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BACKGROUND: Intraventricular hemorrhage causes significant lifelong mortality and morbidity, especially in preterm born infants.
Progress in finding an effective therapy is stymied by a lack of preterm animal models with long-term follow-up. This study
addresses this unmet need, using an established model of preterm rabbit IVH and analyzing outcomes out to 1 month of age.
METHODS: Rabbit pups were delivered preterm and administered intraperitoneal injection of glycerol at 3 h of life and
approximately 58% developed IVH. Neurobehavioral assessment was performed at 1 month of age followed by
immunohistochemical labeling of epitopes for neurons, synapses, myelination, and interneurons, analyzed by means of digital
quantitation and assessed via two-way ANOVA or Student’s t test.
RESULTS: IVH pups had globally reduced myelin content, an aberrant cortical myelination microstructure, and thinner upper
cortical layers (I–III). We also observed a lower number of parvalbumin (PV)-positive interneurons in deeper cortical layers (IV–VI) in
IVH animals and reduced numbers of neurons, synapses, and microglia. However, there were no discernable changes in behaviors.
CONCLUSIONS: We have established in this preterm pup model that long-term changes after IVH include significant wide-ranging
alterations to cortical organization and microstructure. Further work to improve the sensitivity of neurocognitive testing in this
species at this age may be required.

Pediatric Research (2022) 92:403–414; https://doi.org/10.1038/s41390-022-02075-y

IMPACT:

● This study uses an established animal model of preterm birth, in which the rabbit pups are truly born preterm, with reduced
organ maturation and deprivation of maternally supplied trophic factors.

● This is the first study in preterm rabbits that explores the impacts of severe intraventricular hemorrhage beyond 14 days, out to
1 month of age.

● Our finding of persisting but subtle global changes including brain white and gray matter will have impact on our
understanding of the best path for therapy design and interventions.

INTRODUCTION
Intraventricular hemorrhage (IVH) occurs in up to 45% of preterm
infants born below gestational age 26 weeks, with severe IVH (≥3
grade) occurring in nearly 30% of those very fragile infants.1–3

These numbers have increased as survival of the smallest infants,
22–23 weeks, improves.4,5 Of these infants with severe IVH (≥3
grade), up to 60% will go on to develop post-hemorrhagic
ventricular dilation (PHVD).1,6 We have no treatments for IVH, and
infants born preterm and affected by IVH have a higher risk for
impaired neurodevelopment4,7,8 compared to their age-matched
non-IVH affected peers and this is especially true for infants who
go on to develop PHVD.9–14

IVH arises in the germinal matrix, a layer of immature
neuronal and glial precursors adjacent to the ependymal lining
of the ventricles interwoven with a dense network of delicate
blood vessels. These vessels have no structural support, and
lack autoregulation, which makes them susceptible to fluctua-
tions of vascular flow. The risk factors for IVH include
immaturity (gestational age, birth weight), vascular fluctuations
(hypotension, need for resuscitation), and inflammation (inter-
leukin 1B polymorphism,15 and chorioamnionitis.16) The
development of therapies for IVH-related brain injury is
stymied by a lack of well-characterized representative animal
models.
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Models of IVH across species have revealed mechanisms
potentially involved in its pathophysiology, reviewed in ref. 17

including the distribution of extracellular hemoglobin within white
matter (WM), toxicity of blood product degradation, onset of
neuroinflammation characterized by microglia and astrocyte
activation and infiltration by systemic immune cells, the death
of neuronal and glial cells, and arrest of pre-oligodendrocyte
maturation. However, most IVH models utilize pups delivered at
term with correspondingly mature physiology but with varying
degrees of brain maturity when compared to the human infant,
ranging from preterm (rodents) to term (piglets, dogs).17,18 The
lack of preterm delivery in those models omits several important
aspects of preterm birth, such as respiratory instability, immaturity
of the coagulation system, a deficit of trophic factors, and the
impact of hemorrhage into the immature brain parenchyma.17

