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Machine learning: from radiomics
to discovery and routine

Machine learning is a rapidly
evolving research field attracting
increasing attention in the medical
imaging community. Machine
learning in radiology aims at training
computers to recognize patterns
in medical images and to support
diagnosisby linking thesepatterns to
clinical parameters such as treatment
or outcome. These methods enable
the quantification of disease extent
and the prediction of disease course
with higher precision than is possible
with the human eye.

The emergence of machine
learning in radiology

Tworecentadvanceshavefurtheracceler-
ated the development of machine learn-
ing in radiology. First, the acquisition
volume of medical imaging data is accel-
erating. Worldwide, during 2000–2007,
an estimated 3.6 billion radiologic, den-
tal radiographic, and nuclear medicine
examinations were performed per year
[18]. Medical imaging data are expected
to soon amount to 30% of worldwide
data storage [9]. Second, recent algorith-
micdevelopment inthemachine learning
field together with new hardware, such
as powerful graphics processing units
(GPU), have yielded a dramatic improve-
ment inthecapabilityof these techniques.

Here, we reviewthecurrent stateof the
art and the possible roles machine learn-
ing can play inmedical imaging covering
clinical routine and research. After sum-
marizing the basics of machine learning,
we discuss the most pressing challenges
andstructure the reviewaround fourcore
questions:

1. How can machine learning serve as
a tool to perform automated quanti-
tative measurements in radiological
routine?

2. Can machine learning contribute to
research by expanding the vocabu-
lary of patterns we can exploit for
diagnosis and prognosis?

3. Can we effectively expand the evi-
dence on which machine learning
relies from controlled studies to large-
scale routine imaging data?

4. What are the roles of machine
learning in current radiology?

These questions are connected to a num-
ber of challenges, tackled by research at
the interface of machine learning and ra-
diology. They range from the availability
of data and expert annotations, to the ex-
ploitation of partially unstructured data
acquired during routine for learning, and
the copingwithnoise in bothdata, aswell
as annotations.

Machine learning

In conventional analysis software, com-
puters are programmed to carry out
instructions specified by the developer.
While machine learning consists of algo-
rithms implemented in standard frame-
works, its approach toward data analysis
is different. Machine learning algorithms
learn from examples and replicate the
observed behavior—typically a mapping
froman input to anoutput—onnewdata.
The basic principles of such models are
illustrated in . Fig. 1.

For instance, training data can consist
of example magnetic resonance imaging
(MRI) volumesdepicting segments of the
breast. For each example, there is a label

indicating whether there is a lesion or
not in the volume. The algorithm learns
a mapping from the input (volume) to
the output (label).

This paradigm is called supervised
learning since a large number of expert
annotations in the form of correct la-
bels are necessary. The resulting model
is called a classifier since it classifies
the input into a discrete set of possible
classes (lesion, no lesion). After train-
ing, the classifier can process new input
data and produce an output in the same
categories as it has learned during the
training phase. The first main compo-
nent of thesemodels is feature extraction
or the mapping of raw input data such
as lesion location or delineation to a fea-
ture representation, typically in the form
of a vector. Features capture relevant
characteristics of the raw input data.
Constructing informative features for
specific classification tasks was long the
focus of research and has only recently
shifted to being solved by algorithms.
The second component is the mapping
model, such as a classifier in the case of
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that perform tasks typically
requiring human intelligence,
such as planning or problem
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DL Deep learning. An approach
for performing ML, where deep
neural network architectures are
employed

ML Machine learning. An approach
for achieving AI, where instead
of programming task execution
by hand, the machine learns from
examples
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Fig. 19 Principles ofma-
chine learning

categorical output (benign vs. malign),
or regressionmodels (time torecurrence)
in the case of continuous output.

By contrast, unsupervised learning
does not rely on expert labels for the
training examples. Instead, it processes
a large number of unlabeled examples
and seeks to find structure in the data.
It can be in the form of clusters, groups
of examples that are similar and clearly
separable fromother groups. This cluster
model can then be used to assign cluster
memberships to new data. Bone texture
patterns that can be identified repeatedly
across a population are such an example
[22]. A different result of unsupervised
learning is relationship patterns, often in
the form ofmanifolds that reflect the fact
that oftendifferent variables donot occur
in arbitrary combinations; for instance,
age, weight, and height in children.

