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Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are

now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation

with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical

clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members.

Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and com-

putational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69

diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly

assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unsta-

ble TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current

reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to

kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be “in-

sertions” within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/bio-

logical consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or

chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clin-

ical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their

biological and pathological impacts—a vista that is about to expand.

More than 30 years ago, in 1991, expansions of DNA tandem re-
peats (TRs) at particular loci were first shown to cause human dis-
eases, termed repeat expansion diseases (Kremer et al. 1991; La
Spada et al. 1991; Oberlé et al. 1991; Verkerk et al. 1991; Yu et al.
1991). After an initial period of successive identifications of sim-
ilar trinucleotide repeat expansions (Pearson et al. 2005; López
Castel et al. 2010), the rate of TR-associated disease discovery
slowed as the limitations of technological methods reduced the
ability to detect more complex pathogenic repeat expansions.
However, recent technological advances in both DNA sequencing
techniques and computational analysis have again increased
speed of discovery, with 17 new disease-causing and risk-associat-
ed TR expansions being published between 2019 and 2021 (Fig. 1;
Table 1; Corbett et al. 2019; Cortese et al. 2019; Demaerel et al.
2019; Florian et al. 2019; Ishiura et al. 2019; LaCroix et al.
2019; Sone et al. 2019; Tian et al. 2019; van Kuilenburg et al.
2019; Yeetong et al. 2019; Katsumata et al. 2020; Ruggieri et al.
2020; Pagnamenta et al. 2021; Yeetong et al. 2021). The most re-
cently identified mutations were “difficult sequences” for conven-
tional techniques, caused either by GC-rich repeat-motif
sequences that are difficult to amplify by PCR (Ishiura et al.
2019; LaCroix et al. 2019; Sone et al. 2019; Tian et al. 2019; van
Kuilenburg et al. 2019), or by repeat sequence motifs within TR
stretches that are not found within the reference genome (Sato

et al. 2009; Seixas et al. 2017; Ishiura et al. 2018; Corbett et al.
2019; Cortese et al. 2019; Demaerel et al. 2019; Florian et al.
2019; LaCroix et al. 2019; Yeetong et al. 2019; Katsumata et al.
2020; Ruggieri et al. 2020).

Recent repeat mutation identifications also highlight the im-
portance of functional and clinical aspects of TR expansions in the
discovery process. Expansions of TRs of the same repeat unit mo-
tifs can cause diseases with similar phenotypes independent of
their genetic loci, supporting a gain-of-function pathogenesis hy-
pothesis. For example, several SCAs caused by expansions of CAG
repeat motifs present with similar motor phenotypes despite their
expansions occurring within different genetic loci. More recently,
careful analysis and categorization of clinical manifestations
served as essential tools in recent discoveries where the same ex-
pansion mutations occurring at different genomic loci all resulted
in benign adult familial myoclonic epilepsy (BAFME), also known
as familial adult myoclonic epilepsy (FAME) (Ishiura et al. 2018,
2019; Corbett et al. 2019; Florian et al. 2019; Yeetong et al.
2019). Further, other newdiscoveries also reminded us of relatively
underrecognized loss-of-function mechanisms which may precip-
itate pathogenesis. In the cases of Desbuquois dysplasia 2 (DBQD2;
also known as Baratela-Scott syndrome) and glutaminase defi-
ciency (GD), expansions of GC-rich TR sequences in the promoter
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regions cause pathogenic transcriptional suppression (LaCroix
et al. 2019; van Kuilenburg et al. 2019). Further exploration of sus-
pected loss-of-functionmechanismsmay therefore be beneficial in
understanding how repeat mutations elicit pathogenesis.

While there have been a number of excellent reviews on dis-
eases associated with TR expansions, they are mainly focused on
disease mechanisms (Hannan 2018; Rodriguez and Todd 2019).
As such, considering the success of recent studies in the identifica-
tion of new repeat disease motifs, the focus of this review is to
highlight how DNA sequencing technologies and analytic ap-
proaches, coupled with clinical and biological assessment, facili-
tate repeat disease mutation discovery and our understanding of
pathogenic mechanisms. We begin with a brief overview of the
history of repeat disease gene discovery, with an emphasis on
how these discoveries facilitated further discovery. Next, we will
explore how new technologies are making more difficult

Figure 1. Overview of disease-associated repeat discovery by year, with colored inserts specifying themajor technological breakthroughs that were used
to make these discoveries. (AD) Alzheimer disease, (ALS/FTD) amyotrophic lateral sclerosis/frontotemporal dementia, (ASD) autism spectrum disorder,
(BAFME) benign adult familial myoclonic epilepsy, (BD) bipolar disorder, (BPES) blepharophimosis, ptosis, and epicanthus inversus syndrome,
(CANVAS) cerebellar ataxia, neuropathy, vestibular areflexia syndrome, (CCD) cleidocranial dysplasia, (CCHS) congenital central hypoventilation syn-
drome, (DBQD2) Desbuquois dysplasia 2, (DM) myotonic dystrophy, (DRPLA) dentatorubropallidoluysian atrophy, (EDM1) multiple epiphyseal dysplasia,
(EIEE1) epileptic encephalopathy, early infantile, 1, (EPM1) epilepsy, progressive myoclonus-1, (FECD3) Fuchs endothelial corneal dystrophy-3, (FRDA)
Friedreich’s ataxia, (FSHD) facioscapulohumeral muscular dystrophy, (FXTAS) fragile X ataxia/tremor syndrome, (GD) glutaminase deficiency, (HDL2)
Huntington disease-like 2, (HFG) hand-foot-genital syndrome, (HPE5) holoprosencephaly 5, (LOAD) late-onset Alzheimer disease, (MJD) Machado-
Joseph disease, (NIID) neuronal intranuclear inclusion disease, (OPDM) oculopharyngodistal myopathy, (OPMD) oculopharyngeal muscular dystrophy,
(OPML) oculopharyngeal myopathy with leukoencephalopathy, (PSACH) pseudoachondroplasia, (RCPS) Richieri-Costa-Pereira syndrome, (SBMA) spinal
bulbar muscular atrophy, (SCA) spinocerebellar ataxia, (SMD) skeletal muscle disease, (SPD1) synpolydactyly-1, (SCZ) schizophrenia, (XPD) X-linked dys-
tonia-parkinsonism, (22q11DS) 22q11 deletion syndrome. It has been concluded that FAME, BAFME, FEME, FCTE, and ADCME are the same clinical entity
even if genetically heterogeneous—we use the acronym BAFME here as it is themost used acronym associatedwith the disease. The nonfolate-sensitive rare
fragile sites FRA10B and FRA16B, caused by expanded AT-rich repeats, are not listed herein (see Table 1).

Nomenclature∗; Tandem repeats (TRs)

Repeat motif Unit Size
Array size

(in a normal population)

Macrosatellite Several kb Up to several hundred kb
Satellite 5–171 bp 100 kb to several Mb
Minisatellite 5–64 bp 1- to 20-kb range
Microsatellite 1–4 bp Hundreds of bp

∗It is suggested to avoid the term “short tandem repeat (STR)”
as the definition of “short” varies between studies. The ever-in-
creasing number of TRs with units of almost any length will add
further confusion as to definitions of “short,” “medium,” and
“long.” Rather, “tandem repeat (TR), with a motif of X nucleo-
tides” is preferred. The term “variable tandem repeat (VNTR)”
also demands definition of the motif size.
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Table 1. Disease-associated repeat discovery by year

Disease Repeat unit
Gene, loci

(fragile site)
Location of
mutation

Inheritance or
association Reference

Publication
date

(D/M/Y)

LGS CGG or CTG DIP2B or
ATXN8OS

5′ UTR (DIP2B) Association Qaiser et al. 2021 14/09/2021

OPDM3 GGC NOTCH2NLC 5′ UTR AD Yu et al. 2021 09/03/2021
HMN GGCGCGGAGC VWA1 Exon AR Pagnamenta et al. 2021 18/01/2021
ALS GGC NOTCH2NLC 5′ UTR AD Yuan et al. 2020 –/12/2020
ALS 69-mer TR WDR7 Intron Association Course et al. 2020 03/08/2020
ASD Variable repeats

of 2–20 bp
2588 different

loci
Variable Association Trost et al. 2020 27/07/2020

SMD 99-mer TR PLIN4 Exon AD Ruggieri et al. 2020 25/05/2020
OPDM2 GGC GIPC1 5′ UTR AD/AR Deng et al. 2020 14/05/2020
LOAD 507-mer TR MUC6 Exon Association Katsumata et al. 2020 04/11/2019
BAFME2a TTTCA STARD7 Intron AD Corbett et al. 2019 29/10/2019
BAFME3a TTTCA MARCHF6 Intron AD Florian et al. 2019 29/10/2019
BAFME4a TTTCA YEATS2 Intron AD Yeetong et al. 2019 20/09/2019
22q11DS Variable low copy

repeats
Chr 22q11 Noncoding – Demaerel et al. 2019 24/07/2019

OPDM1 GGC LRP12 Intron AD Ishiura et al. 2019 22/07/2019
OPML GGC NUTM2B-AS Intron AD Ishiura et al. 2019 22/07/2019
NIID [later associated

with OPDM3]
GGC NOTCH2NLC 5′ UTR AD Tian et al. 2019;

Ishiura et al. 2019;
Sone et al. 2019

06/06/2019
22/07/2019
22/07/2019

GD GCA GLS 5′ UTR AR van Kuilenburg et al.
2019

11/04/2019

CANVAS GGGAA RFC1 Intron AR Cortese et al. 2019;
Rafehi et al. 2019

29/03/2019
20/06/2019

DBQD2 and FRA16A GGC XYLT1 (FRA16A) Promoter AR LaCroix et al. 2019;
Nancarrow et al. 1994

13/12/2018
24/06/1994

BD and SCZ 30-mer TR CACNA1C Intron Association Song et al. 2018 09/08/2018
AD 300- to 10,000-

bp TR
ABCA7 Intron Risk factor De Roeck et al. 2018 27/03/2018

BAFME1a TTTCA and
TTTTA

SAMD12 Intron AD Ishiura et al. 2018 05/03/2018

BAFME6a TTTCA and
TTTTA

TNRC6A Intron AD Ishiura et al. 2018 05/03/2018

BAFME7a TTTCA and
TTTTA

RAPGEF2 Intron AD Ishiura et al. 2018 05/03/2018

XDP CCCTCT TAF1 Intron X-linked Bragg et al. 2017 11/12/2017
SCA37 ATTTC DAB1 Intron AD Seixas et al. 2017 06/07/2017
ID CGG ZNF713

(FRA7A)
Intron Association Metsu et al. 2014a 04/09/2014

ID CGG AFF3 (FRA2A) Promoter Association Metsu et al. 2014b 24/04/2014
RCPS 18- or 20-bp TR EIF4A3 5′ UTR AR Favaro et al. 2014 19/12/2013
FECD3 CTG TCF4 Intron AD Wieben et al. 2012 21/11/2012
ALS GCG NIPA1 Exon Association Blauw et al. 2012 06/2012
ALS/FTD, others GGGGCC C9orf72 Intron AD Renton et al. 2011;

DeJesus-Hernandez
et al. 2011

21/09/2011
21/09/2011

SCA36 GGCCTG NOP56 Intron AD Kobayashi et al. 2011 16/06/2011
SCA31 TGGAA/TTCCA BEAN1/TK2 Intron AD Sato et al. 2009 29/10/2009
ID CGG DIP2B (FRA12A) 5′ UTR AD Winnepenninckx et al.

