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Abstract

Voxel-based specific region analysis systems for Alzheimer’s disease (VSRAD) are clini-

cally used to measure the atrophied hippocampus captured by magnetic resonance imaging

(MRI). However, motion artifacts during acquisition of images may distort the results of the

analysis. This study aims to evaluate the usefulness of the Pix2Pix network in motion correc-

tion for the input image of VSRAD analysis. Seventy-three patients examined with MRI were

distinguished into the training group (n = 51) and the test group (n = 22). To create artifact

images, the k-space images were manipulated. Supervised deep learning was employed to

obtain a Pix2Pix that generates motion-corrected images, with artifact images as the input

data and original images as the reference data. The results of the VSRAD analysis (severity

of voxel of interest (VOI) atrophy, the extent of gray matter (GM) atrophy, and extent of VOI

atrophy) were recorded for artifact images and motion-corrected images, and were then

compared with the original images. For comparison, the image quality of Pix2Pix generated

motion-corrected image was also compared with that of U-Net. The Bland-Altman analysis

showed that the mean of the limits of agreement was smaller for the motion-corrected

images compared to the artifact images, suggesting successful motion correction by the

Pix2Pix. The Spearman’s rank correlation coefficients between original and motion-cor-

rected images were almost perfect for all results (severity of VOI atrophy: 0.87–0.99, extent

of GM atrophy: 0.88–00.98, extent of VOI atrophy: 0.90–1.00). Pix2Pix generated motion-

corrected images that showed generally improved quantitative and qualitative image quali-

ties compared with the U-net generated motion-corrected images. Our findings suggest that

motion correction using Pix2Pix is a useful method for VSRAD analysis.

Introduction

Alzheimer’s disease (AD) is the most common form of dementia [1], and hippocampal atro-

phy from neurodegeneration is an important morphological change that is useful in
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diagnosing AD in clinical practice [2]. Atrophy assessment using magnetic resonance imaging

(MRI) is considered a valid method for the evaluation of AD status and progression [3].

Voxel-based morphometry (VBM) is a method that transforms and spatially normalizes MRI

image data based on standard brain coordinates to perform whole-brain morphological analy-

sis automatically [4]. A voxel-based specific region analysis system for Alzheimer’s disease

(VSRAD), which is a software that measures the atrophy of the hippocampus by setting a

region of interest for AD in VBM, is widely used for the diagnosis of AD in clinical practice

[5]. VSRAD can evaluate the atrophy of the hippocampus and para-hippocampus but also the

reduction in the regional volume by comparing brain MRI images from patients and healthy

subjects in a database, and its diagnostic accuracy for detecting very mild AD has been

reported to be as high as 91.6% [6]. The acquired image data used for the VSRAD analysis

require the entire head to be included in the imaging area with a thin slice thickness of 1.0 to

1.5 mm with no gap, using three-dimension T1-weighted images (3DT1WI) [2]. However, the

acquisition time of 3DT1WI is long and may result in artifacts due to spontaneous body move-

ments. These motion artifacts affect the size of brain structures, and thus pose a problem for

VSRAD analysis [7].

The following three methods have been proposed to correct motion artifacts in MRI

images. The first method is to set up a motion correction, such as periodically rotated overlap-

ping parallel lines with enhanced reconstruction, in the MRI imaging sequence [8]. The second

method is to attach an external device, such as an optical camera, to the patient and estimate

the motion [9]. The third method is to use convolutional neural networks (CNN) or generative

adversarial networks (GAN) to correct the obtained MRI image [10, 11]. Compared with the

other motion compensation methods, CNN or GAN are perhaps more simple methods

because they do not require any changes in the acquisition sequence or image reconstruction

method, nor do they require any external hardware devices. Motion correction using CNN

and GAN has been investigated in brain MRI but also in cardiac [12] and abdominal MRI

[13], which are also affected by respiration and heartbeat. CNN learns to minimize the loss

function, and while the learning process is automatic, a lot of manual work is required to

design an effective loss. Meanwhile, GAN learns a loss function that tries to classify the output

image as either real or fake, and simultaneously learns a generative model that minimizes this

loss [14]. One type of such a GAN is Pix2Pix, a network dedicated to image-to-image conver-

sion [15] that has recently been evaluated using clinical images [16]. Pix2Pix is a network con-

sisting of U-Net as a generator and PatchGAN as a discriminator.

To the best of our knowledge, there have been few studies using GAN and CNN motion-

correction techniques for VBM [17]. In particular, no studies have used these techniques for

VSRAD analysis. We hypothesized that the motion-corrected images using Pix2Pix could

accurately measure hippocampal atrophy for VSRAD analysis. Thus, the purpose of the pres-

ent study was to evaluate the usefulness of the Pix2Pix network in motion correction for the

input image of VSRAD analysis.