From feature construction to deep
learning

A range of algorithms for classification
and regression have been investigated
over time, all of them sharing the aim of

learning amapping froma complex input
space to a label or scalar variable. Near-
est neighbor approaches predict labels
based on the distance of the feature rep-
resentation to those representations with
a known label. Support vector machines
[8] have proven immensely powerful in
solving a variety of classification prob-
lems. They define the decision boundary
in the feature space based on a small
number of support vectors.

The insight that large heterogeneous
training data are often beyond the ca-
pacity of single classifiers led to two ap-
proaches relying on ensembles of clas-
sifiers: bagging and boosting. Both use
a large number of relatively simple mod-
els, so-called weak learners trained on
parts of the data, and aggregate their
estimates on new data, by mechanisms
such as voting. During training, boost-
ing builds a cascade of weak learners,
each trained on data that previous learn-
ers were performing poorly on. An ex-
ample is AdaBoost [7]. Bagging draws
training examples and subsets of features
randomly when training the ensemble of
weak learners. A prominent example is

random forests [3]. The latter introduced
a reliable capability to estimate the in-
formation value of individual predictor
variables for accurate classification. This
led to a wide uptake in communities that
mine large data for predictors, such as
in genomics research, and to a shift in
research efforts from hand-crafting fea-
tures toward the exploration of large fea-
ture candidate pools and the algorithmic
selection of predictive features by bag-
ging.

The critical contribution of random
forests was the ability of the algorithm to
workwith very large numbers of features,
even if a portion of them is not informa-
tive, and to identify those that carry in-
formation during training. Algorithms
that identify or construct relevant fea-
tures based on examples were shown to
outperform approaches that rely on the
careful design of descriptors capturing
relevant image information.

Most recently, deep learning has
emerged as a powerful approach in ma-
chine learning. It uses neural networks
with large numbers of layers to perform
both feature construction and predictor
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learning simultaneously [16]. Convo-
lutional neural networks were a first
instance of such architectures used for
supervised learning [15]. Unsupervised
approaches include autoencoders (AE),
a type of neural network that captures
structure by learning to reproduce input
such as images, through a bottle-neck
low-dimensional representation [23],
and more recently generative adversarial
networks (GAN; [6]). With its expand-
ing capabilities, machine learning is an
increasingly important part of research
at the interface of computer science and
medicine (. Figs. 2 and 3).

Roles of machine learning in
medical imaging

The computational analysis of imaging
data using machine learning is about to
fundamentally change our ability to un-
derstand disease, risk, and treatment. It
will likely serve as the basis for the de-
velopment and implementation of novel
treatment strategies as well as the indi-
vidualized, effective, and early delivery
of care and preventive medicine. Link-
ing research in machine learning and
medicine will act as a powerful driver
in this endeavor. Interdisciplinary col-
laboration is the key to creating better
models to predict disease course and risk
in individual patients, to forecast the re-
sponse to a growing landscape of possible
treatments, to deliver early prevention,
and to make possible the optimal care
for each individual. We will discuss two
important roles of machine learning in
radiology:
1. The automation of repetitive tasks,

the enabling of radiomics, and the
evaluation of complex patterns in
imaging data not interpretable with
the naked eye.

2. The discovery of newmarker patterns
and disease signatures in combined
imaging and clinical record data,
and the linking of these signatures
to disease course and prediction of
treatment response.
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Abstract
Machine learning is rapidly gaining
importance in radiology. It allows for the
exploitation of patterns in imaging data
and in patient records for a more accurate
and precise quantification, diagnosis, and
prognosis. Here, we outline the basics of
machine learning relevant for radiology,
and review the current state of the art, the
limitations, and the challenges faced as these
techniques become an important building

block of precision medicine. Furthermore, we
discuss the roles machine learning can play in
clinical routine and research and predict how
it might change the field of radiology.