One of the few small animal models of IVH that incorporates
preterm birth is the preterm rabbit pup model,19–21 which is used
in the current study. Preterm rabbit pups exhibit many aspects of
prematurity relevant for human preterm infants, including smaller
lungs with a reduced alveolar surface and lower expression of
surfactant proteins,22,23 the propensity to development of
necrotizing enterocolitis-like disease,24 renal immaturity,25 and
reduced levels of trophic growth factors such as insulin-like
growth factor-1.26 The preterm rabbit brain development at post-
conceptional day 29 arguably corresponds to brain development
in humans at gestation week 24–25,20,27,28 the period of peak
vulnerability to IVH.
Across all models of IVH, most studies report on short-term

outcomes (<14 days), and there is a lack of neurobehavioral
testing in preterm models. Thus, to fill this gap in our knowledge,
we aimed to use our established model of IVH in preterm rabbit
pups and characterize out to 1 month of age (equivalent to a 1-
year-old human) survival, neurobehaviors, neuropathology, and
cortical development.

MATERIALS AND METHODS
Animals
The study was approved by the Swedish Animal Ethics Committee in Lund
(dnr. M 2-16). We used the preterm rabbit pup model of glycerol-induced
IVH as previously described.20,21 Seventy-seven preterm rabbit pups of
both sexes from 12 different litters were included in the study. Detailed
methods can be found in the Supplementary Methods. A half-breed
between the New Zealand White and Lop was used (Christer Månsson,
Löberöd, Sweden). Pups were delivered via cesarean section at post-
conceptional day 29 (term= 32 days). At 3 h of age, all pups received
intraperitoneal (i.p.) injection of 50% (v/v) sterile glycerol (6.5 g/kg;
Teknova, Hollister, CA) to induce IVH. Thereafter, pups were randomly
allocated (https://www.random.org/) to a wet-nurse doe for the remainder
of the experiment. The study endpoint was PND33, which corresponds
roughly to brain development of a year-old toddler.29

IVH and PHVD detection
The presence and severity of IVH were evaluated by high-frequency
ultrasound (HFU) (VisualSonics Vevo 2100, VisualSonics Inc., ON, Canada)
using an MS-550D 40MHz transducer at PND1 and PND2. Pups with IVH
(any grade) as determined by HFU (HFU was done by O.R.) were assigned
to the IVH group and those without detectable IVH were used as controls.
To confirm the presence of PHVD, an ex vivo brain HFU was also performed
directly after termination via an artificial ultrasound window created by
shaving the skull and making a short skin mid-sagittal incision and making
a careful osteotomy (approximately 3 mm), taking care to prevent damage
to the underlying dura. The obtained calvarial opening was irrigated with
sterile saline to wash out tissue microparticles.

Sex determination
To detect the male sex, polymerase chain reaction for the detection of SRY
(specific region of the Y chromosome) sequences was used; details of the
PCR conditions and the primer sequences are found in the Supplementary
Methods.

Neurobehavioral examination
Neurobehavioral testing was performed between PND29 and 32 as
previously described20,30,31 by an investigator blinded to the group of the
pup. There was no visible differences in general animal performance that
allowed us to discriminate between the groups. The motor examination
included muscle tone and strength, gait, and righting reflex. The
neurocognitive testing included open field (OF) test and the object
recognition test (ORT). The ORT included a familiarization phase and a trial
phase, which was spaced by an interest interval of 5-, 30-, and 240-min on
testing days 2, 3, and 4, respectively. The specific details of the tests, arena,
and the paradigms in full are found in the Supplementary Methods section.
The room temperature was set at 21 °C and works undertaken as
previously in rabbit pups at earlier time points.31,32 Data were analyzed
with the Video Tracking Software (SMART, Panlab SL, Barcelona, Spain). The
authors were blinded to animal group assignment throughout testing,
data gathering, and analysis.

Tissue collection
Tissues were collected and processed as previously31 and as described in
detail in the Supplementary Methods. In brief, brains were transcardially
perfused and then post-fixed for 24 h in 4% paraformaldehyde before
being processed to paraffin and cut at 5 µm.

