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Environmental enrichment (EE) is known to enhance learning and memory. Declarative memories are thought to undergo a first
rapid and local consolidation process, followed by a prolonged process of system consolidation, which consist in a time-dependent
gradual reorganization of brain regions supporting remote memory storage and crucial for the formation of enduring memories.
At present, it is not known whether EE can affect the process of declarative memory system consolidation. We characterized the
time course of hippocampal and cortical activation following recall of progressively more remote spatial memories.Wild-typemice
either exposed to EE for 40 days or left in standard environment were subjected to spatial learning in the Morris water maze and
to the probe test 1, 10, 20, 30, and 50 days after learning. Following the probe test, regional expression of the inducible immediate
early gene c-Fos wasmapped by immunohistochemistry, as an indicator of neuronal activity.We found that activation of themedial
prefrontal cortex (mPFC), suggested to have a privileged role in processing remote spatial memories, was evident at shorter time
intervals after learning in EEmice; in addition, EE induced the progressive activation of a distributed cortical network not activated
in non-EE mice. This suggests that EE not only accelerates the process of mPFC recruitment but also recruits additional cortical
areas into the network supporting remote spatial memories.

1. Introduction

Environmental enrichment (EE) is an experimental protocol
classically defined as “a combination of complex inanimate
and social stimulation” [1] and which provides animals with
the opportunity to attain high levels of voluntary physical
activity on running wheels and to enhance exploration,
cognitive activity, and social interaction. Several studies point
out that animals reared in EE show marked brain changes
at functional, anatomical, and molecular levels [2–13] and
in particular changes in plasticity factors and mechanisms
[14, 15]. EE can indeed be used as a noninvasive strategy to
modulate brain plasticity throughout life; EE can accelerate
the development of the central nervous system [16–18], can

reopen plasticity windows in the adult cortex [19, 20] and
causes a significant improvement in learning and memory
[14, 21–23], especially evident in aged animals [22, 24–32], or
in animal models of neurodegenerative diseases [33–35].

Declarative memories depend initially on the medial
temporal lobe system, including the hippocampus, but, over
days to weeks, as these memories mature, they become
increasingly dependent on other brain regions such as the
neocortex [36–39]. This process of time-dependent gradual
reorganization of the brain regions that supports remote
memory storage and underlies the formation of enduring
memories, is known as system-level memory consolidation
or system consolidation [40, 41]. It has been demonstrated
that the progressive stabilization of long-lasting memories is
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due to the reactivation of hippocampal-cortical connections
[42, 43] and the strengthening of corticocortical connections,
involving cortical plasticity mechanisms [41, 44–48]. Despite
all the evidences showing that EE enhances cortical plasticity
and learning and memory, there is no evidence on whether
and how EE could affect the process of time-dependent
system consolidation.

This study aimed at testing whether EE could affect the
system-level memory consolidation process using a spatial
memory paradigm and characterizing the time course of
hippocampal and of cortical activation following recall of
progressively more remote memories.

Spatial memory is a declarative type of memory.The hip-
pocampus plays an essential role in the formation of spatial
memories [49–53]; subsequently, spatial memories become,
in a gradualmanner, additionally dependent on other cortical
regions. Many studies point out that the privileged final stor-
age site for remote spatial memories is the prefrontal cortex
(PFC) and in particular the medial PFC (mPFC), including
the anterior cingulate, prelimbic, and infralimbic cortices
[47, 48, 54, 55]. Recently, however, it has been suggested that
remote memories recall involves the coordinated activation
of a broader network of cortical brain regions [56–58]. We
have therefore characterized the time course of activation of
a number of cortical areas in addition to themPFC.We found
that EE not only induces an earlier recruitment of mPFC,
but also induces the progressive activation of a distributed
cortical network that is not activated in standard housed
mice.