Materials and methods

Participants and image acquisition

The present study retrospectively analyzed 78 consecutive Japanese patients who visited the

research hospital, Institute of Medical Science, the University of Tokyo from April 2013 to

April 2020 and underwent MRI scans for suspected dementia. The Research Ethics Committee

of the Institute of Medical Science, University of Tokyo, approved the study protocols (2019-

41-1031), and the requirement for written informed consent was waived.
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Whole brain images were acquired using a 3.0 Tesla clinical MRI scanner (MAGNETOM,

Skyra, Siemens AG, Healthcare Sector, Erlangen, Germany) with Syngo MR E11 software and

a 20-channel head matrix coil. The VSRAD images were acquired using a T1-weighted, mag-

netization-prepared rapid gradient-echo sequence with 176 sagittal slices (echo time = 2.04–

2.09 ms, repetition time = 1.8 s, flip angle = 10 degrees, inversion time = 800 ms, slice thickness

1.0 mm, no gap, matrix 256×256, field of view 230–240 mm, number of excitations = 1, acqui-

sition time = 4 min 43 s). Following review by two experienced radiologists, five patients were

excluded due to motion artifacts in their images, and the remaining 73 patients were divided

into training (n = 51, April 2013 to December 2017) and test (n = 22, January 2018 to April

2020) groups. Ten percent of the training group was assigned to the validation group. The

workflow of this study is illustrated in Fig 1.

T1-MPRAGE (T1-weighted, magnetization-prepared rapid gradient-echo sequence);

VSRAD (Voxel-based specific region analysis system for Alzheimer’s disease).

Creation of artifact images

In the present study, we used a computer with 3.6GHz/s (corei7–7700), 48GB/s memory band-

width, and a GeForce GTX 1070 graphics card (Nvidia Corporation, Santa Clara, CA, USA)

with 8GB memory per board. Images with simulated motion artifacts were modeled in refer-

ence to the study of Lucilio et al. [18]. The creation of motion artifacts was performed using

MATLAB software R2021a (Mathworks, Natick, Massachusetts, USA). In the training group,

we created sixteen patterns of artifact images (including the original image) assuming vertical

rotational and anterior-posterior-motion movements in the sagittal plane of the brain. All

combinations of four rotation angles, including zero and four patterns of zero-filled intervals

on k-space, were created. First, we rotated the image. The rotation angle was selected from 0,

1, 2, or 3 degrees for each patient, and two images were created by rotating the same angle to

the left and right. Secondly, the two types of images were Fourier transformed, filling them

Fig 1. Schematic diagram of this study. Artifact images were created by manipulating the k-space of the original images. Motion artifact suppressed images were

generated from the artifact images using the Pix2Pix network. VSRAD analysis was performed on three types of images: the original image, the artifact image, and

the motion-corrected image. Then, differences among images of the VSRAD analysis results were examined.

https://doi.org/10.1371/journal.pone.0274576.g001
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with zeros at equal intervals. This interval was selected from 0, 10, 20, or 30 pixels for each

patient. Finally, the top and bottom half of each k-space were merged to create one image, and

we performed an inverse Fourier transform of the merged image to create an image with simu-

lated motion artifacts (artifact image) (Figs 2 and 3). For the training group, we used a total of

47872 (= 51 patients×176 slice×16 motion pattern×1/3 (adjusting number of images to meet

with our computer specs)) pair image data sets created at three slice intervals of the total arti-

fact image.

Using the same method with the training group, artifact images were generated for the test

group with four fixed patterns 0_none (equal to the original image), 1˚_30, 2˚_20, and 3˚_10

(rotation angle _ k-space interval). In addition, we created two patterns of intervals 1.5˚_25,

2.5˚_15 (rotation angle _ k-space interval) that were not trained with Pix2Pix.

Pix2Pix network

We used the Pix2Pix network to generate motion artifact corrected images. We used the

Python 3.6.10 with Anaconda 3.0 distribution software (Python Software Foundation, Dela-

ware, USA), TensorFlow-GPU 2.1.0, and Keras 2.3.1 (Google, Mountain View, Calif, USA).

For the Pix2Pix generator network, we used a U-Net-based network [19] with a structure

that passes information between encoder-decoders, whose encoder stacks consist of eight con-

volutional layers and decoder stacks consist of the same number of deconvolutional layers that

employed upsampling and convolution. In the encoder stacks, the LeakyReLu activation func-

tion was applied to the input of the second and subsequent convolutional layers, and batch

normalization was applied to the output. Similarly, the ReLu activation function was applied

to the input of the deconvolutional layer in the decoder stacks, and batch normalization was

Fig 2. Creation of motion artifact images. The following process was used to create motion artifact images. First, two images were created, one rotated to the

left and one rotated to the right of the image. Secondly, the two types of images were Fourier transformed (FFT), and we filled k-space with zeros at equal

intervals. Finally, the top and bottom half of each k-space were merged to create one image, and we performed an inverse Fourier transform (IFT) of the

merged image to create an image with simulated motion artifacts.

https://doi.org/10.1371/journal.pone.0274576.g002
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also applied to the output. The tanh activation function was applied to the output of the final

convolutional layer to produce the motion-corrected image (Fig 4).