Immunohistochemistry (IHC)
Sections were prepared and stained using well-established protocols as
previously31 and described in detail in the Supplementary Methods. In
brief, sections were rehydrated and antigen retrieval was performed with
citrate buffer, pH 6+ 0.04% Tween 20, at 95 °C for 20min followed by
blocking with 0.1 M phosphate-buffered saline (PBS) containing 0.05%
Triton X-100 (TX) and 1% bovine serum albumin (PBS-BSA-TX) for 30min
and then the application of primary antibodies listed in Table 1 diluted in
PBS-BSA-TX and applied for 16 h, at 4 °C in a humidified chamber: As
antibody specificity controls, in adjacent sections the primary antibody
incubation was excluded. Sections were then incubated with horseradish
peroxidase (HRP)-conjugated secondary antibodies, see Table 1, for 30min
at room temperature and diaminobenzidine (DAB, 0.5 mg/ml) plus
hydrogen peroxidase (0.1%) for 10min at room temperature to reveal
the antigen–antibody binding. Sections were dehydrated and coverslipped
in Pertex (Histolab, Gothenburg, Sweden).

Immunofluorescence (IF)
A standardized IF protocol was conducted as previously described33 and
described in detail in the Supplementary Methods, including no primary
antibody controls. In brief, slides were rehydrated and antigens were
retrieved with citrate buffer (10mM, pH 6.0) at 95 °C for 20min. Sections
were then exposed for 20min to a 0.1% Sudan Black block diluted in 70%
EtOH, as previously,34 and then blocked further in 5% normal goat serum
0.2% Triton X-100 for 1 h at room temperature. Slides were incubated in
humidified chambers overnight at 4 °C with the primary antibodies and
then the secondary antibodies listed in Table 1. Sections were then stained
with 4,6-diamidino-2-phenylindole and coverslipped.

Image acquisition and quantification
We initially verified that there was no labeling in the antibody-omitted
specificity control sections. Analyses were conducted by investigators
blinded to the treatment groups. Full details of the methods can be found
in the Supplementary Methods section. Sections were scanned to obtain
digital images and the region of interest (ROI) extracted with resolution of
scale fixed across sections, regions, and analysis.
NeuN-positive cells were calculated with Fiji by the default auto-

threshold segmentation method and watershed separation following
primary smoothing or were manually counted if the separation of cells was
not achieved. The number of identified cells was divided by the whole area
for neuron density assessment.
The area coverage for glial fibrillary acid protein (GFAP), synaptophysin,

and myelin basic protein (MBP) labeling was calculated using a fixed
threshold (relative to background) and the relative area (positive area/
overall area) was calculated.
Directionality and organization of the MBP staining was analyzed using

Fiji (https://doi.org/10.1088/1758-5090/aa6204). MBP was assessed in the
middle third of a fixed-width image of the cortical plate to focus on the
region with the greatest number of ascending fibers.
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For interneuron analysis, upper and lower cortical regions were defined
as layers I–III and IV–VI, respectively, as described previously.33 Immunor-
eactive cells were counted manually by a blinded observer using the
CellSens Dimension counter tool. PV+ cells were identified as having a
defined cell body within the section, and WFL+PNN+ were defined as an
entire halo encompassing a PV+ interneuron.
The mean of the left and right regions for each analysis and ROI was

used for statistical analysis.

Statistical analysis
Kaplan–Meier curve with a Gehan–Breslow–Wilcoxon test was used for
survival analysis. For neurobehavioral testing, a one-tailed T test was
employed based on the expected direction of change from previous
studies,1,2 and analyses were performed using SPSS (PASW Statistics 18,
IBM, Deutschland GmbH).
For cortical layering analysis, an unpaired Student’s t test assessed

treatment (presence of IVH) vs control effect on total cortical depth (Layers
I–VI). Grouped data of layer depth (I–III, VI, V–VI; IVH vs control) and
comparisons across regions for staining of cell types with IHC were
analyzed using two-way analysis of variance (ANOVA), and when statistical
significance was attained for treatment (presence of IVH) vs control (no
IVH), post hoc analysis was performed with Sidak’s multiple comparison
using alpha= 0.05. For IHC analyses, including cortical layers, perineuronal
net (PNN), interneuron, and myelin, organization statistics were under-
taken with GraphPad Prism (9.0, San Diego, CA) and post hoc analysis was
also performed with Sidak’s multiple comparison using alpha= 0.05.
Results are shown as mean (standard deviation) or median (interquartile
range or confidence interval 95%). For all analyses, p < 0.05 was indicative
of statistical significance.