2. Materials and Methods

2.1. Animal Treatment. Male and female C57BL/6 mice of 2
months of age were used in this study. All the procedures
were approved by the Italian Ministry of Health.The animals
were housed in an animal room with a 12 h/12 h light/dark
cycle, with food and water available ad libitum. At 2 months
of age, the animals were assigned to one of the following
rearing conditions for 40 days: environmental enrichment
(EE, 𝑛 = 24) or standard condition (SC, 𝑛 = 24). The SC
rearing condition consisted of a 26×18×18 cm cage housing 3
animals.The EE rearing condition was achieved using a large
cage (44 × 62 × 28 cm) containing several food hoppers, one
running wheel for voluntary physical exercise, and differently
shaped objects (tunnels, toys, shelters, stairs) that were
repositioned twice a week and completely substituted with
others once a week [33]. Two additional groups of control
animals, age and gender matched to SC and EE groups, were
housed in home cage standard condition (HC-SC, 𝑛 = 8) or
in home cage enriched condition (HC-EE, 𝑛 = 7), and they
did not perform any behavioural task.

2.2. Morris Water Maze (MWM). The hidden platform ver-
sion of theMWM test was performed [59]. A large water tank
of 120 cm of diameter was filled with white opaque water at
22∘C. An escape platform of 11 cm of side was submerged 1 cm
below the water surface and placed in the center of the SW
quadrant.The platformwasmaintained in this position for all

the swim trials through the test. Mice were trained to swim
to the platform in 4 daily trials, starting in pseudorandomly
varied locations, with a 30min interval, during 7 consecutive
days. The trial was complete once the mouse found the
platform or 60 sec had elapsed. If the mouse failed to find the
platform on a given trial, the experimenter guided the mouse
onto the platform. Once reaching the platform, each mouse
was allowed to rest for 20 s on it. After each trial each mouse
was returned to its home cage where it rested until the next
trial. After the completion of training, spatial memory was
assessed in a probe test; a recall probe trial was performed
after 1, 10, 20, 30, and 50 days after the end of learning. We
used an automated tracking system (Noldus Ethovision XT)
for recording behavioural data from training and probe tests.
For each trial we measured the latency (in sec) to reach the
platform, the total distance (in cm) swam in order to reach
the platform, and the average swim speed (in cm/s). For each
probe trial we measured the amount of time spent in the
target zone (23 cm in radius, centered on the location of the
platform during training) and the average time spent in three
other equivalent zones in each quadrant [55, 60].

2.3. Immunohistochemistry. Mice were anaesthetized and
perfused via intracardiac infusion with 0.1M PBS and then
4% paraformaldehyde (PFA, dissolved in 0.1M phosphate
buffer, pH 7.4) 90min after the completion of behavioral
testing. Brains were removed, fixed overnight in PFA, and
then transferred to 30% sucrose solution and stored at 4∘C.
Coronal sections were cut at 40 𝜇m thickness on a freez-
ing microtome (Sliding Leica microtome SM2010R, Leica
Microsystems), and free-floating sections were prepared for
immunohistochemistry. After a blocking step in 10% NGS
and 0.5% Triton X-100 in PBS, sections were incubated in a
solution containing 1% NGS, 0.3% Triton X-100, and anti-c-
Fos primary rabbit polyclonal antibody (1 : 3000 rabbit anti
c-Fos polyclonal antibody, Calbiochem, USA) for 36 h at
4∘C. Subsequently, sections were transferred in a solution
containing 1%NGS, 0.1% Triton X-100, and 1 : 200 anti-rabbit
biotinylated secondary antibody (Vector Labs) in PBS. This
was followed by incubation inABCkit (Vector Labs) and final
detection with DAB reaction kit (Vector Labs). Sections were
finally mounted on gelatinized slides, dehydrated, and sealed
with DPX mounting medium (VWR International, UK).