The Pix2Pix discriminator network introduces PatchGAN that evaluates whether the origi-

nal image and the motion-corrected image are equivalent in a small region. This network does

Fig 3. Training data sets. A total of 16 artifact images were created with four rotation angles (RA) and four patterns of k-space zero-fill intervals (KI). In the artifact

images, the larger the rotation angle, or the smaller the zero-fill interval in k-space, the stronger the motion artifact. In the present study, we created a training data set

by pairing each of the 16 artifact images with the original image. We demonstrate an example used as the input image for the training group.

https://doi.org/10.1371/journal.pone.0274576.g003

PLOS ONE Reducing motion artifacts using GAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0274576 September 14, 2022 5 / 18

https://doi.org/10.1371/journal.pone.0274576.g003
https://doi.org/10.1371/journal.pone.0274576


not directly compare the two images. Instead, it splits each image into small regions of a spe-

cific size (patch), evaluates each pair (True pair and False pair), and finally performs binary

classification. The use of PatchGAN has been reported to show high learning accuracy for

high-frequency components of images [20]. In the present study, the patch size was set to

32×32. Therefore, 64 paired patch images are input in the discriminator at once (matrix size

(256 x 256) / patch size (32 x 32) = 64 paired images). First, the original image and the motion-

corrected image for each patch were convolved once. Second, the output for each patch was

concatenated and convolved, and was then transformed to one dimension for full combination

and binary (True or False) classification with the Softmax function. Finally, all patches were

concatenated and classified as binary (True or False) by the Softmax function (Fig 5).

The learning parameters were trained using an Adam optimizer with a constant learning

rate of 1e-4, beta_1 = 0.9, and beta_2 = 0.999 [21]. The mini-batch size was set to 32. The order

of the data was randomized in each epoch, and we set the number of epochs to 100. The loss

function for the Pix2Pix generator network was L1 regularization and binary cross-entropy for

updating parameters, and the discriminator network used binary cross-entropy.

U-Net

In the present study, the comparison between Pix2Pix and CNN was performed with U-Net,

which was used in the generator network of Pix2Pix. The training parameters were set the

same as for the Pix2Pix generation network, except that the mini-batch size was 16. The loss

function for this network was set to Mean Squared Error.

Fig 4. Generator network. We used a U-Net-based network for the generator network. This network comprised an encoder consisting of eight convolutional

layers and a decoder consisting of the same number of deconvolutional layers. For the convolutional layer’s input and output, activation by the LeakyReLu

function and batch normalization (BN) were performed in the encoder stack, whereas activation by the ReLu function and BN was performed in the decoder

stack. The motion-corrected image was the output of the decoder stack activated by the tanh function.

https://doi.org/10.1371/journal.pone.0274576.g004
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Image quality evaluation

For quantitative evaluation, we used the structured similarity indexing method (SSIM) to com-

pare the structural and feature similarities between the original images and the artifact or

motion-corrected images. Analysis of SSIM was performed using MATLAB software R2021a.

For qualitative evaluation, two diagnostic radiologists evaluated the artifact images and

motion-corrected images (U-Net and Pix2Pix) generated in this study using the following

5-point Likert scale for the degree of motion artifact.

5: No influence of movement

4: Slightly affected by motion but does not affect analysis

3: Lower limit of acceptable motion effect

2: Motion influence is present and may affect the analysis.

1: Cannot be analyzed due to the effect of motion.

The radiologists were blinded to the image acquisition method and independently assessed

the subjective image quality. The data were analyzed randomly to reduce recall bias.

VSRAD analysis

Multiplanar reconstruction was performed on the original image, artifact image, and the

motion-corrected image in the 1-mm coronal plane. These three types of images were analyzed

using the VSRAD advance software package (version 6.00, Eisai, Tokyo, Japan). Three factors

were analyzed:

Fig 5. Discriminator network. PachGAN was used as the Discriminator network. First, the input image was cropped into small regions (patch size). Secondly, for each

small region, binary classification was performed by a network consisting of a convolutional layer, an activation layer (LeakyReLu, Softmax), a batch normalization layer

(BN), and an affine layer (Flat). Thirdly, the outputs of the binary classification in all subregions were combined. Finally, binary classification was performed using the

Softmax function to evaluate whether the two input images were entirely equal.

https://doi.org/10.1371/journal.pone.0274576.g005
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First, the severity of VOI atrophy was the Z-score of the severity of gray matter (GM) atro-

phy in the region of interest in AD, and it was calculated using the following equation:

(severity of VOI atrophy) = ((normal control average of voxel-level—patient’s voxel-level)/

normal controls standard deviation (SD)).

Second, the extent of GM atrophy referred to the extent of GM atrophy in the whole brain

(extent of GM atrophy) = a percentage of voxels with a Z-score>2 compared with the whole

brain.

Third, the extent of VOI atrophy reflected the extent of GM atrophy in the VOI of AD, and

it was calculated as follows:

(extent of VOI atrophy) = ((number of voxels judged to have a Z-score of more than 2/

number of all voxels in the volume of the hippocampus)×100%) [6, 22].