Keywords
Decision support · Artificial intelligence ·
Computed tomography · Imaging ·
Informatics

Maschinelles Lernen: von Radiomics zu Forschung und Routine

Zusammenfassung
Maschinelles Lernen gewinnt in der
Radiologie rasch an Bedeutung. Es ermöglicht
die Auswertung von Mustern in Daten
aus bildgebenden Untersuchungen und
Patientenakten für eine genauere und
präzisere Quantifizierung, Diagnose und
Prognose. Im vorliegenden Beitrag werden
die für die Radiologie relevanten Grundlagen
des maschinellen Lernens dargelegt und
ein Überblick über den derzeitigen Stand
der Wissenschaft, die Limitationen und die
anstehenden Herausforderungen gegeben,
da sich diese Technik zu einem wichtigen

Baustein der Präzisionsmedizin entwickelt. Es
wird erörtert, welche Rolle das maschinelle
Lernen im Rahmen der klinischen Routine
und in der Forschung spielen kann; darüber
hinaus wird ein Ausblick darauf gegeben,
wie diese Technik die Radiologie langfristig
beeinflussen könnte.

Schlüsselwörter
Entscheidungsunterstützung ·
Künstliche Intelligenz · Computer-
tomographie · Bildgebung · Informatik

Machine learning for
computational quantification
during routine

Machine learningcanautomaterepetitive
tasks, such as lesion detection, and the
quantificationofpatterns suchas textures
that are hard to discern reliably with the
human eye.

Automation of repetitive tasks

Oneexampleofa tedious task is thedetec-
tion, counting, and measurement of le-
sions in large-field-of-view imaging data
beforeandafterchemotherapytoevaluate
response. Accuracy has a high impact on
theprognosisandfurthertreatmentof the
patient. Nevertheless, the task itself does
not require a high level of experience but
rather a high level of concentration. Ad-
ditionally, finding a lesion and classifying
it as responsive or not responsive to treat-

ment is not sufficient, as a quantitative
measurement may provide a more accu-
ratedescriptionof thepatient’s condition.
There are already several software pack-
ages available for clinical implementation
[20]. Using this software, the radiologist
is able to supervise the results, include
a complete quantitative summary in the
radiology report, and focus on interpret-
ing the findings in correlation with the
clinical information. Typically, these ap-
proaches are based on supervised learn-
ing and rely on large manually annotated
training corpora. Recently, approaches
to exploit clinical routine imaging and
record information to train such detec-
tors have shown promising results. They
relyonweakly supervised learning to link
information in images and radiology re-
ports [10].
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Fig. 28 Supervised andunsupervisedmachine learning

Fig. 38 Number of publications for artificial intelligence,machine learning, and deep learning ac-
cording toPubMed search. Values for 2018 are extrapolatednumbers basedonpublications from Jan-
uary to April 2018

Using radiomics features
to quantify subtle image
characteristics

Radiomics, or the high-throughput ex-
traction and analysis (or mining) of ra-
diological imaging data [5], is a step
beyond automating what can be done
with the naked eye. In this process, hun-
dreds of imaging features are calculated
mathematically. Theyrepresent informa-
tion that is not intuitively recognizable.
Thereby, a large amount of quantitative
information that was previously not ac-
cessible for human interpretation can be
exploited. The resulting imaging features
belong to specific groups (e. g., shape-
and size-based or textural and wavelet
features, as well as first-order statistics).
While the choice of features to extract
and the subsequent conventional statisti-

cal analysis may be donemanually, a ma-
chine learningapproachgreatly improves
the workflow by automatically extracting
and selecting appropriate and stable fea-
tures. Ultimately it can create predictive
models that rely on features extracted
from imaging data and corresponding
clinical records. At this time, the main
field of application of radiomics is on-
cology and the capture of fine-grained
characteristics of lesions, leading to in-
sights such as a correlation of radiomics
features and the gene expression type of
the imaged lung cancer [1]. However,
this approach has the potential to im-
prove the evaluation and computational
assessment of other diseases too. Exam-
ples are chronic obstructive pulmonary
disease [19] and osteoporosis [21].