2.4. Analysis of c-Fos Positive Cells. Counting of c-Fos pos-
itive cells in different brain areas was performed using a
CCD camera (MBF Bioscience, Germany) mounted on a
Zeiss Axioskop (Zeiss, Germany)microscope and the Stereo-
Investigator software (MBF Bioscience). Brain structures
were anatomically defined according to a mouse brain atlas
(Paxinos and Franklin [61]), and the regions of interest
selected for measurement of c-Fos-positive nuclei were
(numbers indicate the distance in millimeters of the sections
from bregma) infralimbic cortex (IL, +1.94mm); secondary
motor cortex (M2, +0.98mm); anterior cingulate cortex, area
1 and area 2 (aCC, +0.98mm); dentate gyrus (DG,−1.94mm);
CA1 field of dorsal hippocampus (dCA1, −1.94mm); CA3
field of dorsal hippocampus (dCA3, −1.94mm); posterior
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parietal association cortex (pPtA, −1.94mm); primary audi-
tory cortex (Au1, −3.16mm); primary visual cortex (V1,
−4.16mm); medial entorhinal cortex (MEnt, −4.16mm).The
number of c-Fos-positive cells was counted at 20x magnifi-
cation, following a “blind procedure”, in 10–40 fields (50 ×
50𝜇m or 100 × 100 𝜇m) per section according to the size
of brain structure and their density calculated (cells/mm2),
using at least 5 sections for each structure.

2.5. Statistics. All results were expressed as mean ± s.e.m.,
and all statistical analysis were performed using statistical
software package SigmaStat. For MWM performance in the
learning phase, a two-way analysis of variance (ANOVA) for
repeated measures (RM) was performed, considering both
factor housing condition (EE or SC) and factor learning day,
with post hoc analysis Holm-Sidak method. Performance in
each probe test was compared with one-way ANOVA across
circular zones (target zone versus the average of other zones)
for each housing condition. The c-Fos protein expression in
each area was analyzed with a two-way ANOVA for housing
condition factor and probe test day factor, with post hoc
analysis Holm-Sidak method.

3. Results

3.1. Hippocampus Is Activated following SpatialMemory Recall
at All Temporal Points Tested Both in EE and SC Mice. To
test whether EE can affect the system consolidation process,
we trained C57BL/6 mice, housed in different conditions
(standard condition, SC 𝑛 = 24 or environmental enrichment
EE 𝑛 = 24), in a spatial learning task, using the Morris water
maze, and we analyzed the following parameters referred
to the average of 4 daily trials, during 7 consecutive days:
latency to find the platform (s), total distance swam (cm),
and mean swim speed (cm/s). For the distance swam and the
latency to reach the platform during acquisition, a significant
learning effect for both housing conditionswas found, but not
a significant difference between the two groups (two-way RM
ANOVA, for latency 𝑃 = 0.016; for distance swan 𝑃 < 0.001).
For the latency parameter only, we found a housing condition
× day interaction: multiple comparisons showed that the
main differences resided on days 4 and 5 (Figure 1(a)) (Two-
way RMANOVA, post hoc analysis Holm-Sidak method, for
day 4 𝑃 = 0.005; for day 5 𝑃 = 0.001). We also measured
the mean swim velocity throughout the test, in order to
exclude differences in navigation speed (data not shown): we
observed a significant decrease in the mean swim velocity
through the test (two-way RM ANOVA, 𝑃 < 0.001), but
neither a difference between housing condition (𝑃 = 0.276)
nor a housing condition × day interaction (𝑃 = 0.163).

Spatial memory was evaluated in a probe test in which
the hidden platformwas removed.Weperformed recall probe
tests at 1, 10, 20, 30, and 50 days, andwe quantified exploration
in the target zone, a circular zone (radius: 23 cm) in quadrant
where the platform was placed during training, and the
average time spent in three other equivalent zones in each
quadrant, for SC andEEmice (Figure 1(b)) [55, 60].We found
a significant difference between target zone versus the others

in probe tests at 1, 10, 20, and 30 days, for both groups (see
Figure 1(b) for details).