Statistical analysis

The male-to-female ratio was compared between the training and the test groups using the

Fisher test. Age, severity of VOI atrophy, extent of GM atrophy, and extent of VOI atrophy

were compared between the training and the test groups using the Mann-Whitney U test. The

results of SSIM analysis were compared using paired t-tests, and qualitative image quality was

compared using Wilcoxon signed-rank test. A weighted kappa test was used to examine the

inter-observer agreements of qualitative image quality evaluation. A kappa value of 0.20 was

defined as a slight agreement, 0.21–0.40 as fair agreement, 0.41–0.60 as moderate agreement,

0.61–0.80 as strong agreement, and 0.81–1.00 as almost perfect agreement. In the Bland-Alt-

man analysis, the mean bias of the VSRAD analysis in the artifact vs. the original image, U-Net

motion-corrected vs. the original image, and the Pix2Pix motion-corrected vs. the original

image were plotted against the difference of the values, and the limit of agreement between the

two measurements was defined as the mean±1.96 times SD of the difference with a 95% confi-

dence interval. The results of VSRAD analysis were tested for severity of VOI atrophy, extent

of GM atrophy, and extent of VOI atrophy. Four trained patterns (0˚_none,1˚_30, 2˚_20, 3˚

_10) and two non-trained patterns (1.5˚_25, 2.5˚_15) were tested. In addition, Spearman’s

rank correlation coefficients were calculated for the VSRAD measurements of the artifact vs.
the original images, U-Net motion-corrected images vs. original images, and the Pix2Pix

motion-corrected vs. original images.

These statistical analyses were performed using the EZR software [23]. The significance

level was set to 0.05.

Results

The number and mean±SD age of the patients in the training group was 51 (male: female,

20:31) and 75.24±12.16 years old, respectively. There were 22 patients in the test group (male:

female, 6:16), and the mean age was 75.00±11.88 years old. The mean values of severity of VOI

atrophy, extent of GM atrophy, and extent of VOI atrophy were 1.23±0.87, 5.62±3.21, and

14.83±21.08 in the training group and 1.48±1.17, 5.77±2.99, and 25.96±32.56 in the test group.

There were no significant differences in sex, age, severity of VOI atrophy, extent of GM atro-

phy, and extent of VOI atrophy between the training and the test groups (Table 1).

An example of the original image, artifact image, and motion-corrected image is shown in

Fig 6.

The results of the SSIM analysis for artifact images, U-Net motion-corrected images, and

the Pix2Pix motion-corrected images against the original image are shown in Table 2 and Fig

7. The mean SSIM values of the artifact, U-Net, and Pix2Pix images against the original images

were 0.22–0.37, 0.88–0.97, and 0.89–0.98, respectively. We used a paired t-test with the same
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rotation angle and k-space interval to evaluate the SSIMs of the motion-corrected images, and

we found that Pix2Pix was significantly higher than U-Net (p< 0.05). Qualitative evaluation

revealed that motion-corrected images generated by U-Net and Pix2Pix from artifact-free

images (0_none) were all point as 5. Furthermore, there was no difference in the qualitative

evaluation between Pix2Pix and U-Net when the rotation angle was 1˚_30 (observer 1;

Table 1. Details of the training and test groups.

Training Test p-value

(Original image)

Number of Patients 51 22

Sex (M: F) 20:31 6:16 0.43

Age (years) (mean±SD) 75.24 ± 12.16 75.00 ± 11.88 0.94

Severity of VOI atrophy 1.23 ± 0.87 1.48 ± 1.17 0.79

(mean±SD)

Extent of GM atrophy 5.62 ± 3.21 5.77 ± 2.99 0.86

(mean±SD)

Extent of VOI atrophy 14.83 ± 21.08 25.96 ± 32.56 0.48

(mean±SD)

No significant differences in gender, age, and severity of VOI atrophy were observed. Standard deviation (SD); Voxel of interest (VOI); gray matter (GM).

https://doi.org/10.1371/journal.pone.0274576.t001

Fig 6. Examples of the original image, artifact image, and motion-corrected image. (A) The original T1-weighted, magnetization-prepared rapid gradient-

echo sequence (T1-MPRAGE) images, (B) artifact images created by manipulating the k-space of T1-MPRAGE, (C) motion-corrected images by the U-Net

network from the artifact images and (D) motion-corrected images by the Pix2Pix network from the artifact images, are shown, respectively. The rotation

angle and k-space interval of the artifact images were 2˚_20 pixels.

https://doi.org/10.1371/journal.pone.0274576.g006
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p = 0.79, observer 2; p = 0.53). For the 2˚_20 and 3˚_10 motion patterns, Pix2Pix showed a sig-

nificantly higher score by both observers compared to U-Net (all p< 0.05). The other 1.5˚_25

and 2.5˚_15 motion patterns, showed a significantly different higher score by one observer

(1.5_25; observer 1; p = 0.23, observer 2; p< 0.05, 2.5_15; observer 1; p< 0.05, observer 2;

p = 0.14). The weighted kappa test showed strong agreement between the two radiologists

(k = 0.62).

The results of the Bland-Altman analysis for VSRAD of the artifact image, U-Net motion-

corrected images vs. original images, and the Pix2Pix motion-corrected image against the orig-

inal image are shown in Tables 3 and 4 and Fig 8. Artifact images demonstrated a fixed positive

bias in VSRAD, which increased in accordance with the severity of the artifact. By contrast, the

VSRAD results of the motion-corrected image revealed a more negligible bias than the artifact

image created at the same rotation angle and k-space intervals. For example, the mean bias of

the severity of VOI atrophy of the motion-corrected image 1˚_30 was less than 0.1, whereas

the mean bias of the motion-corrected image was almost zero when the input image was the

original image (0˚_none). Also, results of the VSRAD analysis using non-trained rotation

angles and k-space intervals showed the same trend as the trained results (Table 4).

