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Abstract: Cystic fibrosis (CF) is the most common life-shortening genetic disorder in 

Caucasians. With improved diagnosis and treatment, survival has steadily increased. 

Unfortunately, the overwhelming majority of patients still die from respiratory failure caused 

by structural damage resulting from airway obstruction, recurrent infection, and inflammation. 

Here, we discuss the role of inflammation and the development of anti-inflammatory therapies 

to treat CF lung disease. The inflammatory host response is the least addressed component of 

CF airway disease at this time. Current challenges in both preclinical and clinical investigation 

make the identification of suitable anti-inflammatory drugs more difficult. Despite this, many 

researchers are making significant progress toward this goal and the CF research community 

has reason to believe that new therapies will emerge from these efforts.
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Introduction
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations on chro-

mosome 7 resulting in impaired chloride transport through the cystic fibrosis trans-

membrane conductance regulator (CFTR) protein.1 In exocrine glands, this channel is 

concentrated in the apical membrane of epithelial cells and helps to regulate ion and 

water content at the luminal surface. For reasons that are not completely understood, 

CFTR deficiency causes greater activity of the epithelial sodium channel (ENaC) lead-

ing to increased absorption of sodium and water from the luminal surface. In the lung, 

this dysfunctional conductance of chloride and sodium ions reduces the water content 

and height of the airway surface liquid layer (ASL). An abnormal ASL impairs the 

mucociliary escalator causing accumulation of tenacious secretions within the airways. 

These secretions trap bacteria and other pathogens and initiate a self-perpetuating 

cycle of airway obstruction, endobronchial infection, and exuberant inflammation. 

It is not clear whether or not exuberant inflammation in the human CF airway exists 

independent of airway obstruction and infection. Regardless, evidence indicates that the 

inflammatory host response in the airway begins early in life, is of greater magnitude 

than is observed in patients without CF and persists beyond apparent eradication of 

infectious stimuli.2–8

For many years, regular use of pancreatic enzyme supplements and improved 

nutrition have greatly improved health outcomes for patients with CF. Therefore, 

pulmonary manifestations are currently the center of health impairment for most of 

these patients. For over 40 years, prescribed therapies have focused on improving 
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airway clearance of secretions and treating endobronchial 

infection. However, in recent decades, there has been a 

growing appreciation of the role of inflammation in CF lung 

disease. Excessive airway inflammation is a key component 

of the pathophysiology of CF, and researchers are working 

to identify effective and well-tolerated anti-inflammatory 

therapies.

Both prospective and retrospective studies of anti-

inflammatory medications in CF demonstrate preserved lung 

function measured by spirometry – a value closely correlated 

with survival.9–14 The majority of these studies do not show 

an increased risk of infectious complications in subjects 

receiving anti-inflammatory drugs. This paper reviews these 

studies, as well as ongoing research addressing the negative 

impacts of airway inflammation in CF.

Inflammation in CF lung disease
At birth, the lungs of neonates with CF are structurally 

normal and not inflamed. However, during early infancy, 

secretions begin to plug the bronchioles and ducts of submu-

cosal glands.2 Bronchoalveolar lavage (BAL) studies from 

infants with CF show high concentrations of neutrophils 

and proinflammatory mediators in the airways, often in the 

absence of identifiable pathogens.3,6,7 When bacteria are 

found, the inflammatory response relative to the bacterial 

burden is greater in CF infants compared with infants without 

CF.8,15 This neutrophil dominated host response is typically 

sequestered in and around the airways but spreads to involve 

the local airway wall and supporting structures in advanced 

stages. The alveoli are spared until late in the disease course, 

making CF largely an airways disease. The upper limit of 

normal for BAL from healthy lung is ,3% neutrophils. BAL 

from CF lungs typically contains 10, or even 20 times this 

degree of neutrophilia (Figure 1).

In addition to being excessive, the inflammatory response 

is also prolonged, leading many researchers to postulate that 

the exaggerated inflammatory state is largely a function of 

impaired resolution. This may explain why inflammation can 

be detected in apparently sterile BAL samples of infants with 

CF, reflecting an ongoing response to prior infection.3 As it is 

central to the host inflammatory response in the CF airway, 

anti-inflammatory therapies must address, either directly or 

indirectly, the neutrophil itself or its products.

Nuclear factor kappa-B transcriptional 
regulation
Many believe that the heightened inflammatory response 

in CF is closely related to abnormal CFTR function. This 

theory is supported by data showing increased basal and 

inducible inflammation in human airway cells with either 

genetic or chemical CFTR impairment and decreased 

inflammatory response in CF epithelial cells treated with 

CFTR correctors.16,17 Likewise, transgenic mice with 

CFTR impairment show altered inflammatory response to 

pertinent airway challenge when compared with wild-type 

mice.18,19 Much of the mechanistic research has focused on 
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Figure 1 Complex interactions contributing to CF airway inflammation. Several proinflammatory mechanisms have been identified in research of cystic fibrosis (CF) airway 
disease. Heightened proinflammatory signaling pathways, impaired redox-regulation and anti-inflammatory signaling pathways, and perpetual proteolytic and oxidative stress 
are some of the most well-described mechanisms driving the neutrophil-dominated host response. This neutrophilic inflammation, along with ineffective airway clearance and 
chronic airway infection, lead to progressive bronchiectasis and impaired lung function. 
Abbreviations: PMN, polymorphonuclear cell, ie, neutrophil; ROS, reactive oxygen species; NO, nitric oxide.
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the intracellular transcription factor nuclear factor kappa-B 