After the probe test, mice were sacrificed and the protein
c-Foswas immunolabeled as an indicator of neuronal activity.
c-Fos expression was calculated as the density of number
of c-Fos-positive cells in mm2. First we investigated c-
Fos expression in the hippocampus, the structure that is
responsible for the formation of long term spatial memory
[49–53].

Levels of c-Fos expression in the hippocampus of control
mice (Home cage mice, HC-EE and HC-SC mice) did not
differ between housing conditions (HC-SC 𝑛 = 8; HC-EE
𝑛 = 7; one-way ANOVA, 𝑃 = 0.736); levels of c-Fos protein
for EE and SC mice were significantly greater than those in
their home-cage controls at all retention intervals, (two-way
ANOVA, post hoc analysis Holm-Sidak method, all 𝑃 values
<0.05), suggesting that the hippocampus is involved both in
the formation and delayed recall of the spatial memory. We
found a similar c-Fos expression in the EE and SC mice in all
probe tests (two-way ANOVA, post hoc analysis Holm-Sidak
method for housing condition, 𝑃 = 0.731).

We then focused on the dorsal hippocampus (dHCP),
known to be specifically involved in spatial memory [60];
again, we observed the same c-Fos expression pattern in EE
and SC group; activation increased with increasing retention
interval up to 30 days (see Figure 2 for details).

3.2. EE Induces an Early Recruitment of theMPFC. Theresults
for c-Fos expression in the mPFC, the final memory storage
site in the cortex, show that both the aCC and the IL have
the same time course of c-Fos protein expression pattern; c-
fos expression at 1 day did not differ from that in home cage
animals, both for EE and SCmice, and therewas no difference
between EE and SC or HC-EE and HC-SC mice (two-
way ANOVA, post hoc analysis Holm-Sidak method, all 𝑃
values>0.05); however, starting from the probe test at 10 days,
c-Fos expression was greater in EE group than HC-EE and
SC groups, with a further increase at 20 days (see Figure 3 for
details); only for EE animals did the c-Fos protein expression
differ from that of HC control animals. For the probe tests
at 30 and 50 days we found that the c-Fos expression in SC
animals differed from that of HC-SC animals; values of SC
and EE groups did not differ (two-way ANOVA, post hoc
analysis Holm-Sidak method; see Figure 3 for details).