The results of the VSRAD analysis of the artifact image showed that correlations with the

original image ranged from no to strong (severity of VOI atrophy: 0.53–0.70 (p< 0.05), extent

of GM atrophy: 0.036–0.35 (p = 0.072–0.84 >0.05), extent of VOI atrophy: 0.64–0.76

(p< 0.05), all Spearman’s rank correlation coefficient). In contrast, the results of the U-Net

and Pix2Pix motion-corrected image showed an almost perfect match with the original image

with respect to the trained artifacts (severity of VOI atrophy, U-Net:0.94–1.00 (p< 0.05), Pix2-

Pix: 0.94–0.99 (p< 0.05), extent of GM atrophy, U-Net:0.91–1.00 (p< 0.05), Pix2Pix: 0.92–

Table 2. Results of SSIM analysis and qualitative evaluation when set to trained rotation angles and k-space intervals.

SSIM Qualitative evaluation

mean ± SD (median)

RA KI (mean ± SD) Observer 1 Observer 2

artifact image vs. original image 0 None 1.00 5.00 ± 0.00 (5) 5.00 ± 0.00 (5)

1˚ 30 0.37 ± 0.021 1.73 ± 0.46 (2) 2.09 ± 0.29 (2)

2˚ 20 0.29 ± 0.018 1.45 ± 0.51 (1) 1.36 ± 0.49 (1)

3˚ 10 0.22 ± 0.015 1.00 ± 0.00 (1) 1.00 ± 0.00 (1)

1.5˚ 25 0.33 ± 0.018 1.73 ± 0.46 (2) 1.73 ± 0.46 (2)

2.5˚ 15 0.25 ± 0.018 1.14 ± 0.35 (1) 1.09 ± 0.29 (1)

U-net motion-corrected image vs. original image 0 None 0.97 ± 0.0034 5.00 ± 0.00 (5) 5.00 ± 0.00 (5)

1˚ 30 0.93 ± 0.012 4.59 ± 0.50 (5) 4.82 ± 0.39 (5)

2˚ 20 0.91 ± 0.011 3.45 ± 0.51 (3) 3.91 ± 0.29 (4)

3˚ 10 0.88 ± 0.016 2.95 ± 0.21 (3) 3.18 ± 0.39 (3)

1.5˚ 25 0.91 ± 0.0095 3.82 ± 0.39 (4) 3.77 ± 0.43 (4)

2.5˚ 15 0.88 ± 0.014 3.00 ± 0.31 (3) 3.36 ± 0.49 (3)

Pix2Pix motion-corrected image vs. original image 0 None 0.98 ± 0.0035 5.00 ± 0.00 (5) 5.00 ± 0.00 (5)

1˚ 30 0.94 ± 0.010 4.64 ± 0.49 (5) 4.73 ± 0.46 (5)

2˚ 20 0.92 ± 0.011 3.95 ± 0.21 (4) 4.45 ± 0.51 (4)

3˚ 10 0.89 ± 0.015 3.36 ± 0.49 (3) 3.45 ± 0.51 (3)

1.5˚ 25 0.92 ± 0.011 3.95 ± 0.21 (4) 4.32 ± 0.48 (4)

2.5˚ 15 0.89 ± 0.013 3.32 ± 0.48 (3) 3.59 ± 0.50 (4)

Structured similarity indexing method (SSIM), Rotation angle (RA); K-space interval (KI); Standard deviation (SD).

https://doi.org/10.1371/journal.pone.0274576.t002
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0.98 (p< 0.05), extent of VOI atrophy, U-Net:0.95–0.99 (p< 0.05), Pix2Pix: 0.94–1.00

(p< 0.05)) (Table 3, Fig 9), and also for the untrained artifacts (severity of VOI atrophy,

U-Net:0.93–0.98 (p< 0.05), Pix2Pix: 0.87–0.97 (p< 0.05), extent of GM atrophy, U-Net:0.85–

0.95 (p< 0.05), Pix2Pix: 0.88–0.97 (p< 0.05), extent of VOI atrophy, U-Net:0.91–0.96

(p< 0.05), Pix2Pix: 0.90–0.97 (p< 0.05)) (Table 4).

Fig 7. Comparison of SSIMs in the original and artifact images or generated images by the U-net or Pix2Pix. The measured SSIM values are shown in a box-and-

whisker diagram. A comparison of the artifact image vs. the original images are shown in black, the motion-corrected image created by U-Net vs. the original images

are shown in red, andPix2Pix-corrected vs. the original images are shown in blue. The SSIMs of the motion-corrected images were compared by paired t-test with the

same rotation angle and k-space interval, and Pix2Pix was significantly higher than U-Net (p< 0.05).

https://doi.org/10.1371/journal.pone.0274576.g007
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Discussion

In the present study, the Pix2Pix network was trained by simulated artifact images as the input

data and original images as the reference data to create motion-suppressed images (motion-

corrected images) from artifact images. The results of the VSRAD analysis of the original

image, the artifact image, and the motion-corrected image, were then compared. Bland-Alt-

man analysis and Spearman’s rank correlation coefficient analysis revealed that the results of

the VSRAD analysis of the motion-corrected image were more strongly correlated with the

original image compared to the artifact image, suggesting that successful motion correction

Table 3. Results of Spearman’s rank correlation coefficient and Bland-Altman analysis when set to trained rotation angles and k-space intervals.