2007
12/12/2006

ID CGG C11orf80
(FRA11A)

5′ UTR Association Debacker et al. 2007 14/12/2007

ID, SCZ CGG FRA10AC1
(FRA10A)

5′ UTR Association Sarafidou et al. 2004 23/04/2004

CCHS Polyalanine-
coding GCN

PHOX2B Exon AD Amiel et al. 2003 17/03/2003

BPES Polyalanine-
coding GCN

FOXL2 Exon AD De Baere et al. 2003 14/01/2003

EIEE1 Polyalanine-
coding GCN

ARX Exon X-linked Strømme et al. 2002 11/03/2002

FXTAS CGG
(premutation
range)

FMR1 (FRAXA) 5′ UTR X-linked Hagerman et al. 2001;
Howard-Peebles 1980

10/07/2001
–/–/1980

HDL2 CAG JPH3 Alt-exon AD Holmes et al. 2001 05/11/2001
DM2 CCTG CNBP Intron AD Liquori et al. 2001 03/08/2001
HFG Polyalanine-

coding GCN
HOXA13 Exon AD Goodman et al. 2000 05/06/2000

(continued)
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Table 1. Continued

Disease Repeat unit
Gene, loci

(fragile site)
Location of
mutation

Inheritance or
association Reference

Publication
date

(D/M/Y)

SCA10 ATTCT ATXN10 Intron AD Matsuura et al. 2000 –/10/2000
PSACH/EDM1 GAC COMP Exon AD Deere et al. 1999 14/07/1999
SCA17 CAG TBP Exon AD Koide et al. 1999;

Imbert et al. 1994
01/10/1999
–/06/1994

SCA12 CAG PPP2R2B 5′ UTR AD Holmes et al. 1999 –/12/1999
SCA8 CTG/CAG ATXN8OS/

ATXN8
3′ UTR/Exon AD Koob et al. 1999 01/04/1999

HPE5 Polyalanine-
coding GCN

ZIC2 Exon AD Brown et al. 1998 01/10/1998

Cancer, ND CAG/CAA AIB1/SRC-3/
RAC3

Exon Somatic:
Amplified
gene (1–23
copies)

Shirazi et al. 1998;
Anzick et al. 1997

–/07/2008
15/08/1997

Nondisease- associated 16- to 52-bp TR
AT-rich motif

FRA10B Chr 10q25 n/a Hewett et al. 1998 01/05/1998

OPMD GCG PABPN1 Exon AD Brais et al. 1998 01/02/1998
SCZ CAG KCNN3 Exon AD Chandy et al. 1998 –/01/1998
CCD Polyalanine-

coding GCN
RUNX2 Exon AD Mundlos et al. 1997 30/05/1997

EPM1 CCCCGCCCC
GCG

CSTB Promoter AR Lalioti et al. 1997;
Virtaneva et al. 1997;
Lafreniére et al. 1997

24/04/1997
01/04/1997
01/03/1997

SCA6 CAG CACNA1A Exon AD Zhuchenko et al. 1997 01/01/1997
Nondisease- associated 33-bp TR

AT-rich motif
RNA922

(FRA16B)
Intron n/a Yu et al. 1997 07/02/1997

SCA7 CAG ATXN7 Exon AD Lindblad et al. 1996 01/10/1996
SPD1 Polyalanine-

coding GCN
HOXD13 Exon AD Akarsu 1996 01/07/1996

FA GAA FXN Intron AR Campuzano et al. 1996 08/03/1996
SCA2 CAG ATXN2 Exon AD Imbert et al. 1996;

Sanpei et al. 1996;
Pulst et al. 1996;
Trottier et al. 1995;
Pulst et al. 1993

01/11/1996
01/11/1996
01/11/1996
23/11/1995
01/09/1993

FXPOI CGG FMR1 (FRAXA) 5′ UTR X-linked Conway et al. 1995 29/07/1995
SCA3/MJD CAG ATXN3 Exon AD Kawaguchi et al. 1994 01/11/1994
Jacobsen syndrome CGG CBL2 (FRA11B) 5′ UTR Isolated cases Jones et al. 1994 01/12/1994
Fragile X
syndrome F

CGG TMEM185A
(FRAXF)

5′ UTR Isolated cases Ritchie et al. 1994;
Parrish et al. 1994

01/12/1994
01/11/1994

DRPLA/HRS CAG ATN1 Exon AD Nagafuchi et al. 1994;
Koide et al. 1994

01/01/1994
01/01/1994

SCA1 CAG ATXN1 Exon AD Orr et al. 1993 01/07/1993
“no disease” CAG/CTG CTG18.1/ERDA1

(see FECD3/
TCF4)

Intron AD – 1993–1998

Fragile X
syndrome E

CCG AFF2 (FRAXE) &
FMR2

Promoter and 5′ UTR X-linked Gu et al. 1996;
Knight et al. 1993

01/05/1996
16/07/1993

HD CAG HTT Exon AD The Huntington’s
Disease Collaborative
Research Group
1993;

Bell 1941

26/03/1993

–/01/1941
FSHD 3.4-kb D4Z4

macrosatellite
Chr 4q35 Noncoding AD van Deutekom et al.

1993;
Wijmenga et al. 1992

01/12/1993

01/09/1992
DM1 CTG DMPK 3′ UTR AD Fu et al. 1992;

Mahadevan et al. 1992;
Brook et al. 1992;
Aslanidis et al. 1992;
Buxton et al. 1992;
Harley et al. 1992;
Höweler et al. 1989;
Bell 1941

06/03/1992
06/03/1992
21/02/1992
06/02/1992
06/02/1992
06/02/1992
01/06/1989
–/01/1941

SBMA CAG AR Exon AD La Spada et al. 1991 04/07/1991

(continued)
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sequences in the genome accessible and discuss the need for fur-
ther development of analytical tools. Lastly, we will highlight
how some of the recent findings identified relatively underrecog-
nized clinical and mechanistic features of TR-expansion-related
disorders, which should not be overlooked as future research
aims to improve our understanding of repeat diseases and their un-
derlyingmechanisms. By covering these topics, we attempt to pro-
vide guidance for future investigations into TRs and their roles in
physiological and disease processes through the integration of
technology and biological understanding.

Part 1: Technological advances and repeat disease

mutation discovery

Historical overview of disease-associated repeat expansion

discovery

The initial discoveries in the early 1990swere trinucleotide repeats,
namely a CGG repeat in the 5′ UTR of FMR1 (Kremer et al. 1991;
Oberlé et al. 1991; Pieretti et al. 1991; Verkerk et al. 1991; Yu
et al. 1991), a polyglutamine-coding CAG repeat in the AR gene
(La Spada et al. 1991), and a CTG repeat in the 3′ UTR of DMPK
(Aslanidis et al. 1992; Brook et al. 1992; Buxton et al. 1992; Fu
et al. 1992; Harley et al. 1992; Mahadevan et al. 1992). Expansions

of these repeats caused fragile X syndrome (FXS), spinal and bulbar
muscular atrophy (SBMA), andmyotonic dystrophy type 1 (DM1),
respectively. It was later found that tetra- (Liquori et al. 2001),
penta- (Matsuura et al. 2000; Sato et al. 2009), hexa- (DeJesus-Her-
nandez et al. 2011; Kobayashi et al. 2011; Renton et al. 2011), and
dodeca- (Lafrenière et al. 1997; Virtaneva et al. 1997) nucleotide re-
peat expansions in intronic or promoter regions can also result in
other human diseases (Fig. 1; Table 1).

Some of these repeat disorders exhibited a peculiar set of phe-
nomena from the viewpoint of conventional Mendelian inheri-
tance: “anticipation” (where successive generations show earlier
disease onset and more severe phenotypes), variable disease phe-
notypes among family members (Bell 1941; Martin and Bell
1943; Sherman et al. 1984 1985; Höweler et al. 1989; Sutherland
et al. 1991; Harper et al. 1992; Mandel 1993; Pearson et al. 2005)
and, for some diseases like SCA8, also presenting reduced pene-
trance (Koob et al. 1999). These clinical phenomena, luckily, did
not hinder repeat mutation discovery, but were instead viewed
as a central characteristic of TR expansions, and this clinical aware-
ness led to more and more similar mutations being identified
(Kawaguchi et al. 1994; Koide et al. 1994; Nagafuchi et al. 1994;
Pearson et al. 2005).

Initially, expansion mutations were discovered through posi-
tional cloning (Fig. 1), and cytogenetic mapping—for example,

Table 1. Continued

Disease Repeat unit
Gene, loci

(fragile site)
Location of
mutation

Inheritance or
association Reference

Publication
date

(D/M/Y)

Fragile X
syndrome A
[later associated with

FXTAS, FXPOI, ASD]

CGG FMR1 (FRAXA) 5′ UTR X-linked Fu et al. 1991;
Pieretti et al. 1991;
Kremer et al. 1991;
Verkerk et al. 1991;
Yu et al. 1991;
Oberlé et al. 1991;
Heitz et al. 1991;
Bell et al. 1991;
Vincent et al. 1991;
Warren et al. 1987;
Nussbaum et al. 1986;
Sutherland et al. 1985;
Pembrey et al. 1985;
Sherman et al. 1985
Sherman et al. 1984
Lubs 1969
Martin and Bell 1943

20/12/1991
23/08/1991
21/06/1991
31/05/1991
24/05/1991
24/05/1991
08/03/1991
22/02/1991
14/02/1991
24/07/1987
–/01/1986
–/10/1985
–/08/1985
01/04/1985
01/01/1984
–/05/1969
07/10/1943

Abbreviations: AD, Alzheimer disease; ALS/FTD, amyotrophic lateral sclerosis/frontotemporal dementia; ASD, autism spectrum disorder; BAFME, benign
adult familial myoclonic epilepsy; BD, bipolar disorder; BPES, blepharophimosis, ptosis, and epicanthus inversus syndrome; CANVAS, cerebellar ataxia,
neuropathy, vestibular areflexia syndrome; CCD, cleidocranial dysplasia; CCHS, congenital central hypoventilation syndrome; DBQD2, Desbuquois dys-
plasia 2; DM, myotonic dystrophy; DRPLA, dentatorubropallidoluysian atrophy; EDM1, multiple epiphyseal dysplasia; EIEE1, epileptic encephalopathy,
early infantile, 1; EPM, epilepsy, progressive myoclonus; FECD3, Fuchs endothelial corneal dystrophy-3; FA, Friedreich ataxia; FSHD, facioscapulohum-
eral muscular dystrophy; FXPOI, Fragile X-associated primary ovarian insufficiency; FXTAS, fragile X ataxia/tremor syndrome; GD, glutaminase defi-
ciency; HRS, Haw River syndrome; HD, Huntington disease; HDL2, Huntington disease-like 2; HFG, hand-foot-genital syndrome; HMN, hereditary
motor neuropathy; HPE5, holoprosencephaly 5; ID, intellectual disability; LOAD, late-onset Alzheimer disease; MJD, Machado-Joseph disease (aka
SCA3); NIID, neuronal intranuclear inclusion disease; OPDM, oculopharyngodistal myopathy; OPMD, oculopharyngeal muscular dystrophy; OPML,
oculopharyngeal myopathy with leukoencephalopathy; PSACH, pseudoachondroplasia; RCPS, Richieri-Costa-Pereira syndrome; SBMA, spinal bulbar
muscular atrophy (aka Kennedy’s disease); SCA, spinocerebellar ataxia; SMD, skeletal muscle disease; SPD1, synpolydactyly-1; SCZ, schizophrenia;
XPD, X-linked dystonia-parkinsonism; 22q11DS, 22q11 deletion syndrome.
So as to reveal the degree of excitement at the time, the dates of publication are noted. Blue text indicates publications which provided substantial evi-
dence (or clues) which facilitated the eventual discovery of the disease-associated repeat. Diseases in square brackets represent distinct diseases which
were later associated with the same repeat expansion—representing diseases with substantially distinct presentations despite containing the same
repeat expansion within the same gene. There are multiple instances of gene amplifications (tandem copies of genes) that are not included here; only
AIB1 is included as it also includes a tandem CAG tract.
aIt has been concluded that FAME, BAFME, FEME, FCTE, and ADCME are the same clinical entity even if genetically heterogeneous—we use the
acronym BAFME here as it is the most used acronym associated with the disease.
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the identification of the CGG expansion mutation responsible for
the cytogenetic fragile site, FRAXA, which until then had been the
main diagnostic marker of FXS (Lubs 1969). While detailed cover-
age is beyond the scope of this review, an appreciation of the ap-
proaches used is relevant. Among a variety of competing
potential theories (not all covered here), one was the hypothesis
that an unstable repeat sequence would be the cause of the fragile
site FRAXA and disease FXS. Those initial suspicions, hypothesiz-
ing the involvement of an unstable amplified repeat tract, were
based upon the biology of chromosomal fragile site induction
and the puzzling genetics of the disease (Sutherland et al. 1985;
Nussbaum et al. 1986; Hori et al. 1988). Among the first experi-
mental evidence supporting the involvement of an unstable
DNA sequence were cytogenetic observations of chromosomal in-
stability at the fragile site in rodent-human somatic cell hybrids; a
reagent subsequently cloned, sequenced, and localized cytogenet-
ically (FISH) the causative CGG expansionmutation (Warren et al.
1987). Warren and colleagues, citing the repeat-hypothesis pro-
posed in 1985 (Sutherland et al. 1985; Ledbetter et al. 1986;
Nussbaum et al. 1986; Hori et al. 1988), concluded “… that the
fragile X site is a reiterated DNA sequence of variable length, the
longest length being found in fully penetrant males and the short-
est in phenotypically normal individuals… Fragility in this region
of the X has been shown to support this model in that normal,
transmitting, and affected male X chromosomes (in somatic cell
hybrids) show increasing frequencies of fragility… [T]he observa-
tion of reduced chromosome fragility at the translocation junc-
tions lends support for the model of the fragile X site as a
reiteratedDNA sequence.” In 1991, the concept of genetic instabil-
ity was further supported by variably slow-migrating DNAs on
Southern blots—suspected as amplified repeats (Oberlé et al.
1991; Yu et al. 1991) and soon after revealed as a CGG expansion
(Fu et al. 1991; Kremer et al. 1991; Pieretti et al. 1991; Verkerk et al.
1991). Thiswas possible throughusing cytogenetics/FISH, coupled
with somatic cell hybrids for FRAXA breakpoint mapping, Alu-
PCR, and positional cloning, which together permitted identifica-
tion of the CGG expansion in FMR1 (Warren et al. 1987; Bell et al.
1991; Heitz et al. 1991; Kremer et al. 1991; Vincent et al. 1991).
Cytogenetics/FISH and molecular genetics are still required to val-
idate the molecular mapping of fragile sites (Warren et al. 1987;
Bell et al. 1991; Heitz et al. 1991; Kremer et al. 1991; Vincent
et al. 1991). For specific details of FRAXA/CGG/FMR1 discoveries,
we refer readers to a focused review, published during that early
time (Oostra andVerkerk 1992). Indeed, it seems that the advances
of the fragile X research, discovering a repeat expansion as the ge-
netic cause for a disease with unusual inheritance patterns
(Sherman paradox), incomplete penetrance, and strong parent-
of-origin effects, paved the way for repeat-centered efforts for
many of the other diseases. The localization of the mutant regions
of other repeat diseases involved the use of many mapping tech-
niques, including radiation-reduced hybrids, flow-sorted chromo-
some libraries, CpG island screens, exon trapping, exon
amplification, and use of cosmid/yeast artificial chromosome li-
braries (La Spada et al. 1991; Aslanidis et al. 1992; Buxton et al.
1992; The Huntington Disease Collaborative Research Group
1993). The probing of positionally mapped disease regions for sus-
pected repeat tract length variations led to the discovery of many
of the other diseases that similarly showed unusual inheritance
patterns and parent-of-origin effects. It was predicted that the mu-
tation causing DM1, which showed strong genetic anticipation,
similar to the Sherman paradox of FXS, could be caused by an un-
stable repeat (Höweler et al. 1989; Sutherland et al. 1991).