RESULTS
As summarized in Fig. 1a, 77 preterm rabbit pups (female= 27,
male= 45, unknown= 5) from 12 litters were included in this
study who were cross-fostered to a total of ten wet nurses. In total,
88 pups were delivered, but 4 were born dead and 7 died
between birth and before 3 h of age when glycerol was

administered. All pups received glycerol and 58% developed IVH
as assessed with ultrasound. Twenty-one preterm pups (=27%)
survived to the endpoint of the study (PND33). Of those 21
preterm pups, 8 (=38%) (females= 2) had IVH and developed
PHVD and 13 (=62%) (females= 2) were used as controls (Fig. 1a).
Following termination of the pups at PND33, we confirmed the
development of various degrees of PHVD in all 8 animals in the
IVH group (examples in Fig. 1b–d). One pup in the IVH group had a
considerably milder PHVD and was therefore excluded from all
subsequent analyses; this pup was male and had otherwise
regular post-natal growth. All 13 animals in the control group had
a normal brain ultrasound finding (representative images in
Fig. 1b).

Pups with IVH had reduced survival rates
There were no differences in birth weight, bi-parietal measure-
ment at birth, and in postnatal growth between the groups
(Fig. 2a, b) or by sex for each treatment (data not shown due to
small n). Survival was drastically diminished in pups with IVH
compared to the controls (17.8 vs 40.6 %, p= 0.004,
Gehan–Breslow–Wilcoxon test; Fig. 2c). Survival in female pups
(control and IVH) was significantly lower compared to male pups
(control and IVH) (p= 0.044, Gehan–Breslow–Wilcoxon test;
Fig. 2d). Fewer female preterm pups with IVH survived until the
study endpoint compared to the preterm male pups (p= 0.013;
Fig. 2d).

IVH had no impact on the assessed neurodevelopmental tests
At PND 29–32, all surviving preterm pups in both IVH and control
groups were exposed to neurobehavioral assessment. It was
impossible to distinguish phenotypically the preterm pups with
IVH/PHVD from the controls: all the surviving pups managed to
feed independently, moved freely within the cages, and exhibited
no differences when assessed for muscle tone and righting reflex
(data not shown). The gait and coordination examination on a 60°

Table 1. Antibodies used in the study.

Antigen Species and antibody type Product identifier

Immunohistochemistry

Neuronal nuclear antigen (NeuN) Mouse monoclonal (1:100) MAB377, Millipore, Ternecula,
CA, USA

Synaptophysin Mouse monoclonal (1:40) Clone Sy38, ab8049, Abcam,
Cambridge, UK

Myelin basic protein (MBP) Mouse monoclonal (1:50) Clone SMI94, 836504, BioLegend,
San Diego, CA, USA

Ionized calcium-binding adapter molecule 1 (IBA 1) Rabbit polyclonal (1:1000) 019-19741, FUJIFILM Wako, Japan

Glial fibrillary acid protein (GFAP) Chicken polyclonal (1:750) ab4674, Abcam, Cambridge, UK

Mouse IgG Goat polyclonal (1:1) MP-7452, Vector Oxfordshire, UK

Chicken IgY Donkey polyclonal (1:500) 703-585-155 Jackson IR, West Grove
PA, USA

Immunofluorescence

Chicken ovalbumin upstream promoter transcription
factor-interacting protein 2 (CTIP2)

Rat monoclonal (1:500) ab18465, Abcam, VIC, Australia

N-terminal EF-hand calcium binding protein 1 (NECAB1 Mouse polyclonal (1:500) PA5-54849, Thermo Fisher, VIC,
Australia