Motion level Bland-Altman analysis Spearman’s rank

correlation

coefficient

RA KI mean bias Limits of agreement ρ p-value

artifact image vs. original image Severity of VOI atrophy 1˚ 30 0.56 -1.15 ― 2.27 0.70 < 0.05

2˚ 20 0.86 -0.8 ― 2.52 0.63 < 0.05

3˚ 10 1.15 -0.73 ― 3.04 0.53 < 0.05

Extent of GM atrophy 1˚ 30 6.27 -8.11 ― 20.65 0.35 0.072

2˚ 20 7.37 0.27 ― 14.47 0.26 0.18

3˚ 10 8.65 -0.2 ― 17.51 0.036 0.84

Extent of VOI atrophy 1˚ 30 12.04 -32.6 ― 56.67 0.76 < 0.05

2˚ 20 20.41 -23.35 ― 64.17 0.75 < 0.05

3˚ 10 24.72 -23.37 ― 72.81 0.64 < 0.05

U-net motion-corrected image vs. original image Severity of VOI atrophy 0˚ none 0.031 -0.092 ― 0.155 1.00 < 0.05

1˚ 30 0.061 -0.29 ― 0.41 0.98 < 0.05

2˚ 20 0.21 -0.33 ― 0.76 0.97 < 0.05

3˚ 10 0.34 -0.33 ― 1.01 0.94 < 0.05

Extent of GM atrophy 0˚ none 0.23 -0.18 ― 0.64 1.00 < 0.05

1˚ 30 0.9 -0.38 ― 2.18 0.96 < 0.05

2˚ 20 2.21 0.32 ― 4.09 0.94 < 0.05

3˚ 10 2.83 0.38 ― 5.28 0.91 < 0.05

Extent of VOI atrophy 0˚ none 1.13 -2.65 ― 4.91 0.99 < 0.05

1˚ 30 0.47 -9.79 ― 10.73 0.98 < 0.05

2˚ 20 3.8 -13.27 ― 20.88 0.96 < 0.05

3˚ 10 5.31 -12.78 ― 23.41 0.95 < 0.05

Pix2Pix motion-corrected image vs. original image Severity of VOI atrophy 0˚ none 0.027 -0.084 ― 0.14 0.99 < 0.05

1˚ 30 0.067 -0.3 ― 0.43 0.97 < 0.05

2˚ 20 0.2 -0.31 ― 0.7 0.95 < 0.05

3˚ 10 0.4 -0.37 ― 1.17 0.94 < 0.05

Extent of GM atrophy 0˚ none 0.006 -0.391 ― 0.4 0.98 < 0.05

1˚ 30 0.87 -0.37 ― 2.1 0.97 < 0.05

2˚ 20 2.22 0.5 ― 3.95 0.94 < 0.05

3˚ 10 3.18 1.16 ― 5.19 0.92 < 0.05

Extent of VOI atrophy 0˚ none 0.7 -2.42 ― 3.83 1.00 < 0.05

1˚ 30 1.4 -6.58 ― 9.38 0.99 < 0.05

2˚ 20 4.52 -9.86 ― 18.9 0.94 < 0.05

3˚ 10 7.3 -10.96 ― 25.55 0.95 < 0.05

Rotation angle (RA); K-space interval (KI); Voxel of interest (VOI); Gray matter (GM). Statistical processing was performed using Spearman’s rank correlation

coefficient with a significance level of 0.05.

https://doi.org/10.1371/journal.pone.0274576.t003
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was obtained by Pix2Pix. Also, compared with U-net-based motion-corrected images, Pix2-

Pix-based motion-corrected images showed a generally higher image quality both subjectively

and objectively.

The artifact images used in this study simulated two patterns of motion: rotational motion

in the vertical direction and the loss of signal due to anterior-posterior motion in the sagittal

plane by filling the k-space with zeros. Several studies have simulated motion artifacts using a

similar method to our study [11, 24]. With this method, the motion is simulated in k-space for

each slice to ensure that the slice positions of the original image and the artifact image are the

same. However, the slice positions would not be identical when combining images with real

motion and without motion. Therefore, we considered that the combination of the original

image and the simulated artifact image is the best combination for teacher image and training

image in training our network. In addition, the total number of images used for the present

study was 47872 paired images for the training group. This number is sufficiently larger than

that of a similar study using Pix2Pix for medical images, and it is considered to be sufficient

number of images necessary for effective training [16, 25].

In the present study, we compared motion correction between GAN and CNN using

U-Net, which was used to generate Pix2Pix. U-Net learns the differences between input and

output images as a loss function. Therefore, U-Net learns the relationship between two images

by referring to the whole image. In contrast, Pix2Pix uses PatchGAN as a discriminator, learn-

ing the true or false pair relationship of the input image by referring to the patch image, and

learning a generator whose discrimination accuracy is a loss function. For these reasons, the

learning methods are different even though the same network structure is used to generate the

images.

