.

A designated person should be the vaccine coordinator, to oversee receipt of vaccines, their 
storage, and handling. This individual should maintain a vaccine inventory log that documents 
the details of each vaccine batch: name, manufacturer, lot number, expiration date, vendor, 
quantity, and arrival condition.

All other appropriate staff members should also receive training. A practice should have 
documented standard operating procedures available with respect to storage and handling posted 
close to the vaccine storage units and make sure that the staff knows where they are. All new 
employees should be trained and then refreshed annually. Make sure that staff members are  
instructed when recommendations are updated or when new vaccines are added.

Vaccines must be organized according to their expiration date so that the oldest products are 
used first. Obviously, the refrigerator should be reliable and should it fail promptly move them to 
a working one or to a refrigerated container. Discard vaccines that have been exposed to tem-
peratures outside the manufacturers recommended range, whether too high or frozen. When 
transporting vaccines to clients make sure they are carried in a refrigerated container with a ther-
mometer to ensure the vaccines do not warm. A cool pack may not be sufficient to maintain cold 
temperatures over a full day in a hot climate.

Always store vaccines in their original packages with lids closed until ready for use. Protect 
them from light. Store diluent with the corresponding vaccine. Clearly label where each type of 
vaccine and diluent are stored.

INJECTION

Most vaccines are administered by injection. Care must be taken not to injure or introduce infec-
tion into any animal. All needles used must be clean and sharp and of the appropriate size. Dirty 
or dull needles can cause tissue damage and infection at the injection site. The skin at the injection 
site must be clean and dry, although excessive alcohol swabbing should be avoided. Vaccines are 
provided in a standard dose, and this dose should not be divided to account for an animal’s size. 
Vaccine doses are not yet formulated to account for body weight or age. There must be a sufficient 
antigen to trigger the cells of the immune system and provoke a protective immune response. This 
amount is not related to body size. Vaccination by subcutaneous or intramuscular injection is the 
simplest and most common method of administration. This approach is obviously excellent for 
small numbers of animals and for diseases in which systemic immunity is important.

Although this may seem obvious, it is essential that proper aseptic technique should always be 
followed when administering vaccines. Always follow manufacturer’s instructions because these 
are based on the actual methods employed when the vaccine was shown to be efficacious. The site 
of injection should be cleaned as much as possible. Each animal should be vaccinated with a new 
needle and a new needle should be used for each vaccine product to ensure that they are not cross 
contaminated when the needle is inserted into the vaccine vial. A new needle also prevents the 
possible transmission of blood-borne pathogens. Vaccines must only be given by their approved 
route. For example, intranasal vaccines should never be injected. To facilitate treatment of any 
sarcomas that may arise, cats should not be vaccinated subcutaneously into the interscapular fur-
row in the neck (Chapter 10). Always observe the meat or milk withdrawal period of vaccines in 
food-producing animals. This is commonly 21 days, but sometimes it is considerably longer.
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Draw up vaccines only at the time of administration because once the vaccine is inside  
syringes, it may be difficult to identify. Syringes are not designed for storage. Remember that 
once reconstituted, vaccines should be administered within 1 hour. Any reconstituted vaccines 
held for longer than an hour should be discarded. Do not rely on preservatives to prevent con-
tamination of multidose vaccine containers. Never mix vaccines with other medicines and follow 
all manufacturer’s instructions. Always dispose of used needles in a sharps box. If a vaccine is 
spilled, clean off the fur with alcohol swabs and disinfect any surfaces.

If an animal cannot be approached closely, it may be injected by the use of a jab stick or  
syringe pole. This is in effect a syringe at the end of a long (15–50 inch) rod to provide extended 
reach. They may simply be push rods where the syringe is pushed into the animal and the plunger 
continues to be pushed to inject the vaccine. Alternatively, the plunger may be pushed using  
a thumb-operated trigger that does not exert additional pressure on the animal. Anesthetized 
animals should not be vaccinated because of the risks of hypersensitivity and vomiting.

Proper documentation of vaccination is essential. Permanent medical records should include 
the date, the identity of the animal vaccinated, the administering veterinarian, the type and  
proprietary name of the vaccine(s) administered, batch number, expiry date, manufacturer, route, 
and the site of inoculation. Veterinarians should also offer the owner of a vaccinated animal, a 
vaccination certificate also containing this data. Ideally the recommended date of revaccination 
should also be on this certificate in addition to the details of the administering veterinarian and 
the practice.