Following the discovery of the DM1 mutation as an expanded
CTG repeat based upon its tight association with genetic anticipa-
tion, it was predicted that HD and SCAs (known then as olivopon-
tocerebellar ataxias) would be caused by gene-specific repeat
expansions (Caskey et al. 1992; Harper et al. 1992). Following
the explanation of HDs genetic anticipation by a CAG expansion
(Snell et al. 1993; Trottier et al. 1994), the connection was solidi-
fied, and it was predicted that SCAs, bipolar disorder/schizophre-
nia, and non-FXS linked autism could also be caused by repeat
expansions (Pulst et al. 1993; Ross et al. 1993). Each of these pre-
dictions, to some degree, turned out to be true for numerous
SCAs, associatively for at least one form of bipolar disorder/schiz-
ophrenia (CACNA1C) (Song et al. 2018), andmost recently, autism
spectrum disorder (ASD) (Trost et al. 2020). It is notable that SBMA
does not show obvious genetic anticipation nor high levels of re-
peat instability, and the discovery of the CAG expansion in the an-
drogen receptor in affected families was a further extension of the
already known polymorphism of the repeat in the unaffected pop-
ulation (Lubahn et al. 1988; Tilley et al. 1989; Edwards et al. 1991,
1992; La Spada et al. 1991).

While these initial discoveries used technologies that were
mostly not repeat-specific, following the discoveries of several
CAG/CTG expansions, a series of methodological protocols was
developed to detect expansions of this trinucleotide repeat with-
out knowledge of their genomic loci: Repeat Expansion
Detection (RED) (Schalling et al. 1993), Direct Identification of
Repeat Expansion and Cloning Technique (DIRECT) (Sanpei
et al. 1996), and Repeat Analysis, Pooled Isolation, and Detection
of expanded trinucleotide repeat clones (RAPID) (Koob et al.
1998). These protocols were based on completely novel ideas in
the era of positional cloning and were used to identify several
new disease loci caused by unstable repeat expansions: RED
brought about the discoveries of spinocerebellar ataxia type 7
(SCA7) (Lindblad et al. 1996), SCA12 (Holmes et al. 1999),
Huntington disease-like 2 (HDL2) (Holmes et al. 2001; Margolis
et al. 2001) and CTG18.1 (Breschel et al. 1997); DIRECT led to
the identification of the ATXN2 mutation (Sanpei et al. 1996)
and RAPID to the SCA8 repeat expansion (Koob et al. 1998). It
should also be noted that the discoveries of the CAG mutations
causative for SCA2 and SCA7 were immensely facilitated by detec-
tion of polyQ aggregates with a monoclonal antibody, which pre-
dicted expansions in SCA2 through detection of expansions in
extracts of SCA2 patient cells (Trottier et al. 1995).

The continuous discovery of new TR expansion mutations in
the 1990s fully leveraged the power of the Human Genome
Project, as the huge numbers of sequence-tagged site (STS)markers
that became available enabled fine mapping of the disease loci.
Today, locus mapping can be done with high-density SNP typing
using microarrays (Gentalen and Chee 1999), which facilitates
the completion of linkage analysis more rapidly than ever before.
The reference sequence of the human genome and the variation
database made “resequencing” approaches possible. Following
this, the first decade of the 21st century witnessed rapid develop-
ment of new DNA sequencing technologies, now called second-
generation sequencing (or next-generation sequencing; NGS).
Three of the first to be widely used were Illumina’s GA/HiSeq
Systems, 454 Life Sciences’ 454 System and Applied Biosystems’
Sequencing by Oligo Ligation Detection (SOLiD) (van Dijk et al.
2014). Together with the completion of draft human genome se-
quence, these high-throughput systems contributed to the high
number of genomic variations discovered to result in various hu-
man phenotypes. The new sequencing technologies led to an
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increasing number of gene discoveries for Mendelian conditions
from 2010 onward (Bamshad et al. 2019). However, due to limita-
tions in analytical tools available to handle repeat sequences and
the technical weaknesses associated with fidelity and processivity
of DNA polymerases, it took another decade for new sequencing
technologies to begin to enhance identifying disease-causing TR
expansions (Fig. 1).

Bioinformatic algorithms are unleashing the potential of NGS for

repeat disease discovery

Application of NGS approaches in this field was first published in
2011 in one of two papers that reported the discovery of the
GGGGCC repeat expansion in theC9orf72 gene associatedwith fa-
milial amyotrophic lateral sclerosis/frontotemporal dementia
(ALS/FTD) (Renton et al. 2011). Massive parallel paired-end se-
quencing by HiSeq 2000 permitted rapid data collection, but the
expanded repeat was identified throughmanual inspection and re-
alignment of the sequence data in the candidate region, whichwas
only possible because the linkage block had been narrowed down
to a region of 232 kb. Validation of theC9orf72 repeat expansion in
2011 required the use of Southern blotting (DeJesus-Hernandez
et al. 2011), a method still required in 2020 for validation of repeat
expansions (Trost et al. 2020). Evenmore recently, in a 2019 study,
biallelic expansions of an (AAGGG)N repeat in the intron of RFC1
were identified as responsible for cerebellar ataxia, neuropathy,
vestibular areflexia syndrome (CANVAS) by a similar method—vi-
sual analysis of assembled short-read sequencing (SRS) data gener-
ated by HiSeq 4000 system within a 1.7-Mb candidate region
(Cortese et al. 2019). Despite these success stories in the use of
NGS, over this same time period, several repeat disease mutation
discoveries still depended on conventional methods despite the
technological advances. For example, the 2009 identification of
the mutation that causes SCA31 was achieved solely by “tradition-
al”methods: bacterial artificial chromosome (BAC)-based cloning,
Sanger sequencing, and Southern blot, with targeted shotgun rese-
quencing (Sato et al. 2009).

The techniques employed by theHumanGenome Project no-
toriously struggled with TR stretches and, in fact, there are still re-
gions with long TRs yet to be correctly assembled—for example,
the classical satellite repeats I-IV (Miga 2015). Shorter simple tan-
dem repeats (STR), with 1- to 6-bp motif units, were also underre-
cognized, with recent bioinformatic assessment showing that
these STRs comprise 6.77% of the human genome—more than
twice what was initially predicted (Shortt et al. 2020). To this
day, repeats pose significant hurdles for even NGS, ranging from
technical hurdles including difficulties of bacterial cloning, PCR
amplification, and sequence read size limits, to computational
hurdles including misalignment and omission of the repeat or
flanks from the reference genome (LaCroix et al. 2019). The high
GC-content of TRs, and of the deletion-prone regions in which
they are often embedded, can account for hindering the identifica-
tion of a disease-causing mutation, as highlighted by the recent
discovery of a GC-rich 10-mer repeat with compound heterozy-
gous deletions (Pagnamenta et al. 2021) and of biallelic deletions
in the VWA1 gene (Deschauer et al. 2021). VWA1 had been iden-
tified as the disease-causing gene of neuromyopathy and loss-of-
function supported by animal models, but themutation remained
veiled by technical hurdles. Similarly, the identification of repeat
expansions in the CSTB gene of either a 15-mer, an 18-mer (Virta-
neva et al. 1997), or a dodecamer (12-mer) minisatellite repeat ex-
pansion (Lafrenière et al. 1997; Lalioti et al. 1997). Further analysis

confirmed a dodecamer composed exclusively of G and C residues
(Lalioti et al. 1997). From this, it is clear that both first generation
and NGS and analysis of NGS data struggle to detect TRs, with re-
cent advances demonstrating thatmuchmore sophisticated bioin-
formatic tools are necessary for their detection (van der Sanden
et al. 2021).

Onemajor technical issue is that disease-associated expanded
TR tracts (whose tracts are, for the most part, much shorter than
those in satellite DNA) have been tough obstacles for Illumina’s
widely used HiSeq systems that depend on assembly of short-read
sequences (typically paired 150-base reads). This is because reads
filled entirely or partially with expanded simple repeat sequences
cannot be assembled accurately and because sequences derived
from TRs are associated with a higher sequencing error rate due to
their low complexity and/or due to their highGC-content, thereby
further promoting misassembly (Benjamini and Speed 2012).

One way to overcome this is to increase the sequencing read
length so that flanking sequences are encompassed within the
read to allow for simpler alignment (Ummat and Bashir 2014).
This is especially needed after the 454 System—whichhad relative-
ly long read lengths among second generation sequencers, reach-
ing up to 1 kb—was discontinued. The recent discovery of CGG
repeat expansions in neuronal intranuclear inclusion disease
(NIID) was achieved with long-read whole-genome sequencing
(WGS), using either Pacific Biosciences’ PacBio RS II (average
read length exceeding 10 kb; polymerase-based) or Oxford Nano-
pore Technologies’ PromethION (potential read length of more
than 2 Mb; synthesis-free) (Sone et al. 2019). Long-read sequenc-
ing (LRS) in particular is a burgeoning opportunity for repeat dis-
ease gene discovery and will be covered in more detail in the
following section.

Another critical technological advancement that is facilitat-
ing greater ability to study repeat sequences is the production of
high-throughput sequencing data without PCR amplification
(Scior et al. 2011; Hommelsheim et al. 2015). PCR amplification
of repeat units is especially difficult because polymerases may
not proceed completely through the tract, thus generating frag-
mented reads of pure repeat sequences which cannot be assembled
accurately with high confidence or are inappropriately assembled
(e.g., as artificial inversions). Further, shorter repeats within the ge-
nome will also show PCR bias as they are more easily polymerized
through than longer repeats, thereby biasing the coverage within
the genome. On a per-sequence basis, artifacts and bias are also
prevalent due to the high error rate of polymerases within repeat
sequences, the truncated products acting as preferentially poly-
merized templates during subsequent rounds of polymerization,
and the misalignment of primers within repetitive templates
(Scior et al. 2011; Benjamini and Speed 2012; Hommelsheim
et al. 2015). The development of Illumina’s amplification-free se-
quencing technology (Kozarewa et al. 2009; Kozarewa and
Turner 2011) made it possible to obtain massive SRS data with un-
biased coverage of the genome. Using this technology, one of the
most challenging sequences for PCR, a CGG repeat expansion, was
discovered to cause NIID and related diseases (Ishiura et al. 2019),
independently of the LRS-based study (Sone et al. 2019).

Perhaps the largest leap in advancement and a necessary com-
ponent of identifying expanded repeats within sequencing data is
the development of data analysis algorithms to correctly detect ex-
panded TRs in a locus-specific manner from SRS data. A series of
TR-expansion gene discoveries (Ishiura et al. 2018, 2019) was
madewith the help of TRhist (Doi et al. 2014), an algorithm specif-
ically developed to detect and correctly annotate TR expansions.
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Their identification of expanded TTTCA repeats within long
TTTTA repeats causing BAFME1 was also facilitated by long-read
sequencing technologies. The recent discovery of GCA repeat ex-
pansions in GD (van Kuilenburg et al. 2019) was done with the
help of ExpansionHunter (EH) (Dolzhenko et al. 2017), another
example of software for detection of TR expansions from SRS
WGS data.

In addition to TRhist and EH, there are several other algo-
rithms for detecting TR expansions from short-read WGS data,
including STRetch (Dashnow et al. 2018), GangSTR (Mousavi
et al. 2019), exSTRa (Tankard et al. 2018), and TREDPARSE
(Tang et al. 2017). Most of these algorithms require catalogs of
all previously found repeat motifs within the reference genome.
They leverage such information to detect expansions of these
motifs at specified locations in the sequencing reads aligned to
the reference. Initially, these algorithms were not well suited
for accurate detection of TR expansions in regions with complex
repeat configurations due to alignment complications and im-
proper detection of individual repeat motifs within complex re-
peat tracts. Examples include: the expanded CCTG repeat
causative for DM2, which is located immediately adjacent to
CA and CAGA repeat tracts (Liquori et al. 2001), the expanded
CAG repeat associated with Huntington disease (HD), which is
followed by a CCG repeat tract (The Huntington Disease Collab-
orative Research Group 1993), and the complex polyalanine-cod-
ing GCN repeat which is expanded in congenital central
hypoventilation syndrome (CCHS) (Amiel et al. 2003). In the
face of these obstacles, a couple of improvements were made to
EH. The new version (EH ver. 3.0.0) can now handle complex
TR expansions with the help of catalog data from complex TR
loci (Dolzhenko et al. 2019) and has been shown to be able to ac-
curately genotype the polyalanine repeat in the CCHS-causing
PHOX2B gene. EH and other catalog-based algorithms are updat-
ed to add more complex repeats to their catalogs as they are dis-
covered; however, this requires the identification of a repeat prior
to its inclusion in the catalog. As a consequence of this, these cat-
alog-based algorithms can effectively be used to find repeats that
fall within known motifs but are blind to motifs that have yet to
be identified.