3.3. EE Induces the Involvement of Distributed Cortical Net-
work in Supporting Remote Spatial Memory. To examine the
time-dependent reorganization of neuronal activation in a
brain-wide manner, we observed c-Fos protein expression in
other cortical areas that are important for the construction
of spatial maps. Using several techniques, Wang et al. [62]
determined that distinct areas of extrastriate visual cortex are
gateways for ventral and dorsal streams in the mouse. The
dorsal stream includes the network hippocampus—medial
entorhinal cortex [63]—posterior parietal cortex [64] for
spatial navigation; in addition, the dorsal stream is connected
to auditory cortex and to frontal areas, such as cingulate
cortex, infralimbic cortex, and motor areas [62]. First we
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Figure 1: (a) Performances of SC (𝑛 = 24) and EE (𝑛 = 24) mice in the MWM.There is a significant learning effect (two-way RM ANOVA,
𝑃 = 0.016), and a housing condition × day interaction (two-way RMANOVA post hoc analysis Holm-Sidak method, for day 4, 𝑃 = 0.005; for
day 5, 𝑃 = 0.001). ∗= statistical significance; error bars = s.e.m. (b) Evaluation of spatial memory for SC (1 day 𝑛 = 5; 10 days 𝑛 = 5; 20 days
𝑛 = 5; 30 𝑛 = 5, 50 𝑛 = 4) and EE (1 day 𝑛 = 5; 10 days 𝑛 = 5; 20 days 𝑛 = 5; 30 𝑛 = 5; 50 𝑛 = 4) mice. Time spent in the target zone (𝑇), where
the platform was placed, versus other equivalent zones (𝑂), for recall probe tests. One-way ANOVA, post hoc analysis Holm-Sidak method, 1
day probe test: in SC group, 𝑇 versus𝑂, 𝑃 = 0.044; in EE group, 𝑇 versus𝑂, 𝑃 = 0.036; 10 days probe test: in SC group, 𝑇 versus𝑂, 𝑃 = 0.037;
in EE group, 𝑇 versus 𝑂, 𝑃 = 0.043; 20 days probe test: in SC group, 𝑇 versus 𝑂, 𝑃 < 0.01; in EE group, 𝑇 versus 𝑂, 𝑃 = 0.048; 30 days probe
test: in SC group, 𝑇 versus 𝑂, 𝑃 = 0.025; in EE group, 𝑇 versus 𝑂, 𝑃 = 0.048; 50 days probe test: in SC group, 𝑇 versus 𝑂, 𝑃 = 0.070; in EE
group, 𝑇 versus 𝑂, 𝑃 = 0.226. ∗= statistical significance; error bars = s.e.m.
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Figure 2: (a) c-Fos expression in subregions of dHPC for EE (open columns) and SC (filled columns) mice subjected to recall probe tests
at 1, 10, 20, 30, and 50 days. DG: two-way ANOVA post hoc analysis Holm-Sidak method, SC versus EE, 𝑃 = 0.968; HC-SC versus HC-EE,
𝑃 = 0.503; SC versus HC-SC and EE versus HC-EE 𝑃 < 0.05 for all retention intervals. Statistical differences for factor day were found
between 1 and 20 days, 1 and 30 days, and 50 days versus 20 and 30 days, all 𝑃 < 0.05. dCA1: two-way ANOVA post hoc analysis Holm-Sidak
method, SC versus EE, 𝑃 = 0.242; HC-SC versus HC-EE 𝑃 = 0.979. Statistical difference factor day were found between 1 and 10, 20 and 30
days, all 𝑃 < 0.05. ◼Statistical significance between EE and HC-EE; ◻statistical significance between SC and HC-SC; ∘statistical significance
for factor day; error bars = s.e.m. (b) Representative panel of c-Fos protein expression in DG for EE and SC animals, for all recall probe tests;
scale bar 100 𝜇m.

investigated c-Fos expression in MEnt and in pPta, and we
found that activation at 1 day in both areas was similar in EE
mice, SCmice, anddid not differ from that in their home-cage
controls (two-way ANOVA, post hoc analysis Holm-Sidak
method, all𝑃 values > 0.05); however, in the other probe tests
performed, significant differences between EE and SC mice
and between EE and HC-EE mice were found (see Figure 4
for details). Then, we observed c-Fos expression in V1 and
M2, for they are connected to the dorsal stream and there
is a direct monosynaptic connection between motor and

visual cortices [65]. We found that EE group was statistically
different from SC and HC-EE groups in M2, only in probe
test performed at 20, 30, and 50 days; instead, in V1, we did
not find any difference between EE and SC group, only an
increase in c-Fos expression for the late retention delays in
both groups (see Figure 5 for details). Finally, we investigated
c-Fos expression in Au1, a sensory cortex not supposed to
be involved in spatial learning, and we demonstrated that
activation in this area was similar in all groups (see Figure 6
for details).
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Figure 3: (a) c-Fos protein expression in aCC and IL. aCC: two-way ANOVA post hoc analysis Holm-Sidak method, HC-SC versus HC-EE
𝑃 = 0.384; statistical significance for EE versus HC-EE at 10, 20, 30, and 50 days, and for SC versus HC-SC at 30 and 50 days, all 𝑃 values <
0.05. Statistical difference between EE and SC at 1 day, 𝑃 = 0.376; at 10 and 20 days, 𝑃 < 0.01; at 30 days, 𝑃 = 0.899; at 50 days, 𝑃 = 0.383.
Statistical difference within EE group were found between 10 and 20 days, and 1 day versus 10, 20, 30, and 50 days, all 𝑃 < 0.05. Statistical
difference within SC group were found between 1 and 30 days, and 10 day versus 30 and 50 days, all 𝑃 < 0.05. IL: two-way ANOVA post hoc
analysis Holm-Sidak method, HC-SC versus HC-EE, 𝑃 = 0.451; statistical significance for EE versus HC-EE at 10, 20, 30, and 50 days, and
for SC versus HC-SC at 30 and 50 days, all 𝑃 values < 0.05. Statistical differences between EE and SC at 1 day, 𝑃 = 0.300; at 10 and 20 days,
𝑃 < 0.01; at 30 days, 𝑃 = 0.084; at 50 days, 𝑃 = 0.055. Statistical differences within EE group were found between 10 and 20 days, and 1 day
versus 10, 20, 30, and 50 days, all 𝑃 < 0.05. Statistical difference within SC group were found between 1 and 30 days, and 10 day and 30 days, all
𝑃 < 0.05. ◼Statistical significance between EE and HC-EE; ◻statistical significance between SC and HC-SC; ∗statistical significance between
EE and SC; §