Parvalbumin (PV) Mouse monoclonal (1:250) PV235, Swant, Burgdorf, Switzerland

Perineuronal net acetylgalactosamines Wisteria Floribunda lectin (WFL, non-
antibody based) (1:500)

B-1355, Vector laboratories via
Abacus, QLD, Australia

Anti-mouse IgG 594 goat polyclonal (1:200) A11034, Thermo Fisher, VIC, Australia

Biotin Streptavidin 488 conjugate (1:1000) S11223, Thermo Fisher, VIC, Australia

Anti-rat IgG 594 goat polyclonal (1:500) A11007, Thermo Fisher, VIC, Australia

Anti-mouse IgG 594 goat polyclonal (1:500) A11011, Thermo Fisher, VIC, Australia
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inclined slope revealed no differences between the IVH and the
control groups (mean (SD): 20.2 ± 11.2 s vs 21.5 ± 15.4 s, p= 0.8).
During the OF test with a duration of 5 min, both groups of

preterm rabbits spent nearly half of the testing time in the
peripheral zone with their body touching the wall (mean (SD)
time was 141.5 ± 92 s vs 124.3 ± 93 s, for the IVH and control
groups, respectively, p= 0.7). Entries into the central zone did not
differ by groups as 4 IVH (53%) and 7 controls (53%) entered the
central zone of the arena and there were no differences in the
exploration time in the central zone between the groups (mean
(SD) time was 10.4 ± 11 s vs 8 ± 16 s, for the IVH/PHVD and control
groups, respectively, p= 0.7). There were no differences in global
activity and in total covered distance between the IVH/PHVD
group and control groups (mean (SD) distance was 332.16 ± 332.2
cm vs 219.1 ± 286.2 cm, respectively; p= 0.5). There was no
difference in median latency time to escape from peripheral to
the central zone between the groups, being a mean (SD) 64.3 ±
64.3 s vs 86.2 ± 96.0 s for the IVH and control groups, respectively;
p= 0.6).
There were also no differences in the ORT test: both groups of

animals exhibited comparable exploratory behavior with similar
exploration times on 3 consecutive examination days. Both groups
recognized the old and the new object in the 5-, 30- and 240-min
interval without differences between the two groups (Table 2).
Two animals (one for each group) were excluded from the ORT
analysis: both animals froze at the starting point for the whole
5-min testing period.

IVH caused differences in myelin organization
The IVH group animals had a reduced density of myelin
immunoreactivity (MBP staining) across the eight examined
regions compared to the controls (p= 0.002, two-way ANOVA).
This was revealed to be specifically apparent in the corona radiata
compared to the controls in the post-test (p= 0.011; Fig. 3a).
Furthermore, we analyzed the organization (directionality) of the
MBP staining in the cortex and corpus callosum and observed
significant effects of IVH (p= 0.0146, two-way ANOVA) that in the
post-test were specifically apparent in the cortex (p= 0.026,
Fig. 3b, c).

IVH reduces the numbers of mature neurons and
synaptophysin area coverage and alters the development of
the cortical layers
In the neuron density assessment, IVH pups had a lower number
of neurons overall in the five assessed regions (p= 0.008, two-way
ANOVA) compared to controls (Fig. 4a, b). In the post-test, this was
specifically apparent in the thalamus (p= 0.035) compared to
controls. Focusing specifically on the cortex, guided by layer-
specific staining of adjacent sections (Fig. 4c–e) we noted that
there was no effect on the numbers of mature neurons each in
layers I–III, IV, and V–VI (Fig. 4e). The total cortical depth in the IVH
rabbits was marginally smaller but not significantly different from
that in the controls (mean ± SEM) control, 1776.69 ± 245.39, n= 6
vs IVH, 1674 ± 188.29, n= 6). However, analysis of the width of
each of the cortical layers, as a percentage of total cortical depth,
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revealed that there was an effect of IVH (p= 0.0289, two-way
ANOVA, Fig. 4d). In the post-test, the depth of the upper cortical
layers (I–III) was found to be significantly reduced in IVH brains
compared to controls (p= 0.044; Fig. 4d). The IVH group animals
also had a reduced density of presynaptic immunoreactivity
(synaptophysin staining) across the six regions examined (p=
0.003, two-way ANOVA) compared to the controls (Fig. 4f, g).