In the same vein, anothermajor challenge is that some TR ex-
pansion disorders arise by “insertion” of new expanded repeat
units into another repeat, such as the TGGAA repeat that appears
at the TAAAA repeat locus in SCA31 (Sato et al. 2009). This inter-
feres with correct mapping of short sequences onto the reference
genome as these repeats do not exist within the reference genome.
This challenge in particular is difficult to overcome because cata-
log-based algorithms cannot be used to identify repeat sequences
that are not found within the reference genome, making these re-
peats invisible to these algorithms. This is complicated further by
the choice of reference genome used for analysis, as shown by re-
cent studies which determined a 1.5% and 2% discordance in
SNVs and indels, respectively, between GRCh38 and the
GRCh37 human reference genomes (Li et al. 2021). The human
reference genome does not represent the sequence diversity of hu-
man populations. Strong examples of this shortfall include deep
sequencing and contiguous assembly of the reads that did not
align with the reference genome, which added 46 Mb and 296.6
Mb, respectively, of novel sequence—up to 10% of the refence hu-
man genome (Sherman et al. 2019; Eisfeldt et al. 2020). Also, a giv-
en human population cannot be represented by a single reference
genome representing distinct human populations. These new se-
quences were found to be enriched in STRs (28%) and satellite re-

peats (15%) (Eisfeldt et al. 2020), suggesting that studies that
depend upon the current reference genome to identify new repeats
will be handicapped. Repeat tract lengths in the reference genome
are likely to be shorter than a representative of population medi-
ans. As discussed by Song et al. in 2018, lengths of TRs in the hu-
man reference genome are likely underrepresented by one or two
orders of magnitude, where actual tract lengths can be 10–100
times larger than the repeat size annotated in the reference assem-
bly (Song et al. 2018).

Another example of “insertion” of new pathogenic repeats
into already existing repeats of distinct sequences is the RFC1 re-
peats. The pathogenic repeat motif [(AAGGG)400–2000 or
(ACAGG)exp] must be present homozygously to cause CANVAS,
but when present heterozygously, a nondisease state arises. In con-
trast, the nonpathogenic motifs, even expanded are [(AAAAG)11
or (AAAAG)exp, and (AAAGG)exp]. The recessive aspect of this
mutation, and the change of the repeatmotif at the same locus rel-
ative to the nonaffected population, suggests that this is a highly
polymorphic repeat. That the disease-causing motifs include a
seemingly a limited subset of sequences suggests that this repeat
sequence is at the core of CANVAS disease (Akçimen et al. 2019),
as with SCA31 (Sato et al. 2009).

The reference genome is missing either the repeat and/or
some of its flanking sequences for numerous repeat-expandable
genes, including CANVAS, SCA31, SCA37, BAFME1, 2, 3, 4, 6, 7,
and DBQD. This is likely due to the inability of the methods
used to handle the repeat. For example, the XYLT1 CGG repeat
and its flanking sequences couldnot be easily obtained by PCR am-
plification of the GC-rich promoter from a healthy individual
(devoid of the CGG expansion) without highly specialized condi-
tions, and the authors suspected G-quadruplex structures as the
problem (Faust et al. 2014), also a likely source for its absence in
the reference genome. These sequences are unstable in bacterial
vectors used for the initial sequencing of the reference genome.
Retrospectively, it is understandable that the reference genome
was missing the repeat and its flanking sequences. In fact, this
had previously been observed for FMR1, where two reports found
different sequences flanking the repeat, derived from a clone from
a normal X Chromosome; it was concluded that “…the sequences
missing in the Kremer report (Kremer et al. 1991) are likely an ar-
tifact of the numerous cloning steps involved in preparation of
the template and further underscore the instability of the region
in heterologous hosts” (Fu et al. 1991).

To some degree, the hurdles noted above may be overcome
through the production of “gapless” reference genomes via long-
read sequencing. These efforts are being spearheaded by the Telo-
mere-to-Telomere (T2T) Consortium (https://sites.google.com/
ucsc.edu/t2tworkinggroup), which aims to fill in the numerous
gaps within the reference genome by conducting complete long-
read sequencing gapless assemblies of each individual chromo-
some. To date, the T2T Consortium has assembled and published
complete sequences for several chromosomes and have preprints
of assemblies of the whole genome (Jain et al. 2018a; Miga et al.
2020; Hoyt et al. 2021; Logsdon et al. 2021; Nurk et al. 2021).
The new T2T-CHM13 reference includes gapless assemblies for all
22 autosomes plus Chromosome X. As expected, many of the
gaps were occupied by repeat-rich sequences such as pericentro-
meric regions, ribosomal DNA arrays, and large segmental duplica-
tions with high sequence similarity between duplications (Bork
and Copley 2001; Eichler 2001). Such efforts reveal a massive
amountof genetic information thathasbeen impenetrably cloaked
by previous sequencing efforts and hence unable to be included in
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many biological assessments. Specifically, they nowenable the un-
veiling of the roles that thesehighly polymorphic sequencesmight
play inbiology, evolution,natural variation, anddisease. For exam-
ple, the heterochromatic regions of Chromosomes 1, 9, and 16
have long been known to be composed of classical satellites (Gos-
den et al. 1975), and thesewere shown to bepolymorphic in length
by cytogenetics (Craig-Holmes and Shaw 1971). In individuals
with the rare disorder, immunodeficiency, centromeric instability,
and facial (ICF) syndrome, in addition tonumerous clinical presen-
tations, their chromosomes form complexmultiradial associations
at the classical satellites 2 and 3 at juxtacentromeric regions of
Chromosomes 1, 9, and 16 (Xu et al. 1999). The satellite repeats
at the heterochromatic region of Chr 9 are involved in pericentro-
meric inversionsofChr9 (Gosdenet al. 1981) andare thought tobe
linked to a variety of diseases (Mohsen-Pour et al. 2021). Length
variations of satellite tracts on Chromosomes 1, 9, and 16 were
thought to be associatedwithboth themultiradials in ICF andperi-
centromeric inversions of Chr 9 (Gosden et al. 198l; Luciani et al.
2005). A deeper appreciation of satellite repeat tract length varia-
tions, and possibly sequence purity, gained by long-read sequenc-
ing could reveal associationsof disease variation for these andother
repeat-rich regions. Another huge advance is the discovery of the
huge numbers of previously uncataloged repeats, definitively re-
vealing that the repetitive content in the human genome is
53.9% in CHM13 (Hoyt et al. 2021).

To specifically address the current issue of the absence of a re-
peat motif in the reference genome, ExpansionHunter Denovo
(EHdn) (Rafehi et al. 2019; Dolzhenko et al. 2020) was developed
to roughly infer the genomic location (within ∼1 kb) and repeat
size of “de novo” TR unit expansions (sequencemotifs not present
in the reference genome) within de novo assemblies of SRS data in
a catalog-free manner. Independent of the work by Cortese et al.,
Rafehi et al. have used EHdn to identify expanded TRs in the
WGS data of CANVAS-affected individuals (Cortese et al. 2019;
Rafehi et al. 2019). They successfully found expanded AAGGG re-
peats in both alleles of an intron of the gene RFC1, where the ref-
erence sequence harbors (AAAAG)11. The first discovery of the
RFC1 repeat expansion required considerable efforts that were
time-consuming, as evidenced by Cortese et al. (2019), where
the rapid independent discovery clearly demonstrates the strength
and usefulness of EHdn. The group also showed that no other cat-
alog-based algorithmwas able to identify the complex repeatmotif
as it was not found within the reference genome.

More recently, EHdn, coupled with a novel outlier detection
approach, led to the discovery of 2588 loci with TR expansions as-
sociated with ASD (Trost et al. 2020). This is the first time a hetero-
geneous complex disorderwas linked to a variety of TR expansions.
The reported loci are located in genes that were previously linked
to ASD (such as FMR1), and many other genes that are responsible
for nervous system development—a novel functional pathway for
ASD that would otherwise have not been recognized by using oth-
er approaches. Asmuch as 42.3% of the identified TRs in this study
have not been previously reported. Even for the ones that were pre-
viously reported, 6% of themhad at least one repeat sequence that
was not present in the reference genome. These findings were bol-
stered by another recent publication which also identified TRs as-
sociated within a separate cohort of ASD individuals, using a novel
bioinformatic tool called MonSTR (Mitra et al. 2021).

Given the substantial genetic overlap between neurodevelop-
mental disorders such as ASD and schizophrenia (Cross-Disorder
Group of the Psychiatric Genomics Consortium 2013; Grove
et al. 2019), it is likely that TR expansions may also be involved

in other related disorders. Indeed,Mitra et al. (2021) also identified
TRs which clustered near GWAS signals for schizophrenia and ed-
ucational attainment within their ASD cohort, and a recent study
also identified repeat expansions known to be associated with
monogenic neurological diseases within a separate cohort of schiz-
ophrenia patients (Mojarad et al. 2021a). These recent studies
highlight the necessity of developing tools which enable refer-
ence-free assembly and interrogation of the genome. Moreover,
they highlight the need to be aware of the degree of genetic varia-
tion possible and hence be broad-minded in future developments.

However, while these algorithms are necessary for the accu-
rate detection of expanded repeats within SRS data, the threshold
length for many of the disease-causing TRs is close to or beyond
the typical short sequence read length of 100–150 bases.
Algorithms like EH can infer repeat lengths fromSRS data, but their
accuracy is still not sufficient to make reliable diagnoses (Bahlo
et al. 2018). As such, this key limitation arising from the short
read length need to be complemented by LRS technologies. The
advantages and disadvantages of different sequencing technolo-
gies are summarized in Table 2.

Long-read sequencing is expected to unveil longer disease-

associated TRs

The development of third generation sequencing technologies,
namely Pacific Biosciences’ single molecule real-time (SMRT) se-
quencing (Rhoads and Au 2015) and Oxford Nanopore
Technologies’ nanopore sequencing (Jain et al. 2018b), made it
possible to obtain long-read data. Besides their advantages in de
novo assembly, structural variant analysis, and haplotype phasing,
their abilities to analyze single molecules without GC bias allowed
the discoveries of disease-causing stretches ofGC-rich repetitive se-
quences as described above (Ishiura et al. 2019). While their cur-
rent cost, data generation speed, read depth, and base-calling
accuracy are inferior to SRS (Midha et al. 2019), methods and ana-
lytical tools for improvements have been under development. One
example is consensus circular sequencing (CSS) applied to PacBio’s
SMRT sequencing (Li et al. 2014). Thismethod obtains the consen-
sus sequence from multiple passes of a circular single molecule
made by ligating both ends of the same double-strand DNA to
form the circular template. While each pass produces an error-
prone read, the accuracy of consensus sequences obtained by
CSS has been shown to be comparable to SRS parallel sequencing
in the setting of WGS (Wenger et al. 2019). Another method
that is being explored to increase coverage and depth at regions
of interest via Nanopore PromethION sequencing is through selec-
tive enrichment of the region—especially useful for analysis of ex-
panded repeatswhichmight presentwith repeat lengthmosaicism
within patients. For example, Giesselmann et al. (2019) used a
CRISPR-Cas12a/Cas9 approach to enrich for C9orf72-associated
GGGGCC repeats and FMR1-associated CGG repeats, increasing
coverage from 10 reads to nearly 100 (Cas12a) and 1000 (Cas9)
reads specifically at the repeat region. The same group also com-
bined this approachwith a novel algorithm, STRique, to determine
repeat length and methylation status of these repeats.

Harnessing these LRS technologies with new algorithms is
rapidly becoming amore common strategy, and the data generated
in this way provides a powerful tool for discovery of longer and
more complex repeats. The discovery of NIID by Sone et al.
(2019) was facilitated by the development of tandem-genotypes
(Mitsuhashi et al. 2019), an algorithm to detect expanded TRs in
long-read WGS data. Prior to this, an algorithm called
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RepeatHMM was published and shown to be able to accurately
measure pathogenic CAG expansions in the ATXN3 gene causing
Machado-Joseph disease/SCA3 and long expansions of ATTCT re-
peats resulting in SCA10 (Liu et al. 2017).

LRS also enables analyses of TRs with longer repeat units that
are known to be associatedwith various complex disorders, such as
Variable Number of TRs (VNTRs). VNTRs is a broad ill-defined cat-
egory of TRs ranging from 6 bp to 10 kb, such as the 99-mer repeat
expansion recently discovered to cause skeletal muscle disease
(Ruggieri et al. 2020), or the MUC6 VNTR which has a repeat
unit size of ∼507 bp and is suggested to be associated with an in-
creased risk of Alzheimer disease (AD) (Katsumata et al. 2020;
Nelson et al. 2020). Several tools have been developed to detect
or genotype VTNR with short reads (Bakhtiari et al. 2018; Lu
et al. 2021). However, short-read sequencing of these regions is
typically difficult, often resulting in low mapping quality scores
and a number of calls that fail to pass quality control filters, result-
ing in them being “dark and camouflaged” regions of the genome
that were largely excluded from prior analysis (Nelson et al. 2020).
Recent LRS studies have been instrumental in shining a spotlight
on these regions. For example, a 300- to 10,000-bp VNTR in the
ABCA7 gene, whose expansions are associated with increased AD
risk, was recently identified from LRS data obtained by nanopore
sequencing (De Roeck et al. 2019).