Mucosal Vaccination
Most infectious agents invade the body through mucosal surfaces, especially the respiratory and 
digestive tracts. It makes sense therefore for vaccine antigens to be administered by the same 
route. Presumably, by mimicking the natural route, vaccines will trigger immune responses on 
these surfaces and ideally, block pathogen invasion.

When a systemic immune response is triggered by injected antigen, effector T cells in the 
spleen are activated. The spleen is a central lymphoid organ not associated with any body 
surface. As a result, splenic T cells have a “promiscuous” homing pattern and travel to many 
different sites including mucosal surfaces. Because most current vaccines are delivered  
parenterally, they rely on generating this strong systemic response. In such cases, protection 
of the mucosa is mediated by a migration of T cells into mucosal tissues or by antibodies 
entering damaged areas once the pathogen has breached the mucosal barrier. This indirect 
protection may work, but direct immunization of the mucosal lymphoid tissues is expected  
to be much more efficient. It is therefore logical to prevent such infections by administering 
vaccines in such a way that they either stimulate the intestinal or the nasopharyngeal  
lymphoid tissues.

ORAL VACCINATION

By far the greatest numbers of immune cells are associated with the gastrointestinal tract. The 
immune system functions on the basis that microorganisms that invade the body must be 
eliminated before they cause damage. Organisms that penetrate the epithelial barriers are 
promptly detected, attacked, and destroyed by both innate and adaptive mechanisms (Fig. 8.5). 
Immunoglobulin (Ig)A antibodies predominate in surface secretions. At least 80% of all plasma 
cells are found in the intestinal lamina propria, and together they produce more IgA than all 
other immunoglobulin isotypes combined. IgA is found in enormous amounts in saliva, intesti-
nal fluid, nasal, and tracheal secretions, tears, milk, colostrum, urine, and the secretions of the 
urogenital tract.
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Fig. 8.5  The mechanism of action of oral vaccines. Ig, Immunoglobulin.

When animals are vaccinated against organisms that invade the intestinal or respiratory tracts, 
it makes sense to stimulate a mucosal IgA response. Because of the abundant intestinal micro-
biota however, intestinal IgA responses also have a high threshold, tend to lack memory, and fade 
rapidly. The body tightly regulates antigen import across epithelial cells. Regulatory effects on 
IgA production constantly adapt the IgA response to the intestinal microbiota. Once a protective 
IgA response has been generated, other difficulties may arise. For example, secondary immune 
responses are sometimes difficult to induce on surfaces, and multiple doses of vaccine may not 
increase the intensity or duration of the local immune response. This is not caused by any intrin-
sic defect but occurs because high levels of IgA can block antigen absorption and so prevent it 
from reaching antigen-presenting cells and memory cells.

To trigger an IgA response, the vaccine antigen can simply be ingested or inhaled. Unfortu-
nately, such vaccines are not always effective. Inactivated antigens administered orally fail to 
trigger an IgA response because they are immediately washed off or simply digested when applied 
to mucous membranes. The only way a significant IgA response can be triggered is to use live 
vaccines, in which the vaccine organism can invade mucous membranes. The vaccine must persist 
for a sufficient time to trigger an immune response yet not cause significant damage.

The nature of the intestinal immune responses to enteroinvasive organisms depends on  
the sites of invasion. Enteropathogenic viruses can be divided into two broad types (type 1  
and type 2) depending on their infection site in the intestine. Thus immunity to viruses that 
specifically attack the superficial villous enterocytes is largely mediated by specific IgA-mediated 
immunity in the gut lumen and within the villi. Examples of these type 1 organisms include 
transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and rotaviruses. On the other 
hand, viruses that infect enterocytes deep within the crypts, designated type 2 organisms such as 
the parvoviruses, are controlled by both systemic and mucosal immunity. It follows therefore that 
type 2 organisms may be blocked by the use of parenteral vaccines whereas type 1 organisms will 
probably be best controlled by oral vaccines.
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Systemic vaccination against surface infections may provide adequate immunity (as in human 
influenza and polio vaccines) because IgG may diffuse from serum to the mucosal surface. Indeed, 
many available vaccines simply work by stimulating high levels of IgG antibodies in blood. These are 
effective because once an invading organism causes tissue damage and triggers inflammation, the site 
of invasion is flooded by IgG. Nevertheless, this is not the most efficient way of providing immunity.