Machine learning as a tool for
discovery

In addition to quantifying known pat-
terns, machine learning enables the dis-
covery of new patterns, which can serve
as candidate markers for diagnosis, out-
come prediction, or risk assessment.

Evaluation of complex patterns
and the discovery of new marker
patterns

The diagnosis of disease patterns in radi-
ology relies on the identification of imag-
ing patterns that have proven to be of
diagnostic and/or prognostic relevance.
One prerequisite of such an approach is
thatthepatternsmustbedefinedprecisely
enough for trained radiologists to be able
to recognize themwith low interobserver
variability. The reliable recognition of
disease patterns in radiology is a chal-
lenging task and requires the systematic
analysis of images. A good example of
this is the diagnosis of the usual inter-
stitial pneumonia (UIP) pattern, which
is one of the most important patterns in
diffuse parenchymal lung diseases. The
diagnosis of a UIP pattern relies on the
presence of reticular abnormalities and
honeycombing in a basal and peripheral
predominance [17]. In addition, there
should not be any features more consis-
tent with an alternative diagnosis. Al-
though the definition of a computed to-
mography (CT) pattern of UIP appears
to be straightforward, a number of pub-
lications showed that the interobserver
variability of radiologists is moderate at
best [24, 25]

Machine learning enables us to utilize
imaging information that is not recog-
nizable for the human eye and thus new
disease patterns and predictive markers
can be discovered. In lung imaging, ma-
chine learning is a promising approach to
support theCTdiagnosisof aUIPpattern
andotherpatternsofdiffuseparenchymal
lung diseases and to predict the course
of these diseases [2]. The potential was
elegantly shown in idiopathic pulmonary
fibrosis, where the increasing pulmonary
vessel volume represents a stronger CT
predictorof functionaldeteriorationthan
traditional imaging patterns [13]. The
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strength ofmachine learning is that there
is no constraint to described patterns.
Instead, machine learning can identify
patterns that are recognizable with high
reliability, which could then serve as a ba-
sis for the diagnosis and prognosis.

Bone diseases are one example, where
bone density is linked to outcome such
as fracture risk but does not capture the
rich variety of trabecular architecture
linked to different diseases. Unsuper-
vised learning is able to identify patterns
that canbeextracted repeatedlyacross in-
dividuals and even scanners [22]. Similar
to image patterns, we can learn struc-
ture in the patient population. Here, at
the patient level, unsupervised machine
learning can identify clusters in chest
CT imaging data linked to radiological
findings, and even clinical parameters
[11].

The role of routine data in
machine learning

The amount of available medical data
has been growing exponentially over the
past few decades, with approximately
118million CT orMRI examinations per
year in the EU [12]. We routinely acquire
comprehensive information character-
izing patients including results from
multimodal imaging data; laboratory,
physiological, and pathological results;
and demographic data. Yet, we have
only limited understanding of how to
combine this complex information from
multiple sources and link it to individual
treatment response and patient outcome.
Currently, only a small fraction of avail-
able data are used to collect evidence for
supporting personalized medicine or to
enhance clinical decision-making. The
potential associated with these data is
not yet fully reached.

Clinical routine data are a particularly
valuable source of real-life patient his-
tories and connected imaging data cap-
turing disease course and treatment re-
sponse across a wide variety of individual
disease paths. Using routine data is chal-
lenging, since they are not acquired in
a systematic fashion as during clinical
trials, but instead with the sole purpose
of individual patient care. Furthermore,
parts of these data are unstructured, ren-