Table 4. Results of Spearman’s rank correlation coefficient analysis and Bland-Altman analysis when set to non-trained rotation angles and k-space intervals.

Bland-Altman analysis Spearman’s rank

correlation coefficient

RA KI mean bias limits of agreement ρ p-value

artifact image vs. original image Severity of VOI atrophy 1.5˚ 25 0.88 -2.1 ― 3.86 0.51 < 0.05

2.5˚ 15 1.33 -2.4 ― 5.06 -0.094 0.68

Extent of GM atrophy 1.5˚ 25 7.05 -2.67 ― 16.78 0.35 0.11

2.5˚ 15 11.35 -4.4 ― 27.1 -0.32 0.14

Extent of VOI atrophy 1.5˚ 25 19.24 -46.32 ― 84.8 0.58 < 0.05

2.5˚ 15 18.35 -67.62 ― 104.31 -0.032 0.89

U-net motion-corrected image vs. original image Severity of VOI atrophy 1.5˚ 25 0.25 -0.16 ― 0.65 0.98 < 0.05

2.5˚ 15 0.47 -0.57 ― 1.5 0.93 < 0.05

Extent of GM atrophy 1.5˚ 25 2.55 0.69 ― 4.41 0.95 < 0.05

2.5˚ 15 3.21 0.19 ― 6.24 0.85 < 0.05

Extent of VOI atrophy 1.5˚ 25 4.49 -7.57 ― 16.54 0.96 < 0.05

2.5˚ 15 11.9 -21.4 ― 45.19 0.91 < 0.05

Pix2Pix motion-corrected image vs. original image Severity of VOI atrophy 1.5˚ 25 0.22 -0.27 ― 0.71 0.97 < 0.05

2.5˚ 15 0.56 -0.57 ― 1.69 0.87 < 0.05

Extent of GM atrophy 1.5˚ 25 2.26 0.71 ― 3.8 0.97 < 0.05

2.5˚ 15 3.47 0.89 ― 6.05 0.88 < 0.05

Extent of VOI atrophy 1.5˚ 25 3.71 -8.64 ― 16.06 0.97 < 0.05

2.5˚ 15 13.46 -22.87 ― 49.8 0.9 < 0.05

Rotation angle (RA); K-space interval (KI); Voxel of interest (VOI); Gray matter (GM). Statistical processing was performed using Spearman’s rank correlation

coefficient with a significance level of 0.05.

https://doi.org/10.1371/journal.pone.0274576.t004
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Mode collapse is one of the reasons that GANs are generally considered to have poor learn-

ing stability [26]. Only one of the generators or discriminators learns quickly, which will termi-

nate the learning progress of the other network and prevent the GAN from learning properly.

In contrast, we trained our network by updating the generator and discriminator in turns.

Quantitative evaluation using SSIM showed that Pix2Pix was significantly higher than U-Net,

and Pix2Pix enabled improved motion correction compared to U-Net. In addition, the qualita-

tive evaluation showed that Pix2Pix scored significantly higher than U-Net for the 2˚_20 and

3˚_10 motion patterns for both observers. For the 1.5_25 and 2.5_15 movements, one

observer-rated Pix2Pix equal (no significant difference) to U-Net and the other observer sig-

nificantly higher. Evaluating each patch image improves the learning accuracy for high-fre-

quency components [15]. These results suggest that the training of the generators and

discriminators is well-balanced and that Pix2Pix could learn motion correction with high

accuracy and high-frequency components of the images, which correspond to the fine struc-

ture of images.

Large positive fixation biases were observed in the artifact images in the present study. A

study of automated gray matter volume measurement reported that more significant motion

artifacts resulted in smaller gray matter volumes [7]. This suggests that the VSRAD analysis

may point to large GM atrophy in cases of motion artifacts and may overestimate the degree of

atrophy. The Bland-Altman analysis revealed that the severity of VOI atrophy, the extent of

GM atrophy, and the extent of VOI atrophy had a mean bias close to zero in the limits of

agreement. This suggests that the motion-corrected images created by Pix2Pix could reduce

the effects of motion artifacts and overestimation of atrophy. However, with large rotations

and small k-space spacing, the VSRAD analysis results far from zero. Therefore, Pix2Pix can

Fig 8. The Bland-Altman plot for VSRAD analysis results. Bland-Altman analysis results are shown for (A): severity of voxel of interest (VOI) atrophy of

artifact vs. the original image, (B): severity of voxel of interest (VOI) atrophy of U-Net motion-corrected vs. the original image, (C): severity of voxel of interest

(VOI) atrophy of Pix2Pix motion-corrected vs. the original image. The dotted line and white boxes plot show the relationship between the ±1.96 standard

deviation(SD) limit of agreement of the artifact image and the original image, and the dashed line show the relationship between the ±1.96 SD limit of agreement

of the motion-corrected image for U-Net or Pix2Pix and the original image. The rotation angle and k-space interval are plotted as black circles for 1˚_30 pixel, red

squares for 2˚_20 pixel, and blue triangles for 3˚_10 pixel.

https://doi.org/10.1371/journal.pone.0274576.g008
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improve the analysis results for artifact images with large motion, yet it cannot completely

remove the motion effect.