Ruminants present specific problems when considering oral vaccination. The presence and 
large capacity of the rumen mean that ruminal microorganisms may destroy antigens before they 
reach the intestine or be simply highly diluted. On the other hand, if antigen can be expressed in 
a fibrous plant such as alfalfa, then it will be carried to the oral cavity during rumination and thus 
presented to the nasopharyngeal mucosa. For example, cattle fed recombinant alfalfa hay  
engineered to express the leukotoxin of Mannheimia haemolytica increased their production of 
antileukotoxin IgA.

Orally delivered poxviruses, as used when vaccinating wild animals against rabies, are effec-
tively targeted to the mouth rather than lower down the intestinal tract. The poxviruses presum-
ably exploit small cuts and abrasions to establish lesions. Excipients that can prolong the time in 
the oral cavity or abrade the oral mucosa may help this process. Generally, these oral vaccines 
stimulate a strong humoral response.

Despite the obvious desirability of using mucosal vaccines, few effective ones have been de-
veloped. In humans there are only five: poliovirus, rotavirus, Salmonella typhi, Vibrio cholera, and 
the intranasal influenza vaccine. These vaccines in general do not promote long-lasting protection 
and all require boosting after two years.

Oral vaccines for animals may be administered in the feed or drinking water, as is done with 
Lawsonia intracellularis and Erysipelothrix rhusiopathiae vaccines in pigs and against Newcastle 
disease, infectious laryngotracheitis, and avian encephalomyelitis in poultry. Plague vaccine-
coated candy has been fed to prairie dogs in the western United States and effectively prevents 
this disease (Fig. 20.3).

INTRANASAL VACCINATION

The intranasal route of administration has advantages over oral administration in that the vaccine 
is not significantly diluted by nasal fluids, and not exposed to a low pH or to digestive enzymes. 
It is also more appropriate to administer a vaccine at the site of the organism’s potential invasion 
route (Fig. 8.6). Nasal associated lymphoid tissue is extensive. The collection of oronasal pharyn-
geal lymphoid tissue (Waldeyer’s ring) includes all the tonsillar tissue, cervical lymph nodes, in 
addition to M cells and intraepithelial dendritic cells capturing antigen in the nasal mucosa. In-
tranasal vaccines are available for infectious bovine rhinotracheitis, parainfluenza 3, and respira-
tory syncytial virus of cattle; for Streptococcus equi infections in horses; for feline herpesvirus, 
Bordetella bronchiseptica, coronavirus, and calicivirus infections; and for canine parainfluenza and 
Bordetella infection. Intraocular vaccines used in poultry have a similar mechanism of action and 
stimulate antibody production in the harderian gland. Intranasal and intraocular administration 
requires that each animal be dealt with on an individual basis and may not be cost effective.

When animal numbers are large, other methods must be employed. Spray application of vac-
cines enables them to be inhaled by all the animals in a group. This technique is employed in 
vaccinating against canine distemper and mink enteritis on mink ranches and against diseases 
such as Newcastle disease in poultry (Chapter 19).

Novel Techniques
Although syringes and needles are simple and relatively economical, they have obvious disadvan-
tages. Not only are they painful, but they also deposit vaccine antigens in the wrong place.  
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Fig. 8.6  The mechanism of action of intranasal vaccines. Ig, Immunoglobulin.

Antigen processing dendritic cells are relatively uncommon in the subcutis and even in skeletal 
muscle. The densest population of these cells is found in the dermis where there is a web of 
Langerhans cells and dermal dendritic cells. This means that a dose of vaccine delivered at this 
site will require less antigen to trigger a strong response than at other locations. Alternative 
methods of vaccine administration that are in development and increasingly employed in humans 
and animals such as pigs include intradermal vaccination using needle-free injection devices, 
microinjection, or topical skin application through patches or nanoparticles.