IVH altered the number, distribution and maturation of
interneurons
Cortical layer markers (CTIP2/NECAB) were used to demarcate the
upper (I–III) and lower (IV–VI) layers (as per Fig. 4c) and adjacent
sections were stained for PV and WF for the PNN. The number of
PV-positive interneurons in the cortical layers was significantly
altered by IVH (p= 0.0244, two-way ANOVA), and the post hoc test
highlighted a significant reduction in PV-positive cell number in
layer IV–VI (p= 0.035, Fig. 5a). We also determined the total
numbers of cells that were PV-PNN positive (PNN+) interneurons
and PV-PNN negative (PNN−) interneurons (Fig. 5b–d). There was
a significant effect of IVH on the number of PNN expressing PV
interneurons in the upper cortical region (I–III, p= 0.0096, two-way
ANOVA) but in the post hoc no specific location change (Fig. 5c).
There was also a significant effect of IVH on the number of PNN
expressing PV interneurons in the lower cortical regions (IV–VI;
p= 0.0013, two-way ANOVA). The post hoc specifically localized
this to a reduction in the numbers of PV+ PNN− cells (p= 0.0073,
Fig. 5d).

IVH caused no change in GFAP but decreased the area
coverage of IBA1
The number of GFAP-positive astrocytes did not significantly differ
due to IVH, across the evaluated brain regions (nucleus caudate,
thalamus, hypothalamus, hippocampus, or cortex) except the

internal capsule showing the significant reduction of GFAP-
positive cells in IVH pups compared to the controls (two-way
ANOVA, data not shown). The IVH group animals had a reduced
density of IBA1 immunoreactivity (microglia/macrophage marker)
across the eight regions examined (p= 0.086, two-way ANOVA)
compared to the controls (Fig. 6a, b).

DISCUSSION
This is the first small animal study on the long-term effects of IVH
(out to PND 30) with subsequent PHVD development in a preterm
animal model. IVH caused persistent changes in cortical structure,
neuronal number, synapse density, and myelin. However, we
could not detect any alterations in the neurobehavioral assess-
ment. Most studies previously undertaken in models of preterm
rabbit IVH have been focused on short-term outcomes, predomi-
nantly terminating at PND14.20,21,27,35–48

Survival in the preterm rabbit IVH model has previously not
been described beyond PND14. However, in this study, most pup
loss occurred during the first week of life, which agrees with
previous findings.20,27,38 Compared to non-IVH preterm rabbit
studies, we reported a lower overall survival within the first month
of life (40% vs previous 56%.32,49) Also, we observed a reduced
survival in female pups in the IVH group that has not been
previously reported for preterm non-IVH pups.31,49 Survival based
on sex has not been reported previously in short-term studies in
the preterm IVH rabbit pup model. In human infants, it is male sex
that is associated with higher mortality and major morbidity.50

Unfortunately, due to the high mortality in female pups, we could
not undertake sex-specific analysis in this study, but we observed
no difference in somatic growth indices. Importantly, using this
data future studies will be powered to enable the capture of sex-
related differences in outcome.
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Our study is the first to apply rearing by a wet nurse in the
preterm rabbit pup IVH model instead of gavage feeding. A wet
nurse avoids the mechanical trauma caused by repeated insertion
of the feeding tube, as well as stress and hypothermia and has
previously been described in a preterm rabbit model of fetal
growth restriction.51 The importance of breastfeeding in rabbit
pups was emphasized in a recent study, where term pups reared
by does display improved social interactions when compared to
term-born gavage reared pups.52 Olfactory cues from lactating
rabbit does are involved in breathing stimulation, distress
response alleviation, attention, and directional response stimula-
tion and may promote learning and social behavior.53,54