The results of the Spearman’s rank correlation coefficient analysis between the original vs.
artifact images showed a lower correlation for the extent of GM atrophy compared to the

severity of VOI atrophy and the extent of VOI atrophy. The severity and extent of VOI atrophy

in the VSRAD analysis set the medial temporal regions (hippocampus, amygdala, and entorhi-

nal cortex) as the regions of interest, while the extent of GM atrophy measured the gray matter

of the whole brain. In the present study, the k-space was rotated from the center coordinate to

create an artifact image. The severity and extent of VOI atrophy measures the medial temporal

region close to the central coordinate, i.e., the region with the small movement. In contrast,

the extent of GM atrophy measures the gray matter of the whole brain, including the gray mat-

ter with larger movement, resulting in a lower correlation with the original image. By contrast,

the Spearman’s rank correlation coefficient between the original and the motion-corrected

images by Pix2Pix were all very high: 0.87–0.99 for the severity of VOI atrophy, 0.88–0.98 for

the extent of GM atrophy, and 0.90–1.00 for the extent of VOI atrophy, regardless of the rota-

tion angle and k-space interval. This suggests that the present Pix2Pix network could learn to

reduce artifacts stemming from both large and small movements.

We believe that the Pix2Pix network offers significant advantages in correcting motion arti-

facts in the VSRAD analysis. Firstly, the mean±SD of the severity of VOI atrophy in the healthy

elderly group was reported to be 0.94±0.32 [27]. In contrast, severity of VOI atrophy was

found to be significantly different in the mild cognitive impairment and AD groups, 1.16±0.79

Fig 9. The Spearman’s rank correlation coefficient for the results of the VSRAD analysis. The results of the Spearman’s rank correlation coefficient are shown

for (A): severity of voxel of interest (VOI) atrophy of artifact vs. the original image, (B): severity of voxel of interest (VOI) atrophy of U-Net motion-corrected vs. the

original image and, (C): severity of voxel of interest (VOI) atrophy of Pix2Pix motion-corrected vs. the original image. The dotted line and white points plot show

the relationship between the limits of agreement of the artifact image and the original image, and the solid line show the relationship between the limits of

agreement of the motion-corrected image for U-Net or Pix2Pix and the original image. The rotation angle and k-space interval are plotted with 1˚_30 pixel in black,

2˚_20 pixel in red, and 3˚_10 pixel in blue.

https://doi.org/10.1371/journal.pone.0274576.g009
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and 1.88±1.07, respectively [28]. Our results showed that the mean bias of the severity of VOI

atrophy was 0.067 even for images with weak artifacts (1_30). Therefore, it would be challeng-

ing to differentiate mild AD cases from patients with normal to mild cognitive impairment

should the input image of VSRAD analysis contain artifacts. However, the mean bias of the

severity of VOI atrophy of the motion-corrected image (1_30) was minimal (severity of VOI

atrophy < 0.1), which may allow classification in such cases. Secondly, when the original

image was used as the input image (0˚_none), the average bias was nearly zero (severity of

VOI atrophy: 0.027), suggesting negligible effects upon VSRAD analysis. Consequently, this

means that both images with and without motion could be used as the input images for the

Pix2Pix network. Finally, even for non-trained rotation angles and k-space intervals, Spear-

man’s rank correlation coefficient showed a significant correlation of more than 0.87. This

shows that our trained network could achieve sufficient motion correction even in cases where

the pattern of motion artifacts does not perfectly match the training data. Additionally, the

advantages of using Pix2Pix in medical practice are as follows. First, when satisfactory MR

images cannot be obtained from patients due to involuntary body movements, VSRAD analy-

sis might be efficiently performed. Second, the risk of overdiagnosis can be reduced, thus

reducing unnecessary additional testing and unnecessary treatment modalities. Finally,

because Pix2Pix can be used for historical images, it might be possible to measure changes in

AD atrophy over time that could not be analyzed in the VSRAD analysis due to motion

artifacts.

Our study has several limitations. First, we used supervised learning in CNN and GAN

training, a set of motion artifact images, and motion-less images. However, it was very difficult

to acquire two types of images—one with motion and the other motion-less—from all AD

patients. Therefore, the created artifact images were not real motion artifact images, so it

remains unclear whether our findings results could be translated to clinical practice. Secondly,

this study simulated vertical rotational and anterior-posterior-motion movements in the sagit-

tal plane but did not examine left-right motion in the coronal plane. Thirdly, we did not evalu-

ate the relationship between VSRAD score and severity classification of AD. Fourth, k-space

under-sampling can reduce motion artifacts by minimizing the acquisition time. However, we

did not acquire such images in this retrospective study, thus comparison between the image

quality of under-sampled images and Pix2Pix motion-corrected images was not possible.

Finally, the present study was performed in a single institution and the MR image data were

obtained by a single machine. In the future, we would like to investigate the usefulness of simi-

lar motion correction techniques for data stored at other facilities and on other image

databases.

Conclusion

In conclusion, the VSRAD analysis tended to overestimate atrophy in images with artifacts.

After reconstructing the artifact images using the Pix2Pix network to reduce motion artifact,

the overestimation of atrophy was improved dramatically. We suggest that motion correction

using Pix2Pix can be useful for VSRAD analysis.
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