= statistical significance for factor day within EE group; #
= statistical significance for factor day within SC group; error bars =

s.e.m. (b) Representative panel of c-Fos protein expression in aCC for EE and SC animals, for all recall probe tests; scale bar 100 𝜇m.

4. Discussion

In this study, we provide the first evidence that EE can affect
the time-dependent spatial memory system consolidation.
C57BL/6 mice, housed in standard or in enriched condition,

were subjected to spatial learning and then tested up to 50
days after learning to evaluate consolidation process. Using
the expression of c-Fos protein as an indicator of neuronal
activity in a brain-wide manner we have found indications
for a difference both in the time course and in the network of
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𝑃 = 0.300; at 10 and 20 days, 𝑃 < 0.01; at 30 days, 𝑃 = 0.084; at 50 days, 𝑃 = 0.055. Statistical difference within EE group were found between 1
day versus 20, 30 and 50 days, and 20 day versus 10 and 30 days, all 𝑃 values < 0.05. Statistical difference within SC group were found between
1 and 30 days, and 10 day and 30 days, all 𝑃 values < 0.05. ◼Statistical significance between EE and HC-EE; ◻statistical significance between
SC and HC-SC; ∗statistical significance between EE and SC; §

= statistical significance for factor day within EE group; error bars = s.e.m.

cortical areas recruited for recent and remote recall between
EE and non-EE animals.

In agreement with previous studies [47, 55] there was
a progressive increase in c-Fos protein expression in both
aCC and IL, as consolidation process proceeded. We showed
that EE induces an earlier recruitment of aCC and IL with
respect to SC mice; these areas were recruited following
recall of spatial memory in the EE group as early as 10 days
after learning, while they were recruited only 30 days after
learning in SC mice. The final storage site in the cortex could
be the aCC, while the IL could correlate with motivational
aspects of performance, encoding other significant aspects
of the environment, such as salient landmarks or preferred
locations [66]. The aCC was found to be activated after
remote memory recall in a number of tasks [47, 48, 54, 55],
and, conversely, inactivation of the aCC disrupted recall of
remote five-arm discrimination [47], contextual fear [48],
andMWM [55] memories.The aCC is highly interconnected
to other prefrontal regions and is reciprocally connected
to sensory, motor, and limbic cortices [67, 68]; therefore,
this connectivity places the aCC in favorable position, rais-
ing the possibility that this region coordinates retrieval of
remote memories stored in distributed cortical networks.
The earlier recruitment of aCC and IL in EE animals could

imply an earlier independence of spatial memory recall from
hippocampal activation in EE animals. Indeed, in animals
provided with running wheels, a component of EE, block of
hippocampal activation ceased to block recall of contextual
fear memory at shorter time distance from learning with
respect to sedentary animals [69].