Recent studies highlighted the need for LRS-specific algo-
rithms for analysis of LRS data (DeJesus-Hernandez et al. 2021;
Guo et al. 2021; Miller et al. 2021). While various combinations
of base-caller algorithms and tandem-genotypes could provide es-
timates for the ABCA7 VNTR length, expanded alleles reaching
more than 10 kb were better captured by a newly developed algo-
rithm, NanoSatellite, which directly assesses electronic current
data such as that obtained by nanopore sequencing (De Roeck

et al. 2019). Another example is a study made with nanopore se-
quencing to assess the D4Z4 macrosatellite repeat (3.3 kb/unit)
number at the facioscapulohumeral muscular dystrophy 1
(FSHD1) locus (Mitsuhashi et al. 2017). Nonaffected D4Z4 alleles
are polymorphic with 11–100 repeat units, whereas FSHD1-affect-
ed individuals have 10 or fewer units (Mostacciuolo et al. 2009;
Pearson 2010). Mitsuhashi et al. applied LAST, a computational
analysis tool developed to detect segmental duplications
(Kiełbasa et al. 2011) for this purpose. Although this method still
needs validation, it clearly illustrated the advantages of LRS in
the analyses of longer TRs. To date, little is known about diseases
caused by long TRs, and LRS is expected to open the door to this
field. Moving forward, the development of LRS will likely benefit
from leveraging pre-existing short-read sequencing data sets and/
or integration of synthetic long reads (such as single-molecule op-
tical maps), such that three- or two-way hybrid assembly between
the different assemblies can be used to assess assembly conflicts/er-
rors, highlightmisassemblies,maximize base calling accuracy, and
limit false positives (Amarasinghe et al. 2020). Even in nonrepeti-
tive sequences, this has also shown to be a powerful approach—for
example, optical maps were previously shown to greatly facilitate
the resolution of three erroneously linked chromosome-scale con-
tigs derived from SMRT-based LRS in relatives of Arabidopsis thali-
ana (Jiao et al. 2017). However, the strength of this approach is
especially potent for repeat sequences—for example, the use of
three-way integration of SRS, LRS, and optical mapping data facil-
itated the characterization of 36 previously unidentified large re-
petitive regions in the Eurasian crow, most of which were
complex arrays of 14-kb satellite repeats (Weissensteiner et al.
2017). These studies clearly show the potential for LRS both as
an independent approach and in tandem with pre-existing
approaches.

Table 2. Sequencing technologies to detect TR expansions

Sequencing method
/sequencing system
(manufacturer) Read length Data yield

Necessity of
preamplification
of templates Accuracy Cost

TR expansion finding
algorithms

Sanger sequencing

3730xl (Thermo Fisher Scientific) Up to 900
bases

∼80 kb/run Yes High High

Second generation sequencing

NovaSeq 6000 (Illumina) 2 × 150 bases 300 Gb/run Yes/No High Low TRhist
STRetch
GangSTR
exSTRa
TREDPARSE
ExpansionHunter
ExpansionHunterDenovo

MiSeq (Illumina) 2 × 300 bases 15 Gb/run

Third generation sequencing: also allows analysis of epigenetic status and phasing

Nanopore sequencing
PromethION 48 (ONT)

∼30 kb Up to 220 Gb/
flow cell

No Low Medium RepeatHMM
tandem-genotypes
NanoSatellite
STRique

SMRT sequencing Sequel II
system (PacBio)

∼30 kb Up to 160 Gb/
flow cell

No Low (can be
improved with
HiFi reads)

Medium RepeatHMM
tandem-genotypes

Only main sequencing technologies currently available for detection of expanded TRs are listed, with their advantages and disadvantages.
Specifications for each device were obtained from manufacturers’ web sites (Thermo Fisher Scientific: https://www.thermofisher.com/us/en/home/life-
science/sequencing/sanger-sequencing.html; Illumina: https://www.illumina.com/systems/sequencing-platforms.html; Oxford Nanopore Technologies
[ONT]: https://nanoporetech.com/products/comparison; Pacific Biosciences [PacBio]: https://www.pacb.com/products-and-services/), as well as a
review paper by Midha et al. (2019).
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Part 2: Technological advances complement clinical

and biological understanding of repeat disease

pathogenesis to facilitate repeat disease gene

discovery

Various mechanisms of expanded TR toxicity

Although this current review does not focus on disease mecha-
nisms, over the next sections we will discuss how clinical under-
standing, coupled with technological advances, greatly facilitates
the discovery of pathogenic repeats and the development of ther-
apeutic options. As such, here we will briefly review the mecha-
nisms of expanded repeat toxicity. To date, at least 11 different
pathogenic mechanisms have been proposed on how pathogenic
TRs elicit toxicity (Fig. 2):

1. Loss-of-function (LOF) due to transcriptional silencing: for ex-
ample, CGG expansions within the 5′ UTR of FMR1 in FXS
(Pieretti et al. 1991; Devys et al. 1992; Knight et al. 1993) or
the gene promoter in progressive myoclonus epilepsy type 1
(Lafrenière et al. 1997; Virtaneva et al. 1997) causes hyperme-
thylation of the repeat and adjacent CpG islands and patho-
genically silences gene transcription. While this mechanism
has been known for some time, it has been understudied as a
potential cause of other diseases where general loss-of-func-
tion is suspected. However, two of the latest repeat disease dis-
coveries were shown to elicit pathogenicity through this
mechanism: in Desbuquois dysplasia 2 (DBQD2) (LaCroix
et al. 2019), theGGC repeat expansionwithin exon-1 is hyper-
methylated and this causes suppression of XYLT1 transcrip-
tion, and in glutaminase deficiency (van Kuilenburg et al.
2019), the GCA repeat expansion results in insufficient gluta-
minase (GLS) mRNA transcription. These two findings remind
us of the relevance of this LOF mechanism and suggest that
similar findings may follow in the future.

2. LOF due to expansions within protein-coding genes: in CCHS,
expansions of polyalanine-coding GCN repeats result in im-
paired function of the protein (Amiel et al. 2003).

3. LOF due to expansions within introns: in Friedreich
ataxia (Al-Mahdawi et al. 2008), this causes pathogenic sup-
pression of transcription through a variety of debated mecha-
nisms which may overlap with epigenetic changes such as
hypermethylation.

4. Gain-of-function (GOF) due to toxic RNA production which
impinges onnormal cellular function: inDM1,DM2, and frag-
ile X-associated tremor/ataxia syndrome (FXTAS), repeat ex-
pansions in the 3′ UTR, 5′ UTR, and introns aberrantly
generate expanded repeat RNA products, which are bound
by various RNA-binding proteins, often causing toxic RNA
foci. The RNA-binding proteins can also be sequestered away
from their proper functions, leading to their LOF (Ranum
and Cooper 2006).

5. Gain-of-function due to toxic proteins generated by coding ex-
panded repeats: in the cases of polyglutamine (polyQ)-coding
CAG repeat expansions such asHDand SCA3, the polyQ stretch
results in protein misfolding and aggregation (Sisodia 1998).
Understanding of this GOF toxic mechanism in particular has
facilitated the development of therapeutics. Recently, gene si-
lencing methods with antisense oligonucleotides (ASOs) and
small interfering RNAs (siRNAs) have made considerable pro-
gress toward clinical application. One such ASO in advances
stages of development is RG6042 (formally called IONIS-

HTTRx; an ASO against the HTT gene developed by Ionis)
which has been shown to lower mutant HTT protein levels in
the cerebrospinal fluid of affected individuals and has satisfac-
tory short-term safety profiles (Tabrizi et al. 2019). It is now en-
tering a Phase 3 clinical trial. While gain-of-function aspects of
the diseases may make approaches by ASOs/siRNAs appear at-
tractive, caution should be paid to the contribution of other
pathogenic mechanisms in the same individuals.

6. GOF due to aberrant splicing of coding repeats: in HD the ex-
pansion within the coding exon-1 disrupts correct splicing of
intron-1, leading to its retention. This leads to the production
of a toxic fragmented RNA product that contains the expand-
ed repeat, which is then translated to a toxic truncated protein
fragment (Sathasivam et al. 2013; Neueder et al. 2017, 2018;
Franich et al. 2019).

7. GOF due to expansion promoting aberrant retention of introns
near or encompassing repeat tracts: in DM2, Fuchs endothelial
corneal dystrophy 3 (FECD3) (Fautsch et al. 2021), andC9orf72-
associated ALS/FTD, the repeat prevents correct splicing of in-
trons to generate a fragmented toxic RNA product. Similar to
HD (mechanism 6), the fragmented RNA products may be
translated into a toxic truncated protein (Sznajder et al. 2018).

8. GOF due to repeat-associated non-ATG/AUG-mediated transla-
tion (RAN-translation): in SCA31, FXTAS, C9orf72-associated
ALS/FTD, and SCA8, expanded RNA aberrantly recruits transla-
tion machinery and produces toxic peptides without needing
an ATG/AUG start site. The complexity of this pathogenic
mechanism is exemplified by themultiple frames that are coded
within the same repetitive sequence and the fact that both
strandsmay undergo RAN translation—thereby generating a va-
riety of different toxic peptides (Sato et al. 2009; Zu et al. 2011;
Ishiguro et al. 2017; Glineburg et al. 2018; Krans et al. 2019).

9. GOF due to up-regulation of the nonmutant protein caused by
a cis-mechanism of the expanded repeat: the increased expres-
sion of the PPP2R2B gene, associated with SCA12, appears to
be caused by a cis-effect of the expanded CAG tract on the
PPP2R2B gene products (Lin et al. 2010). This is a regulatory
mechanism that likely acts on many of the repeat-containing
genes in the genome.

10. GOF due to toxic proteins produced from transcription and
translation across one strand of the expanded repeat and pro-
duction of toxic RNA by transcription across the opposite
strand: for example, in SCA8, the CAG repeat expansion with-
in ATXN8 is transcribed and translated to a toxic polyglut-
amine protein, while transcription, but not translation, of
the ATXN8 opposite strand, which has the complementary
CUG expanded repeat in its 3′ UTR, produces a toxic CUG-
RNA (Moseley et al. 2006).

11. GOF due to inappropriate expression of a gene encoded by the
unstable repeat unit: for example, pathogenicity in FSHD1 re-
sults from the improper developmental expression of the dou-
ble homeobox 4 (DUX4) gene, encompassed in the contracted
4q35 array of D4Z4 repeats (3.3 kb/unit). Each unit contains a
DUX4 gene that is epigenetically activated upon contraction
of the repeat array, with pathogenic levels of contraction re-
sulting in FSHD1. This mechanism is likely to be more appre-
ciated with the discovery of more clinical presentations
associated with the variation of unstable arrays of large gene-
sized repeat motifs. This highlights the importance of an
awareness that very large repeatmotifs can be unstable in a dis-
ease-relevant manner. Moreover, repeat contractions, and not
just expansions, can be relevant.
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From this list of potential mechanisms of pathogenicity, it is
clear that repeat disease pathobiology is highly complex, with
shared or similar repeat sequences and often overlapping clinical
presentations. It is also noteworthy that a single TR-associated dis-
ease likely has contributions from multiple pathogenic processes.
For example, loss-of-function paths can exacerbate gain-of-func-
tion paths in some diseases (Schneider et al. 2020; Pal et al.
2021). Also, the surprising findings of RAN-translation and in-
tron-retention indicates that we need to have an open mind to
the diverse ways in which these mutations can express disease.
Clearly, understanding the crossplay between different pathogen-
ic repeat sequences and their functional pathogenic outcomes bol-
sters our ability to determine if pathologies of unknown cause
result from similar repeat sequences.