We undertook neurobehavioral testing in this study, because for
children who develop PHVD, motor, co-ordination, and neurocog-
nitive issues are frequent and do not decline with increasing
age.9–14 Ours is the first study to evaluate neurobehavioral
assessment at PND30. Previous work with this model at PND1–3
and PND14 demonstrated that pups with IVH have impaired
neurobehaviour,20,35,36,41,42,45–47 including impaired motor func-
tions and altered gait ability at P327 and PND14.20,35,36,41,42,45–47 At
this extended time point (P30), we were unable to detect any
differences in motor, gait, coordination, or for global motor
activity and exploration as an indicator of anxiety levels. We
speculate that this absence of neurobehavioral deficit may stem
from advanced recovery in the pup, which is also often observed
after early-life injury in the rodent,17 combined with the additional
positive impacts of the wet nurse on development, described
above.52–54 That said, we performed the ORT, using a paradigm
similar to that previously validated by us30,31 to induce learning in
preterm rabbits raised by wet nurse (as for this study). Thus, the
lack of clear effects on motor, coordination and neurocognitive
functions may be related to a strong compensatory capacity of the
animals with the later testing time point (compared to previous
studies) and maturation per se. We also cannot exclude that with
increasing age neurobehavioral injury may manifest and longer-
term follow-up is also warranted. Altogether, further optimization
of behavioral paradigms should be explored in rabbits to
strengthen the utility of this model.
Oligodendrocyte maturational arrest and hypomyelination is a

hallmark of brain injury associated with preterm birth in
infants.55,56 We observed a global reduction in the area coverage
for myelin caused by IVH, supporting several short-term studies
showing disruption of oligodendrocyte maturation and the
myelination process in the preterm rabbit IVH model.20,35,36,41,45,46

Myelination in term rabbit pups initiates at around PND420 and
reaches its peak at around PND18, with a delayed but more rapid
increase in the myelination of fiber tracts in the internal capsule
compared to the corpus callosum.57 Changes in myelination
quantity and also structure is considered to be responsible for
long-term neurological sequela in human infants58 and IHV led to
altered myelin fiber orientation in an analysis relatively sensitive to
subtle changes in MBP organization.59

Along with WM damage in children and adults who developed
IVH, recent research has focused on gray matter (GM) damage.
Alterations in thalamocortical networks and reduced GM volume
are associated with adverse cognitive outcomes and behavioral
disorders in IVH compared to controls.60–62 The results of our
study showed a collection of subtle neuronal deficits, including
that preterm rabbit pups with IVH had a global reduction in
mature neuronal number, altered cortical layering, and an
interneuronapathy. Recent data from Dohare et al. showed a
significant reduction of SAT2B and CUX1 expressing neurons in
the upper cortical layer (II–IV) in preterm IVH pups at PND1447

supporting our data of upper cortical layer thinning. However,
with our count of total cell numbers we were unable to detect any
differences in total neuronal number, despite the region being
significantly thinner. Furthermore, preterm rabbits with IVH/PHVD
had a reduced number of neurons in the nucleus caudate andTa
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thalamus, highlighting the involvement of GM in the pathogenesis
of IVH/PHVD. Reduced neurogenesis in the thalamus and nucleus
caudate has been reported in several preterm human post
mortem studies,63,64 as well as in different animal models of
neonatal brain injury.65–67

The effect of IVH on cortical PV interneurons in the preterm
rabbit pup was assessed for the first time in our study. Cortical
interneuron populations are vulnerable in preterm infants as they
are still undergoing migration and maturation at the time of
preterm birth.68 Specifically, IVH/PHVD group animals had a lower
number of PV-positive PNN-negative interneurons in the deep
layers. In agreement, studies evaluating injury related to preterm
birth and inflammation33 and hypoxia–ischemia69 have reported
fewer PNN-positive interneurons. The PNN is a key regulator of
perisomatic input to PV interneurons and thus overall network
activity, meaning that tight regulation of the PNN is needed for
typical brain function.70 It might be that IVH/PHVD disrupts the
maturation of PV-positive interneurons possibly due to the
damage of the choroid plexus, where homeobox protein
orthodenticle homeobox-2 (Otx2), involved in the expression of
PNN, is released.
IVH also significantly reduced synaptophysin, a pre-synaptic