Needle-Free Injection Devices

Needle-free injection devices (transdermal jet injectors) generate a very fine stream of  
liquid under very high pressure. When they are held firmly against the skin the liquid stream 
can penetrate the epidermis. They thus deposit vaccine in the dermis and subdermis where  
antigen-processing dendritic cells are present in high numbers. These devices may be powered 
by compressed gas, batteries, or springs. Both battery and spring-powered devices are compact 
and relatively cheap, but exert minimal force. Gas powered units can exert much higher forces 
but tend to be cumbersome. They use air, nitrogen, or CO2 cartridges attached to the injector by 
a tubing system. The injector is held against the skin and a stream of vaccine (with a velocity 
.100 meters/sec) is forced through a tiny orifice, 76 to 360 mm in diameter (about the diam-
eter of a 36 gauge needle), and penetrates the skin in a fraction of a second (,0.3 sec). Injectors 
generate pressures of 130 to 1800 psi depending upon the desired depth of penetration, but 
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higher pressures are more painful than low pressures. The fluid is delivered in three stages. An 
initial high-pressure stream penetrates the skin, a second delivery stage is followed by a drop-off 
stage as the pressure reduces. These needle-free devices are precise and very reliable. At one time 
these injectors were favored for mass vaccination procedures in humans because they were  
very efficient and fast to use. They fell out of favor because they could cause bleeding. The  
blood could contaminate the injector creating the possibility of disease transmission. Cases of 
hepatitis B transmission by jet injectors were documented. As a result, multi-use-nozzle jet in-
jectors are no longer used in humans in the United States. They continue to be used for mass 
vaccination purposes in livestock, especially pigs, but many now have disposable nozzle faces 
that can be easily replaced as needed. Transdermal jet injectors are also employed to administer 
a DNA plasmid vaccine against canine oral melanoma (Oncept, Boehringer Ingelheim). These 
injectors are generally much less painful than needles and thus also reduce animal fear and dis-
tress. They reduce the risks of needlestick injuries, broken needles, and improper reuse. They 
cause less tissue damage and fewer injection site lesions because the vaccine is distributed over 
a wider area, and are a reliable way of delivering the correct dose. They also deliver a consistent 
amount of vaccine. Because these devices deliver antigen to the dendritic cell-rich environment 
of the dermis they generally require a smaller volume of vaccine to generate a protective immune 
response. The resulting immune responses are equivalent to those caused by needle injection 
(Chapter 18). Despite these advantages, adoption of these devices has been slow because of the 
cost of purchase and maintenance, required infrastructure and complexity, and also the need for 
training in their use.

Microneedles

Microneedle patches are adhesive patches containing an array of micron-sized needles that  
can be applied by pressing the patch against the skin. The patches contain a single vaccine dose. 
They do not require reconstitution, simplify storage, and waste disposal, and improve vaccine 
immunogenicity.

Microneedles are long, thin, square, or round cones tens to hundreds of micrometers in length, 
and about one-hundredth of the diameter of a standard hypodermic needle. They can target 
dendritic cells in the dermis without causing sufficient damage and producing significant pain. 
Four types of microneedle have been found to work well with vaccines: solid microneedles that 
simply make holes through which liquid vaccines can diffuse, vaccine-coated microneedles,  
soluble dissolving microneedles, and hollow microneedles. Dissolvable microneedles simply dis-
solve in tissue fluid, so releasing the vaccine within them into the dermis. Hollow implantable 
dissolving microneedles contain vaccine within their core. Although microneedle applications 
have been investigated for many virus vaccines, including rabies, most studies have focused on 
influenza vaccines. In general, microneedle patches stimulate greater immunogenicity, a stronger 
systemic response, and a better Th1 (type 1 helper cell) response, in addition to the need for much 
lower doses of vaccine.

Pellets

In the United States, a Moraxella vaccine for calves is available for implantation in pellet form. Two 
pellets are inoculated at one time under the skin. One is designed for immediate antigen release; the 
other pellet rehydrates slowly and releases its antigens over a two- to three-week period.

Ballistic Vaccination

It is possible to vaccinate animals from a distance using a blowpipe. The maximum effective range 
for blowpipe vaccination is up to 60 feet. These are especially useful in vaccinating large exotics 
and the animals need not be confined. Blowpipes are virtually silent and as a result do not disturb 
other animals in a herd unlike the ballistic vaccines that are shot from rifles (Chapter 20).
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Abstract: Vaccines should only be administered following a complete risk/benefit analysis by a 
veterinarian in conjunction with the owner. The designation of “core” or “noncore” vaccines are 
not absolute and will depend upon specific circumstances. Vaccines must be administered by the 
correct route, at the correct time, in the correct manner. Vaccination schedules must take maternal 
immunity into account, and revaccination must take duration of immunity data into account. 
Serologic tests should be employed to determine the need for revaccination. Vaccines must be 
stored and administered correctly. They may be administered by diverse routes, in addition to 
injection. Intranasal and oral vaccination, intraocular and aerosolization are all possible routes.

Keywords: core vaccines, vaccination schedules, maternal immunity, herd immunity, polyvalent 
vaccines, vaccine administration, vaccine storage, injection site lesions.