dering their use for modeling challeng-
ing. Currently, only a fraction of rou-
tine imaging information is exploited for
research and the development of mod-
els. While there has been a tremendous
advance in image acquisition technol-
ogy during the past five decades, the in-
terpretation of imaging data has hardly
changed. Radiologists focus their re-
ports and summarize individual find-
ings based on specific questions provided
by referring clinicians (e. g., suspected
pulmonary embolism). The information
content of imaging modalities such as
three-dimensional volumes with submil-
limeter slice thickness by far exceeds the
capacities of visual assessment by hu-
mans. Thecomplexmultivariaterelation-
ship between clinical information (lab-
oratory results, pathology results, clini-
cal history) and imaging information is
not sufficiently reflected in current stud-
ies. Large parts of multivariate infor-
mation that is critical for personalized
medicine are discarded, restricting evi-
dence to small study populations rather
than exploiting real clinical populations
that are currently largely underexploited.
There are two reasons for this: on the one
hand the lackof technology tousehetero-
geneous and partly unstructured routine
data for machine learning, and on the
other hand the stumbling blocks of data
management. Machine learning on this
scale makes the integration of partially
unstructured clinical information from
patient records and imaging data neces-
sary [4, 14], but to date technology for
this is lacking. Both challenges are cur-
rently being tackled, and we can expect
new kinds of evidence and robustness of
prediction models once we are able to
perform machine learning on this body
of observations.

The future

The increasing use of computer-assisted
diagnosis software inradiologyraises fear
that such software might eventually take
over the job of radiologists. There is no
doubt that 5, 10, and 20 years from now,
the job of radiologists will be very dif-
ferent. In a rapidly evolving specialty
such as in radiology, this is to be ex-
pected. In fact, 20 years ago, the task of

radiologists was different from what it is
today and rapid technical developments
are a hallmark of this field. Yet, the prime
impact of machine learning will not be
in replacing, but rather in enabling radi-
ologists to use more powerful prediction
models, and to rely onmore comprehen-
sive patterns that are informative for the
individual disease course and treatment
outcome. The radiologist’s role will be to
develop such diagnostic paradigms, and
to integrate these paradigms with overall
patient care.

The primary role of machine learning
will not be limited to the automation of
specific analysis tasks, but will be critical
in improving individual care by discov-
ering new marker patterns and render-
ing these patterns useful. We will have
powerful computational models that will
enable a more accurate prediction of in-
dividual disease course, and which will
forecast a response to treatment from
observations such as imaging data and
disease history. These models will facil-
itate the selection of personalized treat-
ment strategies more effectively based on
an assessment of each patient in light of
an unprecedented scale of evidence from
thousands of disease and treatment his-
tories, together with models that trans-
late these observations into an accurate
prognosis.

Aswebecomeable todetect andquan-
tify complex but subtle patterns in ob-
servations at an earlier stage, diagnostic
categories might change. Through an
understanding of the link between dis-
tributedsignaturesandprognosis, wewill
discover novel disease and response phe-
notypes, which, in turn, will contribute
to research for novel treatments.

Until then, a number of hurdles must
beovercome. Researchcommunities that
advance machine learning and medical
disciplines such as radiology must col-
laborate more closely, learning to trig-
ger algorithmic methodology by clinical
questions and to ask new clinical ques-
tions whose answers will be made pos-
sible by computational algorithms. We
will need to find methods to deal with
heterogeneous multimodal data and the
means for the efficient and possibly auto-
mated curation of such data. Algorithms
will have to identify prognostic feature
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patterns in complex imaging data, and
robust modelswill need to be able to pre-
dict, simulate, and assess the certainty of
theiroutputat thesametime. While these
challenges are significant, an increasingly
joint effort by researchers across varying
fields makes the solution to such chal-
lengesplausible, andthe futureofmedical
imaging might change more rapidly than
we expect today.

Practical conclusion

4 Machine learning facilitates the
exploitation of patterns in imaging
data and patient records for more
accurate and precise quantification,
diagnosis, and prognosis.

4 The computational analysis of imag-
ing data using machine learning will
change our ability to understand
disease, risk, and treatment.

4 Machine learning allows for the
automation of repetitive tasks, the
enabling of radiomics, and the
evaluation of complex patterns
in imaging data not interpretable
with the naked eye. It leads to the
discovery of new marker patterns
and disease signatures in imaging
and clinical record data, and the
linking of these signatures to disease
course and prediction of treatment
response.

4 Radiologists will be able to use
more powerful prediction models
and to rely on more comprehensive
patterns providing information on
the individual disease course and
treatment outcome.
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