terminal marker, supported by similar observations in a guinea pig
model of intrauterine growth restriction (IUGR),71 a rat model of
IUGR,72 and by observations of synaptic degradation in human
cases of hydrocephalus.73 Very little is known about the pattern of
synaptogenesis in the rabbit, except a single study of the retina
indicating that synaptogenesis occurs from PND9, reaching a
plateau at PND20.74 The decreased expression of synaptophysin
may reflect disrupted synaptogenesis including altered processes

of synaptic remodeling by microglia. Synaptic pruning is a key
function of microglia during the later stages of brain
development,75,76 such that depleting microglia can change the
structural connectome of the developing mouse brain.77 We
observed a reduction in the area coverage of IBA1, likely a loss of
complexity due to ongoing inflammatory activation. We have
made similar reports previously in a model of preterm brain injury
in the mouse78 and these kinds of region-specific subtle changes
has also been reported in a model of IUGR in the piglet.79 That
there was a change in morphology was qualitatively supported
when observing the stained sections, as the cell processes were
less elaborate.
Our model of IVH in preterm rabbit pups carries a high

translational value to the human situation, as it reflects a true
preterm scenario, with the pups having underdeveloped lungs
and gut, and being deprived of placentally derived trophic factors.
This is reflected in the fact that preterm birth alone in this model
induces brain injury reminiscent of that seen in preterm born
infants.26,49

All pups in our study received glycerol and we did not include
“sham” control animals to evaluate of the effects of glycerol. We
used this experimental design because: (1) renal function tests to
define the glycerol toxicity in this model found them to be within
normal limits, except for a slight increase in blood urea
nitrogen,27 (2) there is no evidence of inflammation, cell death,
or neuronal degeneration in the forebrain of animals treated with
glycerol without IVH vs the pups without glycerol treatment,27

and (3) glycerol is widely used clinically, both in adult and
pediatric populations, to treat brain edema and increased
intracranial pressure80,81 with no reported changes in brain levels
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glutamate, pyruvate, and lactate in people injected with
glycerol.81 However, the use of glycerol injected controls ensure
that any biochemical effects of this osmotic agent are controlled
for in both groups.

Inherent high mortality in this model led to small sample sizes
and reduced power for the detection of significant differences
between groups and a sex-specific analysis. Although we wish to
mention that the apparent increased vulnerability of females in this
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paradigm is in contrast to the typical “male disadvantage” reported
for perinatal brain injuries.82,83 Ours is the very first data on sex-
based survival reported in the glycerol-induced IVH model and
many rabbit studies in other paradigms have not reported sex or
there have been no differences in outcomes.84–86 However, one
study of the impacts of preterm birth on rabbit brain delivery has
reported that, compared with females, males have less damage in
the hippocampus (assessed via fractional anisotropy) and greater
numbers of neurons in the caudate nucleus (NeuN-positive cell
number).49

There may also be a selection effect, introduced by the
“healthiest” preterm pups surviving to the study endpoint while
the pups with severe damage dying during the neonatal period
masks possible differences potentially present in the original

sample size. This is an unavoidable phenomenon, also occurring in
long-term follow-up studies of infants where early mortality is
greatest for infants with the most severe IVH.
This study introduces important information for the field. For the

first time, we report the long-term effects of IVH leading to PHVD in
a preterm animal model that include alterations to myelination,
including organizational changes, decreased mature neuron and
presynaptic terminal densities, altered cortical organization, and
altered PV-positive interneurons number and maturation. The lack of
corresponding behavioral deficits may reflect the need for improved
behavioral testing paradigms in this translationally valuable IVH
model. These fundamental findings are important for furthering our
understanding of mechanisms leading to WM and GM damage
ultimately causing neurodevelopmental impairment in infants.
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