In addition,we demonstrated that EE induces the involve-
ment of a distributed cortical network in supporting remote
spatial memory which is not activated in non EE animals.We
observed that MEnt and pPta were activated following mem-
ory recall at 10 days in EE group. Both areas were included in
the dorsal network for spatial navigation [60]; the entorhinal
cortex contains a spatial representation of environment and
plays an interface role between the hippocampus and neo-
cortex [70]; instead, the parietal cortex, specifically the mul-
tisensory posterior region, translates coordinate information
from spatial maps in the entorhinal cortex and hippocampus
into egocentric representations [59, 71]. We also investigated
c-Fos protein expression in V1 andM2, and we found that EE
group showed a greater activation in M2 than SC group, for
probe test performed at 20, 30, and 50 days. In V1, instead, we
did not find any difference between EE and SC group, only
an increase in c-Fos expression for the late retention delays
in both groups; a recent study [58] showed that V1 could
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Figure 5: c-Fos protein expression in V1 and M2. M2: two-way ANOVA post hoc analysis Holm-Sidak method, HC-SC versus HC-EE,
𝑃 = 0.416; statistical significance for EE versus HC-EE at 20, 30, and 50 days. Statistical difference between EE and SC at 1 day, 𝑃 = 0.288;
at 10 days, 𝑃 = 0.154; at 20, 30, and 50 days, 𝑃 < 0.05. Statistical differences within EE group were found between 10 and 20 days, and 1 day
versus 20, 30, and 50 days, all 𝑃 values < 0.05. V1: two-way ANOVA post hoc analysis Holm-Sidak method, HC-SC versus HC-EE 𝑃 = 0.907;
statistical significance for EE versus HC-EE at 20, 30, and 50 days, and for SC versus HC-SC at 20, 30, and 50 days, all 𝑃 values < 0.05.
Statistical significance for factor day was found between 1 day versus 20, 30, and 50 days, and 10 days versus 20, 30, and 50 days, all 𝑃 values
< 0.05. ◼Statistical significance between EE and HC-EE; ◻statistical significance between SC and HC-SC; ∗= statistical significance between
EE and SC; ∘statistical significance for factor day §

= statistical significance within EE group; error bars = s.e.m.

belong to the network of fear contextual memory, although
its activation did not change between recent and remote
memories. In our study, the V1 pattern activation could be
induced by its engagement in attentional process on account
of the spatial complex task. The involvement of M2 and V1 is
not surprising since they are connected to the dorsal stream
[62], and a direct monosynaptic connection between motor
and visual cortices was identified [65].

For the hippocampus we found no difference between
EE and SC animals. Our results are consistent with the
idea that hippocampus is responsible for encoding spatial
memory [49–53]; its activation in remote spatial memory
recall is not in agreement with studies that showed a pro-
gressive reduction in hippocampus activationwith increasing
retention interval [47, 48, 54], though it is in line with the
hypothesis that remote memory never becomes totally inde-
pendent from the hippocampus [72]. In a more recent study,
indeed, Lopez et al. [73] demonstrated that hippocampus
recruitment in the recall of remote memories was influenced
by the environmental conditions, such as cue saliency and
complexity of the task in whichmemories are initially formed
and subsequently recalled; thus the rich spatial details and
the complexity of the training in MWM could account for
the hippocampal activation found also for remote memory
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Figure 6: c-Fos protein expression in Au1. The data showed no
difference between groups (two-way ANOVA, housing condition
factor, 𝑃 = 0.996, day of probe test factor, 𝑃 = 0.943, housing
condition × day of probe test interaction, 𝑃 = 0.938). In all probe
tests, EE and SC groups did not differ from their home cage controls.
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recall. Moreover, it has been found that that precise real-
time inhibition of the dorsal CA1 region, using optogenetic
method, was sufficient to impair remote recall [74].