Repeat expansions and fragile sites

One noteworthy association with LOF due to transcriptional si-
lencing (pathogenic mechanism 1) is that the epigenetic changes
associatedwith transcriptional silencing at expanded repeats often
coincide with mapped fragile sites. All molecularly mapped folate-
sensitive fragile sites are caused by expanded CGG repeats and as-
sociated with aberrant CpGmethylation and silencing of the asso-
ciated gene (FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A,
FRA11A, FRA11B, FRA12A, and FRA16A). “Rare” fragile sites
(∼40) are present in ≤5% of the population (with FRA16B being
the most frequent rare fragile site [Felbor et al. 2003]) but can pre-
sent in as few as a single individual. To this degree, recent advances
toward identifying additional folate-sensitive fragile sites have in-
cluded isolating epigenetic modifications of repeats (Garg et al.
2020), identification of all expandable CGG-tracts (Annear et al.
2021), and recent colocalization of these fragile sites to GC-rich re-
peat expansions have been found in ASD (Trost et al. 2020).
However, such advances can only suggest the possible source of
a fragile site; that a particular repeat is the cause of fragility must
be molecularly mapped cytogenetically by FISH and genetics
(Savelyeva and Brueckner 2014). Although the pathogenic link be-
tween the CGG expansions in each of these 10 folate-sensitive

fragile sites and their associated partially penetrant symptoms is
not yet clear, what is clear is that each shows aberrant epigenetic
modifications coincident with CGG expansion regardless of dis-
ease presentation. For example, like FRAXA (FMR1), CGG expan-
sions and aberrant methylation in AFF2, ZNF713, AFF3, and
DIP2B at the fragile sites FRAXE, FRA7A, FRA2A, and FRA12A, re-
spectively, are associated with intellectual disability, albeit in a
small number of families (Winnepenninckx et al. 2007; Metsu
et al. 2014a,b; Correia et al. 2015). This raises the possibility that
these, and other fragile sites associations with GC-rich repeat ex-
pansions, could be more definitively linked with disease.
Strengthening this hypothesis is the recent finding that the hu-
man genome contains nearly 6110 CGG repeats longer than
four repeat units (found on all but the Y Chromosome)—410 of
them being associated with known and candidate neurodevelop-
ment disease genes and multiple being coincident with known
fragile sites (Annear et al. 2021). Of themolecularlymapped “com-
mon” fragile sites (27 of ∼230), none are associated with a partic-
ular DNA sequence motif, repeat or otherwise (Irony-Tur Sinai
and Karem 2019). It is likely that all folate-sensitive fragile sites,
the largest group of rare fragile sites (∼30/∼40), are due to CGG ex-
pansions (Handt et al. 2000; Felbor et al. 2003). Other rare fragile
sites, like the distamycin A-inducible rare fragile site FRA16B, is
caused by an expanded AT-rich 33-bp repeat motif (Yu et al.
1997), while the bromodeoxyuridine-inducible rare fragile site
FRA10B is caused by expanded AT-rich 42-bp repeat motif
(Hewett et al. 1998). All fragile sites are associated with chromo-
somal instability (deletions, rearrangements). Both FRA10B and
FRA16B have been observed homozygously in seemingly normal
individuals, suggesting that at least for those individuals, at the ob-
served ages, these expansions appear benign (Sutherland 1981;
Hocking et al. 1999).

Clinical associations of specific and related repeat sequence motifs

The role of clinical geneticists cannot be underestimated. For ex-
ample, as early as 1918, clinicians recognized strange transmission
patterns of diseases, such as genetic anticipation in DM1 and HD

Figure 2. Proposed mechanisms through which disease-associated repeats may exert toxicity. Multiple mechanisms may be active at a single locus.
(RAN) Repeat-associated non-ATG, (UTR) untranslated region.
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(Bell 1941; for review, see Höweler et al. 1989). Similar puzzling
segregation was observed for FXS (Martin and Bell. 1943). Even
in the face of persuasive discrediting, based upon incorrect claims
of ascertainment bias (Penrose 1947; for review, see Höweler et al.
1989), the observations of the clinical geneticist persevered and
were shown to be based in the genetic instability of the repeats
(Fu et al. 1991; Ashizawa et al. 1992a,b; Harper et al. 1992; Snell
et al. 1993; Trottier et al. 1994). Moreover, clinicians played critical
roles of both characterizing, collecting patients, and participating
in genetic mapping and diagnostic aspects. These contributions
arenecessary ingredients to identifying disease-causingmutations.
Below, we highlight recent advances of the clinical aspect in dis-
covering repeat expansion mutations.

Some pathogenic expansions cause similar disease pheno-
types according to their repeat sequence motifs, independently
of the functions of genes harboring the mutations (Table 1). An
early example is the discovery of CGG repeat expansion in FMR1
and the CCG/CGG repeat expansions at AFF2, ZNF713, AFF3,
and DIP2B, which were all subsequently shown to be related to
X-linked intellectual disability albeit in a small number of families
(Knight et al. 1993; Winnepenninckx et al. 2007; Metsu et al.
2014a,b; Correia et al. 2015). Another example is the CAG/CTG re-
peat expansions causative for HD, SCA1, 2, 3, 6, 7, 8, 12, and 17
(Pearson et al. 2005), the discoveries of which were greatly assisted
by the similarities in clinical presentation of particular motor phe-
notypes and pathological presentation of polyQ aggregates.

A deep clinical understanding can also facilitate understand-
ing of underlying pathogenic mechanisms and outcomes. One
such example is the similarities between DM1 and DM2 that led
to the identification of the DM2 mutation. The two diseases
both manifest systemic symptoms, including myotonia, muscle
weakness, frontal balding, cataracts, and cardiac arrhythmias
(Ricker et al. 1994). Before the identification of the DM2mutation,
researchers detected nuclear RNA foci in muscle sections of DM2-
affected individuals using CUG-repeat probes against DM1 RNA
foci and established that the same protein (MBNL) colocalizes
with these foci (Mankodi et al. 2002). These findings led to specu-
lation that themutation responsible for DM2 is similar to the non-
coding CTG repeat expansion that causes DM1. The DM2
mutation was subsequently revealed to be a CCTG repeat expan-
sion in an intron of theCNBP gene (Liquori et al. 2001). The shared
clinical characteristics of DM1 and DM2 are considered to be
caused by toxic gain-of-function of the mutations acting in trans
(Ranum and Cooper 2006). Both CUG and CCUG repeat tran-
scripts sequester their common binding proteins, such as MBNL
(Mankodi et al. 2001), and as a result, RNAmetabolism is disrupted
in both situations. Consistent with this model, missplicing of
genes such as CLC1 (Mankodi et al. 2002) and BIN1 (Fugier et al.
2011) has been observed in both diseases.

Further, an appreciation of the clinical genetics of a disease
can serve as a “red-flag” for repeat expansions—for example, the
explanation of the unusual inheritance patterns of FRAXA/FXS
(initially known as Martin-Bell syndrome) (Martin and Bell 1943;
Sherman et al. 1984, 1985), or the explanation of genetic anticipa-
tion in DM1 or HD by repeat expansions over generations. In fact,
anticipation (then called antedating) had been connected with
DM1 andHD families as early as 1941 by Bell, although these find-
ings were largely unappreciated for some time (Bell 1941). The
concept was not appreciated until FXS, where repeat length
directly affected the likelihood of expansion of premutations to
full mutation in FXS families. This provided a mechanistic basis
for the long-debated phenomenon of genetic anticipation, which

in FXS is evident as incomplete penetrance accompanied by in-
creasing likelihood of disease with subsequent generations in ped-
igrees (then known as the Sherman paradox). The early FRAXA
studies paved the way for subsequent discoveries of repeat expan-
sion mutations and for significant mechanistic insights.

Discoveries made in the past couple of years have strength-
ened the hypothesis of “repeat motif–phenotype correlation”
(Ishiura et al. 2018; Ishiura and Tsuji 2020), in which toxic GOF
mechanisms elicited by some expansions are the main drivers of
pathogenesis, rather than altered function of the genes which con-
tain the repeat expansion. This concept is especially useful in iden-
tifying repeat expansions which manifest similar clinical
presentations. For example, in 2018, the mutation responsible for
BAFME1 was identified as an insertion of an expanded TTTCA re-
peat into a TTTTA repeat in an intron of SAMD12 (Ishiura et al.
2018). In addition, two families manifesting indistinguishable dis-
ease phenotypes were found to have expansions of TTTCA and
TTTTA repeats in introns of the TNRC6A (BAFME6) and RAPGEF2
(BAFME7) genes, respectively. As predicted by Ishiura et al.
(2018), these discoveries paved the way for the identifications of
other BAFME-causing repeat mutations in 2019, which have exact-
ly the same repeat sequence in different genes:YEATS2 for BAFME4
(Yeetong et al. 2019), STARD7 for BAFME 2 (Corbett et al. 2019),
and MARCHF6 for BAFME3 (Florian et al. 2019). Similar to DM1
and DM2, RNA foci of UUUCA repeats were found in autopsied
brain samples of BAFME1 individuals. These observations also sug-
gest that the trans-acting RNA gain-of-function mechanism (pro-
posed pathogenic mechanism 4) is relevant in familial adult-
onset myoclonic epilepsy. The expanded repeat causing SCA37
has the same TTTCA motif within a long stretch of TTTTA repeat
(reported to be “ATTTC” repeat) (Seixas et al. 2017). BAFME pa-
tients have been reported to manifest cerebellar dysfunction
(Striano et al. 2009) and atrophy (Buijink et al. 2016), and in a ho-
mozygous BAFME1 patient, histopathological findings of Purkinje
cell degeneration, similar to those in SCA31 (Owada et al. 2005),
have been observed. These findings connect BAFMEs with
SCA37, whose cardinal clinical presentation is cerebellar ataxia
and atrophy (Seixas et al. 2017). The above pieces of evidence sug-
gest that TTTCA can now be recognized as a new commonmotif re-
sulting in similar disease phenotype—another addition to the ever-
growing list of diseases caused by common TR motifs.

Even more recent examples were discovered in 2019, when
three groups independently found that GGC repeat expansions
in an intron of NOTCH2NLC/NBPF19 genes causes NIID (Ishiura
et al. 2019; Sone et al. 2019; Tian et al. 2019), a neurodegenerative
disorder difficult to correctly diagnose based on clinical presenta-
tions alone (Sone et al. 2016; Okubo et al. 2019). Further reports
showed that an intronic CGG repeat expansion in LOC642361/
NUTM2B-AS leads to oculopharyngeal myopathy with leukoence-
phalopathy (OPML), and the same repeat expansion in LRP12 is re-
sponsible for oculopharyngodistal myopathy (OPDM1) (Ishiura
et al. 2019). These findingswere truly eye-opening for neurologists
and neuropathologists, as they provided critical insight into the
fundamental pathogenesis of these diseases and connected degen-
erative disorders of the central and peripheral nervous systems and
muscles. NIID is a disease that mainly affects the brain and the pe-
ripheral and autonomic nervous systems, manifesting a variety of
symptoms including dementia, tremor, cerebellar ataxia, and au-
tonomic failure (Sone et al. 2016). On the other hand, OPDM is
a type of muscular dystrophy that causes facial, bulbar, and distal
weakness (Satoyoshi and Kinoshita 1977). Now, with the identifi-
cation of GGC repeats as the cause of both NIID and OPDM
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diseases, and the knowledge that there are overlapping symptoms
and radiological findings among them (Ishiura et al. 2019), we
have a view that there is a clinical spectrum with NIID on one
end, OPDM on the other end, and OPML in the middle. There
are also strong clinical similarities between NIID and FXTAS, the
classic example of neurodegenerative disease caused by CGG re-
peat expansion (Hagerman et al. 2001). The disease spectrum sug-
gested by these new findings is a completely new concept for
physicians, pathologists, and geneticists, one that could not
have been imaginable without the discovery of its genetic cause.

If we are to accept the hypothesis that particular repeat unit
sequence expansions are pathogenic and cause diseases indepen-
dently of their genomic locations, it is essential to establish the
possibility that these de novo TR unit expansions may also be as-
sociated with similar diseases that have yet to be identified. In
the past, prototypical approaches were taken to search for trinucle-
otide repeat expansions in a locus-independent manner simply by
looking for expansions of known disease-causing motifs (RED as-
say and its variations and catalog-based algorithms more recently,
as described above). Now thatwe are equippedwith high-through-
put LRS technologies and computational analysis tools, we can
search for TR expansions from NGS data. New discoveries are ex-
pected to follow, which will further broaden our understanding
of the biological roles of TRs and their contribution to disease.

Assessing the association of repeat expansions with disease must

be conducted without bias or assumptions

Several recently reported repeat disease associations occurred in
unstable repeats previously thought to be clinically unimportant.
For example, one of the most prevalent (affecting ∼4% of people
aged 40 or over in the United States) TR expansion diseases,
FECD3, was initially missed because of a clinical bias toward the
expectation that the disease would present with neurodegenera-
tion.Due to the absence of neurodegenerative phenotypes, the ini-
tial discoveries of theCTG18.1 repeat expansion (the genetic cause
of FECD3) in 1993 (Schalling et al. 1993) and 1997 (Breschel et al.
1997) led to an incorrect assumption that the expansion was
benign. It was not until 20 years later that the CTG repeat expan-
sions within the TCF4 gene (CTG18.1) were linked with FECD3
(Wieben et al. 2012; Fautsch et al. 2021). In another case, an ex-
panded CGG repeat reported at FRA16A, which in the heterozy-
gous state has no obvious clinical impact (Nancarrow et al.
1994), was subsequently found to result in autosomal recessive
skeletal disorder DBQD2 when CGG expansions were present in
a homozygous state (LaCroix et al. 2019). Because the initial iden-
tifications of pathogenic TR expansions were mostly of dominant
or X-linked diseases (with the exception of Friedreich ataxia), the
possibility of recessive diseases tended to be overlooked, but the re-
cent discoveries demonstrate that this is a groundless assumption
(Cortese et al. 2019; LaCroix et al. 2019; vanKuilenburg et al. 2019;
Pagnamenta et al. 2021).

Similarly, effects of TR length on varied clinical presentations
must also be considered. One example is the human androgen re-
ceptor (AR), where the function of the gene product is well charac-
terized, unlike the genes for most TR expansions. The AR gene
contains an exonic polymorphic CAG repeat in which 95% of in-
dividuals inherit between 16 to 29 CAG repeats, encoding a poly-
glutamine tract. Nonrepeat LOF mutations of AR, and hence an
absence of androgen receptor activity, lead to masculine feminiza-
tion (androgen insensitivity syndrome; AIS), a non-neurological
presentation. In contrast, expansions of the CAG tract (average

size of ∼47 units in patients) lead to spinal bulbar muscular atro-
phy (SBMA). While not evident in 1991, the contrasting pheno-
types of the LOF mutations with the CAG expansions provided
support for the pursuit of a GOF toxicity path. Albeit that in
most neurologically affected SBMA individuals, the AR is still func-
tional, they do show signs of AIS (La Spada et al. 1991).
Biochemically, the length of this encoded polyglutamine tract in-
versely affects AR transcriptional activity (Mhatre et al. 1993;
Chamberlain et al. 1994; Kazemi-Esfarjani et al. 1995). Very large
expansions (68 or 72 repeats) lead to severe clinical presentations
of both SBMA and AIS consistent with reduced transactivation ac-
tivity with long CAG tracts (Mhatre et al. 1993; Kazemi-Esfarjani
et al. 1995; Grunseich et al. 2014; Madeira et al. 2018). Within
the normal range, longer AR CAG tracts (>∼21 repeats) have
been associated with male infertility, breast cancer, osteoporosis,
and male-to-female transsexualism (Summers and Crespi 2008;
Hare et al. 2009), while shorter tracts in the normal range have
been associated with prostate cancer, head and neck cancer, colo-
rectal cancer, cardiac disease, and cognition and behavior disor-
ders (Summers and Crespi 2008). In cancers, somatic variation of
the CAG repeat was biased to contracted repeats (Ferro et al.
2002; Di Fabio et al. 2009), presumably due to the increased andro-
gen sensitivity of the AR protein, with shorter tracts giving those
cells a growth advantage (Mhatre et al. 1993; Kazemi-Esfarjani
et al. 1995). Other studies suggest that gender incongruence/dys-
phoria in the transgender woman (male-to-female) population
have significantly longer polymorphic CAG repeat sequences in
the AR gene, which may affect antenatal androgen activity and
possibly contribute to gender incongruence (D’Andrea et al.
2020). Thus, one gene, depending upon mutation type and/or
TR tract length can display extremely variable clinical manifesta-
tions and demonstrates how understanding of the natural func-
tion of the gene can serve as a guide to elucidating its
mechanism of disease action. For FMR1, nonrepeat-related null
LOF mutations were identified following the discovery of the frag-
ile X-associated expansion. In the case of FMR1, intragenic dele-
tions, nonsense changes (Wöhrle et al. 1992; Hirst et al. 1995;
Lugenbeel et al. 1995), and a missense mutation, I304N (De
Boulle et al. 1993) led to severe fragile X syndrome, confirming
the LOF associated with the CGG expansion. Similarly, increases
in FMR1 copy numbers can also lead to similar phenotypes (Rio
et al. 2010). New sequencing and informatic analyses should facil-
itate such future pathogenic connections.

Another crucial point that must be highlighted is the delayed
recognition of distinct clinical presentations and diseases associat-
edwith different expansion lengthswithin the FMR1 gene. Full ex-
pansion of the CGG repeat (>200 CGG) in FMR1, coupled with
aberrant DNA CpG methylation, is widely known to cause the in-
tellectual disability syndrome FXS, a phenotype recognized since
1943 (Martin and Bell 1943). It wasn’t until 58 years after the de-
scription of the first FXS pedigree that individuals with unmeth-
ylated FMR1 expansions of 50–200 CGG units were distinctly
characterized within a separate disease, which presented with
late onset tremor and ataxia, now known as FXTAS (Hagerman
et al. 2001). Prior to this, these individuals were referred to as “pre-
mutation” or “normal transmitting males/females,” a term high-
lighting their limited FXS phenotypes and their ability to pass
on the FXS-eliciting expansion to their children, despite their dis-
tinct clinical presentations of ataxia later in life (Loesch et al.
1994). Although ataxia had previously been observed in families
with Martin-Bell syndrome/FXS, prior to the discovery of the dis-
ease-causing CGG expansions (Howard-Peebles 1980), because
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the ataxia and intellectual disability did not simultaneously appear
in a single individual, Dr. Howard-Peebles stated “Several family
members are ataxic…[which] appears to be an unusual variety of
spinocerebellar atrophy… [and] There appears to be no relation-
ship between this disorder and X-linked mental retardation with
a fragile Xq”. These early observations of FXTAS were also compli-
cated by limited family member numbers and the multiplicity of
phenotypes resulting from different expansion lengths, which
has only been delineated within the early 2000s (Jacquemont
et al. 2004; Rodriguez-Revenga et al. 2009). This penetrance issue
also complicated early characterization of DM1 and other diseases
(Echenne and Bassez 2013; De Antonia et al. 2016; Joosten et al.
2020). Despite this, it is highly laudable that Dr. Howard-Peebles
noted the ataxia in the FXS family, as it facilitated the eventual cor-
rect characterization of the ataxia as a separate disorder (Howard-
Peebles 1980). While it is unlikely that this is the first time such
an associationwas clinically observed, it may be the first published
description of FXTAS in FXS families. Retrospectively, it is under-
standable how an association between FXS and the late-onset,
slowly progressive motor symptoms of FXTAS had been over-
looked for such a long time, but this should serve as a teaching les-
son: ascertainment bias by human involvement may lead to
missed genetic attributions of varied clinical presentations (symp-
toms, ages at onset, etc.) to a single TR locus. For example, a con-
founding factor in the case of FXS is that families (boys with FXS
and their mothers) were typically under the care of pediatricians,
while the grandfathers at risk for FXTAS were seen by separate spe-
cialists (neurologists, geriatricians).

A similar example occurred in cases of nonneuropsychiatric
clinical presentations in FXS family members, which were met
with delayed recognition and acceptance by the research commu-
nity for being genetically linked to CGG expansions in FMR1. In
the late 1980s to early 1990s, studies of FXS families suggested
that non-FXS premutation mothers were at risk of early meno-
pause and increased rates of dizygotic twinning, which in 1995
led to testing an association of ovarian failure in these women
(Conway et al. 1995; Murray et al. 1998; Sherman 2000). A link be-
tween premutation (CGG) 55–199 lengths in FMR1 and fragile-X
associated primary ovarian insufficiency (FXPOI) is now accepted,
and recently a study of 1668 women has refined the risk of FXPOI:
specifically, females with 85–89 repeats are at the highest risk,
while those with 55–65 repeats or 120–199 repeats did not have
a significantly increased risk for FXPOI compared to women with-
out anyCGG expansions <45 repeats (Allen et al. 2021). The risk of
earlymenopausewas very similar (Allen et al. 2021). A link of twin-
ning rates and FMR1 premutations remains an enigmawith incon-
sistent claims (for and against an association), likely due to studies
that do not account for repeat size and possibly timing of twinning
relative to X-inactivation (Sherman 2000; Allen et al. 2007). Thus,
very distinct clinical presentations can arise from repeat expan-
sions in a given gene, and these can critically depend upon repeat
expansion size.

With the clarity of hindsight, it is easy to overlook that late-
onset genetic disorders, especially those that show incomplete pen-
etrance, are challenging to study through families—especially so in
the era prior tomolecular biology. A thought experiment is instruc-
tive here: without the link provided by individuals ascertained
through fragile X syndrome, would it have been possible to define
the partially-penetrant FXTAS or FXPOI? It seems unlikely, and this
lesson should be carried with researchers into the future, especially
with the expansion of molecular biology research, as similar
breadths of clinically diverse presentationsmay also be linked to ex-

pansion size at the DM1 (Trost et al. 2020), C9orf72 (Miller et al.
2016; Van Mossevelde et al. 2017; Fredi et al. 2019; Tábuas-
Pereira et al. 2019), the NIID loci (Sone et al. 2016), FMR1
(Schneider et al. 2020), or any other of the known or yet undiscov-
ered repeat diseases. To this degree, clinicians and researchers must
share observations, be open-minded and embrace the likelihood
that repeat diseases are not limited to only continuums of severity
of one but of potentially diverse phenotypes.

The length of repeats in one gene can predispose to distinct

diseases

Recent studies have started to unveil how the nondiseased size of a
TR in one disease-associated gene can be linked to the susceptibil-
ity of another distinct disease. For example, the intermediate CAG
repeat lengths of ATXN2 gene has been identified as a risk factor
for developing ALS (Elden et al. 2010; Conforti et al. 2012),
SCA3 (Tezenas du Montcel et al. 2014), FTD (Fournier et al.
2018), andAD (Rosas et al. 2020). This associationwas further con-
firmed by a series of studies, and a meta-analysis of these data
showed that an intermediate CAG repeat (30–33) allele in
ATXN2 is associated with increased risk of developing ALS with
the odds ratio of 4.44 (Wang et al. 2014).

Other instances of this phenomena are observed in the inter-
mediate CAG repeat lengths of: ATXN1 as a risk factor for FTD, AD,
ALS, SCA3, and SCA6; ATXN3 as a risk factor for SCA6 and SCA7;
ATXN7 as a risk factor for SCA2; TBP as a risk factor for SCA7; and
HTT as a risk factor for FTD, AD, and SCA3 (Conforti et al. 2012;
Tezenas du Montcel et al. 2014; Rosas et al. 2020). The nonpatho-
genicHTTCAG tract length has also recently been associated with
variable changes in risk for ASD, where longer allele lengths are as-
sociated with an enhanced ASD risk (Piras et al. 2020). Another ob-
servation is that theGT repeat length in the promoter region of the
HMOX1 genemodulated the risk of human immune deficiency vi-
rus (HIV)-related central nervous system inflammation, such that
shorter GT repeats are related with decreased risk of HIV encepha-
litis (Gill et al. 2018) and HIV-associated neurocognitive impair-
ment (Garza et al. 2020). Increasing the complexity of these
associations is the fact that in certain instances longer repeat
lengths could also be protective—for example, with longer CAG
lengths in HTT (within the normal range) being protective for
SCA3 age of onset (Tezenas du Montcel et al. 2014).

The effects of TRs resulting in variable disease susceptibility
can partially be explained by their effects on gene expression. A ge-
nome-wide search utilizing RNA-seq data of lymphoblastoid cell
lines and lobSTR (Gymrek et al. 2012)—another software to ana-
lyze TR length—revealed 2060 STRs in association with gene ex-
pression (the authors coined these STRs as eSTRs) (Gymrek et al.
2016). This study further identified that 12 eSTRs are significantly
associated with clinical phenotypes, including Crohn’s disease,
rheumatoid arthritis, and type 1 diabetes mellitus. The findings
of eSTRs are supported by a study by Quilez et al., in which they
genotyped 4849 promoter-associated STRs in 120 individuals
and found more than 100 STRs associated with DNA methylation
and neighboring gene expression (Quilez et al. 2016). These TRs
were shown to have tendencies toward overlappingwith transcrip-
tion factor binding sites, providing an explanation for possible bi-
ological mechanisms of action. The same group used another STR
analysis software, HipSTR, to link hundreds of eSTRswith complex
disorders such as schizophrenia and inflammatory bowel disease,
and complex traits including height and intelligence (Fotsing
et al. 2019). A more recently developed powerful bioinformatic
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tool, adVNTR-NN, used a neural network to rapidly genotype
10,264 VNTRs in 652 individuals (Bakhtiari et al. 2021). Greatly
improving processing times from previous tools, adVNTR-NN
can genotype a single VNTR from 55× whole-genome data in 18
sec with high accuracy. The group found 163 VNTRs associated
with regulation of proximal gene expression (designated
eVNTRs) in 46 different tissues—with about 50% of these having
a likely causal impact on the expression of proximal genes.
Within the eVNTRs, several were associated with Alzheimer dis-
ease, obesity, and familial cancers, supporting that repeat-associat-
ed expression dysregulation is likely a contributing factor to
pathogenesis.

Analysis of these secondary repeat instability effects offers key
insights into disease and potentially illuminates therapeutic po-
tential. For example, a recent study demonstrated that cancer cells
with microsatellite instability arising from DNA mismatch repair
deficiency incur previously unknown large-scale expansions of
TA repeats (Van Wietmarschen et al. 2020). TA repeats are found
genome-wide and, when expanded, they stalled replication forks,
activated DNA damage response kinases, and required WRN heli-
case for processing. In the absence ofWRN, however, expanded re-
peats were susceptible to cleavage by the MUS81 nuclease, leading
to massive chromosome shattering and synthetic lethality in can-
cer cells. Nearly 15%of colorectal cancers, 20%–30%of endometri-
al cancers, 15% of gastric cancers, and 12% of ovarian cancers are
caused by deficiency in DNA mismatch repair, supporting the de-
velopment of therapeutic agents that targetWRN formicrosatellite
instability-associated cancers.

Further studies are expected to clarify the role of TRs in com-
plex human traits and diseases, which has been proposed to ex-
plain “missing heritability” (Hannan 2010) as demonstrated in
the recent study on ASD (Trost et al. 2020).