We found that EE mice were faster, considering latency
parameter, in learning the position of the target platform
in comparison to SC mice, but there was no significant
difference between groups in the probe tests. These results
are consistent with other studies in the literature which used,
in rodents living in EE or provided with running wheels,
intensive learning protocol for the MWM such as that used
by us (4 daily trials for 7 consecutive days) [21]. We decided
to use a behavioural protocol that maximizes the results of
spatial learning task because our purpose was to examine
possible differences between EE and SC groups in the time
course of system consolidation without confounding effects
due to differences in the results of learning, that is in the
probe test, and also to be confident in the formation of a
remote memory. The results of c-Fos data are an indication
that the same result (a successful probe test) can be obtained
through a different balance of hippocampal and cortical
activation during system consolidation. Also in the Maviel
and Bontempi paper [47] response accuracy in animals tested
on either day 1 or 30 was similar while cortical activation
strongly differed. The faster recruitment of cortical areas
found in EE animals and the activation of a distributed
cortical network, involving prefrontal and other associative
cortices, activated in EE but not in SC animals, could suggest
that the quality of the recalled memory is different in the two
groups of animals; indeed, activation of prefrontal cortex has
been correlated with development of the ability to create a
memory that is vivid and rich in contextual details in humans
[75] and activation of associative sensory cortices supports
memory storage and retrieval of sensory stimuli that have
acquired a behavioral salience with the experience [56].

How could EE act on the recruitment of cortical net-
works during system consolidation? One possibility is via
its well-known action on hippocampal neurogenesis. It has
been proposed that new neurons generated in the DG
become functionally integrated into existing neural circuits
[76]; in fact the spatial training when new neurons are
more receptive to surrounding neuronal activity favored
their subsequent recruitment upon remote memory retrieval
[77, 78]. Thus, these tagged adult-generated neurons, once
mature, are recruited into hippocampal networks underlying
remote spatial memory representation. Therefore tampering
with the level of hippocampal neurogenesis could interfere
in the hippocampus-only dependent period of memory.
Indeed, it has been demonstrated that new hippocampal
neurons were recruited into neuronal networks supporting
retrieval of remote spatial memory and that the enhanced
neurogenesis by voluntary running-wheel exercise sped up
the disengaging from hippocampus [69]. Since EE was
found to increase hippocampal neurogenesis and promote
the survival of newly generated neurons [14], it is plausible
that EE may accelerate the recruitment of extrahippocampal
areas. In its turn, EE action on hippocampal neurogenesis
is likely mediated by neurotrophins, such as brain-derived
neurotrophic factor (BDNF), or by insulin growth factor-l
(IGF-1) [9, 10], which affect hippocampal neurogenesis and

hippocampal and cortical plasticity [14, 79, 80]. IGF-1 plays
an important role in cell growth and development, and it
also upregulates neurogenesis in the adult hippocampus [81–
83]. In the adult brain, IGF-1 has been shown to mediate
both the neuroprotective effects of physical exercise and the
enhancement caused by exercise in hippocampal plasticity
and in learning and memory [79]. Moreover IGF-1 mediates
the increased expression of BDNF subsequent to EE and
physical exercise [84–86]. BDNF has been shown to regulate
adult hippocampal neurogenesis, to mediate EE effects on it,
to modulate plasticity during learning by activating signaling
pathways that modify local synaptic targets and have long-
term effects on transcription, and to mediate the expression
of hippocampal LTP, in both the early and late phases [80, 83,
87, 88].

Another nonexclusive possibility is that molecular mech-
anisms could “tag” the activated synapses in hippocampal and
cortical networks at the time of memory encoding; this early
tagging could guide the reactivation of proper hippocampal-
cortical connections associated with the specific memory. A
recent study showed indeed that cortical tagging seems to be
highly specific for precise memory trace and the impairment
of early cortical tagging tampers with the postacquisition
hippocampal-cortical dialogue, preventing the formation of
remote memory [41]. Moreover, they demonstrated that
early tagging triggers specific signaling cascades, leading to
histone-tail acetylation in the cortex and that the histone
deacetylase inhibitor improves remote memory retrieval
[41]. Thus, early tagging acts on epigenetic modification
that could mediate remote memory formation and retrieval,
so EE could modulate the long-term memory formation
and consolidation through chromatin remodeling, such as
histone-tail acetylation, known to be increased in EE.
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