Repeat tract purity and gene variance can be an issue for clinical

awareness and research

Another major aspect of repeat disease genetics that is highly rele-
vant to clinical awareness and understanding of pathogenesis is
the concept of repeat tract purity—the presence or absence of non-
repeat units within a tract of tandemly repeating motifs. Recently,
it has become increasingly apparent that the presence of interrup-
tionswithin expanded TR tracts affects genetic instability as well as
age-of-disease-onset severity. Soon after the discovery of repeat ex-
pansions as a cause of disease, it was found that interruptionswith-
in the repeat tract stabilized these repeats against expansions,
whereas loss of interruptions makes the repeat susceptible to ex-
pansion (Chung et al. 1993). Interrupted nonexpanded repeat
tracts are typically associated with beneficial aspects for FXS,
SCA1, SCA2, and HD (Eichler et al. 1994; Chong et al. 1995;
Latham et al. 2014)—protecting against germline and somatic re-
peat instability and, in this manner, “protecting” against disease
aspects for the gene in which the repeat resides. The purity of
the FMR1 premutation CGG tracts, when diagnostically assessing
the AGG interruptions in the premutation CGG expansions in
FMR1 by single-molecule PacBio sequencing, allows accurate risk
estimates for having a child with FXS (Ardui et al. 2018).
Sequencing has many advantages over PCR-based methods and
provides improved genetic counseling for womenwith a premuta-
tion—for example, in decisions of family planning.

Because the size of the expansion correlates with disease
severity, inhibition of repeat expansions was hypothesized to dras-
tically modulate age-of-disease-onset severity. Indeed, recent data

supports this hypothesis by revealing that, in a portion of individ-
uals with HD (Ciosi et al. 2019; Genetic Modifiers of Huntington
Disease (GeM-HD) Consortium 2019; Wright et al. 2019), the ab-
sence of CAG tract purity may have strong effects on the age-of-on-
set, disease progression, severity, and phenotypic manifestations.
For example, in HD, the polyQ-coding CAG repeat usually ends
with CAACAG (which also codes for QQ) or (CAACAG)2 (which
codes for QQQQ), but in some HD individuals, the interrupting
CAA units are absent. The groups found that those carrying the
(CAACAG)2 interruption had significantly delayed disease age-of-
onset and lessened severity, and those carrying no interruption
had significantly hastened age-of-onset and worsened severity, rel-
ative to those carrying a single CAACAG—despite all expressing a
mutant HTT protein with the same polyQ length. These facts
may suggest that pure repeat tracts are more susceptible to somatic
repeat instability and thus result in earlier disease onset and more
severe phenotypes. As such, correct identification of interrupted re-
peats within patient cohorts is essential for planning clinical trials,
providing prognostic insight, and in conducting patient research.

It should also be noted that interrupted repeats can also have
deleterious attributes. Asmentioned in the previous section, larger
nonpathogenic length repeats can affect presentation of other dis-
eases—for example, largerATXN1 orAXTN2CAG tractswithin the
wild-type range can be associated with ALS, FTD, AD, and SCA3.
These larger tract sizes are typically interrupted CAG tracts
(Corrado et al. 2011; Yu et al. 2011; Conforti et al. 2012). While
the manner by which the interruptions contribute to disease pre-
disposition is unknown, a broader appreciation of repeat purity is
clearly wanting.

While the presence of repeat tract interruptions on shorter/
nonexpanded tracts has long been known (Eichler et al. 1994;
Latham et al. 2014), the assessment of purity of longer/expanded
tracts and complexmotifs is more challenging. For example, while
long-presumed to be pure, long disease-associated expansions of
the myotonic dystrophy CTG tract have been shown to be inter-
rupted with various non-CTG units, with unusual patterns.
These interrupted alleles have been associated with altered predis-
positions to germline and somatic instabilities and may be associ-
ated with vastly altered clinical presentations (Musova et al. 2009;
Braida et al. 2010; Santoro et al. 2013, 2017; Botta et al. 2017;
Cumming et al. 2018; Tomé et al. 2018; Ballester-Lopez et al.
2020). While LRS is expected to reveal the inaccessible areas of
long stretches of TRs, the high error rates of nanopore sequencing
and SMRT sequencing technologies appear as obstacles to fine
analysis and may introduce “artificial interruptions.” While CSS
has been applied to some expanded TRs, such as GGGGCC repeat
expansion in C9orf72 (Ebbert et al. 2018) and CGG repeat expan-
sion inNOTCH2NLC (Sone et al. 2019), its usefulness to character-
ize the purity of TRs still needs more validation. Currently,
interruptions still present a major challenge for LRS that will
need to be addressed as the field progresses. A full appreciation
of the purity of any expanded repeat will likely lead to improve-
ment to clinical, diagnostic, and genetic counselling. The evolu-
tion of bioinformatic tools is wanting.

In addition to repeat tract purity, another major modifier of
disease is naturally occurring variants of genes which act as
trans-modifiers of disease. Of note are theDNA repair gene variants
known to modify disease presentation in patients, likely by modi-
fying the level of somatic expansions at the repeat. For example,
recent age-of-onset for HD GWASs have identified SNP variants
in the DNA repair genes MSH3, FAN1, PMS2, LIG1, and MLH1
(Genetic Modifiers of Huntington’s Disease (GeM-HD)
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Consortium 2019), and a separate GWAS identified variants of
MSH3 modified somatic instability and disease severity in HD
and DM1 patients (Flower et al. 2019). Corroborating these find-
ings and illuminating overlap between the different diseases, a sep-
arate GWAS identified FAN1 and PMS2 variants as significant
modifiers of age-of-onset for several different CAG expansion
SCAs (Bettencourt et al. 2016). These studies demonstrate the im-
portance of these DNA repair proteins in disease pathogenesis.
Furthermore, their impact is not limited to CAG/CTG disorders,
as a recent GWAS in XDP (caused by a CCCTCT repeat expansion)
also identified variants ofMSH3 and PMS2 as significant modifiers
of age-of-onset (Laabs et al. 2021). While these SNP-based ap-
proaches sifting known variants illuminate novel shared pathways
that may contribute to pathogenicity, large-scale whole-genome
sequencing efforts are likely to reveal novel gene variants that
are significant modifiers of disease (e.g., see Deshmukh et al.
2021).

Beyond humans and beyond disease

Nonhuman organisms can display TR length variations with asso-
ciated disease or biological consequences. Naturally occurring re-
peat length variations are implicated in disease of nonhuman
organisms (summarized in Table 3) and in humannondisease phe-
notypes, such as height. Prominent examples include various ca-
nine diseases associated with repeat expansions, such as (1) the
dodecamer GCCGCCCCCCGC pathogenic repeat associated
with a epilepsy (canine Lafora disease) in many species of dogs
(Lohi et al. 2005; Webb et al. 2009; Barrientos et al. 2019; Kehl
et al. 2019; for review, see von Klopmann et al. 2021), (2) a 38-

bp VNTR in the dopamine transporter gene, DAT/SLC6A3, associ-
ated with seizures and behavioral issues in Belgian Malinois dogs
(Lit et al. 2013), and (3) the GAA repeat expansion associated
with spinocerebellar ataxia in Italian Spinone dogs (Forman et al.
2015). Oddly, nonrepeat mutations in the human homologs of
some of these genes, likeNHLRC1 and ITPR1, cause similar disease
in humans, but the human gene does not contain the unstable re-
peat present in the canine gene as outlined in Table 3 (Chan et al.
2003; Das et al. 2017; Zambonin et al. 2017; for review, see von
Klopmann et al. 2021). While it remains puzzling that the highly
unstable, pathogenic “dynamic” repeat mutations seem to be
mostly confined to humans, in these particular cases, it seems
that the canine disease, but not the human, is linked to repeat ex-
pansions. However, there seems to be some overlap between dogs
and human, albeit controversial, with VNTR variation in DAT/
SCLR and behavioral presentations (Hauser et al. 2002; Lafuente
et al. 2007; Ivashchenko et al. 2015). Repeat expansions, with bio-
logical consequences, have been documented in plants. For exam-
ple, an expanded TTC/GAA intronic repeatwithin the ILL1 gene of
Arabidopsis thaliana is responsible for growth defects and tempera-
ture sensitivity within a strain of the plant species (Sureshkumar
et al. 2009; Tabib et al. 2016). An awareness of repeat biology in
crops is only beginning—for example, different numbers of ser-
ine-encoding TCG repeats of ERF17may regulate apple peel degre-
ening during ripening (Han et al. 2018). In nonvertebrates,
variations in repeat length within coding sequences have been
suggested as a source of speciation in honey bees (Zhao et al.
2018), as a mediator of lifespan in yeast (Barré et al. 2020), and
as a regulator of immunity in pearl oysters (Cao et al. 2021).
Analysis of Arabidopsis thaliana reveals a large degree of genetic

Table 3. Nonhuman phenotype-associated TR expansions

Phenotype (species) Repeat unit
Gene,
loci

Location
of

mutation

Inheritance
or

association Human equivalent Ref

Publication
date

(D/M/Y)

Immunomodulation
(Pinctada fucata

martensii)

Large tandem
arrays

nAChR Multiple
locations

– No Cao et al. 2021 –/–/2021

Life span
(Saccharomyces
cerevisiae)

Varied FLO11
and
HPF1

Intragenic – No Barré et al. 2020 10/04/2020

Degreening (Malus
domestica)

Serine coding
repeats

ERF17 Exon Association No Han et al. 2018 05/02/2018

Impaired growth
(Arabidopsis
thaliana)

TTC/GAA IIL1 Intron – No Tabib et al.
2016;
Sureshkumar
et al. 2009

31/08/2016
20/02/2009

SCA (Canidae) GAA ITPR1 Intron AR Deletions in humans
cause SCA15;

Das et al. 2017;
Zambonin et al. 2017

Forman et al.
2015

30/10/2014

Epilepsy and
behavioral changes
(Canidae)

Poly(A) SLC6A3 Intron Association 40-bp VNTR variations
associated with
alcoholism, epilepsy,
ADHD, susceptibility to
Parkinson disease;

Hauser et al. 2002;
Ivashchenko et al.
2015; Lafuente et al.
2007

Lit et al. 2013 23/12/2013

Lafora disease/ EPM2
(Canidae)

GCCGCCCCCC
GC

Epm2b
Nhlrc1

Exon AR Nonrepeat LOF mutations
cause Lafora disease in
humans;

Chan et al. 2003

Lohi et al. 2005 07/01/2005

Overview of nonhuman phenotype-associated repeats. Abbreviations: SCA, spinocerebellar ataxia.
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variability associated with natural polymorphic variants within re-
peat tracts in the genome; with 95%of the 2046 STR loci tested dis-
playing significant polymorphism (Press et al. 2018). These
examples exhibit that many nonhuman disease or complex phe-
notypes are associated with repeat length variations and could
contribute to evolutionary-selectable traits which could be benefi-
cial or detrimental.

As our understanding of repeat sequences grows, so too will
our appreciation for natural variability of complex traits in hu-
mans due to variations in repeat length. For example, a recent
study analyzing the genomes of 3622 Icelanders by LRS identified
a median of 22,636 structural variants per person, representing
13,353 insertions and 9474 deletions spanning a total of 10 Mb
per haploid genome. While some of these variations are disease-
relevant (such as the 69-mer variation within NACA, associated
with atrial fibrillation), some variants were associated with nondi-
sease complex traits, such as the 57-bp repeat within ACAN which
was associated with height of the individual (Beyter et al. 2021).
This is coincident with previous reports which also found associa-
tions of repeat lengths with height (Fotsing et al. 2019). Limb and
skull morphological variations in dogs have already been linked
with differences in repeat sizes of a variety of genes, suggesting
that natural human variation could also be attributed to repeat
length variations (Fondon andGarner 2004). Indeed, a recent large
scale repeat length polymorphism analysis of 118 coding VNTRs
in more than 400,000 individuals reveals associations of repeat
lengths with nearly 800 different human trait phenotypes, includ-
ing height, male pattern baldness, and hair morphology, and
potentially disease-associated phenotypes such as lipoprotein con-
centration and kidney function (Mukamel et al. 2021). Thus, DNA
repeat length variationsmay affect various phenotypes, not neces-
sarily disease attributes only, thereby precipitating rapid pheno-
typic variations which may affect rates of natural section. On an
evolutionary scale, TR variations that may have null or deleterious
effects could, with environmental change, become advantageous.

Concluding remarks—toward future discoveries

As of December 2021, there were 63 disease-associated or disease-
causing unstable TR loci, at least 22 repeat motifs (not counting
complex, large, and/or variablemotifs), associatedwith >69 diseas-
es, where some diseases are common to some of the same TR loci.
Our quest for TR expansions and their association with disease is
still far from complete; currently we only see the tip of the iceberg.
Recent technological progress has facilitated the unveiling of TR
expansions with large effect size on clinical phenotypes, but our
knowledge of those with small effect size is extremely limited.
The mechanism of TR expansion has been eagerly sought after,
and earlier studies indicate the impact of DNA repair proteins
and their naturally occurring variants (Tomé et al. 2009). This
view is supported by the recent large-scale screens for diseasemod-
ifiers (Moss et al. 2017; Flower et al. 2019; Genetic Modifiers of
Huntington Disease (GeM-HD) Consortium 2019), which may
lead to the development of disease-modifying therapies. The im-
pact of somatic instability of TRs is now recognized for numerous
neurodegenerative disorders and cancers, but noninvasive meth-
ods to evaluate its degree in various organs and tissues are still lack-
ing. Wemust pause to consider howmany TR expansions may yet
prove to be associated with biological functions, diseases, and evo-
lutionary change. Further identification and understanding of
TRs, beyond the tip of the iceberg, will reveal a new landscape of
biology and medicine.
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Note added in proof
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