(NFκB). The majority of proinflammatory cytokines 

believed to be important in CF-related airway inflammation 

are regulated by NFκB activity. These include interleukin 

(IL)-8, tumor necrosis factor-alpha (TNF-α), IL-1β, IL-6, 

and granulocyte-macrophage colony-stimulating factor, 

and so on.4 Cellular interaction with bacteria, bacterial 

products, and proinflammatory cytokines causes NFκB 

to translocate to the nucleus and promote transcription 

of multiple proinflammatory gene products. It is unclear 

whether or not this transcription factor is inherently altered 

in CF. The observed increase in NFκB activation may be 

a response to the abundant stimuli present in the CF lung. 

Alternatively, there is evidence of increased Iκ-kinase 

(IKK) activity in CFTR-deficient epithelial cells. IKK is 

an important step in the canonical activation pathway for 

NFκB and over activity of this enzyme would increase 

NFκB-driven proinflammatory signaling.20–22

Studies also suggest that the local environment of 

airway secretions surrounding CF respiratory epithelial 

cells enhances NFκB activation by increasing local calcium-

dependant signaling of this transcription factor.23 These 

data would indicate that improved airway clearance can 

indirectly reduce inflammation in the CF airway. Similarly, 

inflammatory products (eg, DNA from necrotic neutrophils, 

mucus production) add to the viscosity of airway secretions 

and further impair airway clearance. Therefore, impaired 

airway clearance and the exaggerated inflammatory state 

in the CF airway are closely linked. Effective therapies 

for either abnormality will likely improve both aspects of 

CF lung disease. Furthermore, whether or not increased 

activation of NFκB is a primary or secondary process in 

CF cells, its central role as a regulator of many downstream 

inflammatory responses makes it an obvious target for anti-

inflammatory treatment.

Anti-inflammatory signaling
Studies indicate that other immunoregulatory signaling 

pathways may be abnormal in CF. IL-10, an important anti-

inflammatory cytokine produced by many cell types in the 

lung is reduced.24,25 Lipopolysaccharide (LPS) and TNF-α, 

which are abundant in the CF airway, stimulate IL-10 

production in subjects without CF.26 However, studies of 

BAL from patients with CF unexpectedly contain relatively 

little IL-10 as compared with that from patients without 

CF.4,27 Both IL-10 and nitric oxide (NO), which is also low 

in CF, limit NFκB activation by preserving IκB. By this 

and other mechanisms, mediators such as IL-10 induce 

neutrophil apoptosis, decrease antigen presentation and 

T-cell stimulation, and help to terminate the inflammatory 

response.28,29 Therefore, impairment of such immunoregula-

tory signaling may contribute to both the heightened and 

prolonged airway inflammatory response.

PPARγ is a transcription factor that, among other 

functions, also limits NFκB activity and is reduced in CF 

human airway epithelial cells.30,31 Abnormalities in the fatty 

acid content of CF cells, with deficiencies of both docosa-

hexaenoic acid (DHA) and linoleic acid, may contribute to 

impaired PPARγ signaling.30 Similarly, lipoxin A4 (LXA4) 

is an important endogenous anti-inflammatory lipid mediator 

that helps mitigate the acute inflammatory response.32 It has 

been reported that LXA4 concentrations are reduced in BAL 

fluid from stable CF patients compared with non-CF patients 

with pulmonary inflammation.32 Although the reasons for the 

decreased LXA4 concentrations have not been elucidated, 

administration of a metabolically stable lipoxin analog in 

cell culture and mouse models of chronic airway infection 

and inflammation decreased IL-8 production and neutro-

philic inflammation without increasing infectious burden.32 

The role of LXA4 deficiency in CF lung disease remains 

controversial and a more recent study found no difference 

in LXA4 concentration in BAL from CF patients compared 

with non-CF disease-matched controls with neutrophilic 

airway inflammation.33

T helper 17
Recent work proposes a greater role for adaptive immunity 

in CF as a subset of T cells known as T helper (TH)-17 

cells appear to be involved in CF pulmonary inflamma-

tion.34 IL-23 and IL-17 are proinflammatory cytokines 

involved in TH-17 cell signaling and are elevated in 

CF airways (human and mouse) in response to common 

stimuli.35,36 IL-17 appears to prime CF airway epithelial 

cells to greater IL-8 release in response to Pseudomonas, 

and may promote MUC5AC gene transcription through 

NFκB activation.37,38 Viscous secretions at the apical 

surface of airway epithelia trap bacteria and may magnify 

the likelihood of antigen presentation to dendritic cells 

and macrophages which, in turn, trigger the IL-23/IL-17 

signaling pathway. IL-17 is important in recruiting neu-

trophils to the airway in response to bacterial products 

such as LPS and the relative importance of IL-17 in the 

CF airway is a focus of continued research.39 These find-

ings further support the interconnected nature of impaired 

airway clearance, bacterial infection, and inflammatory 

response.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2010:3submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

64

Taylor-Cousar et al

Nrf2 transcriptional regulation
Finally, recent studies in CF cell and mouse models have 

uncovered a deficiency of nuclear factor E2-related factor 2 

(Nrf2), a transcription factor functional in respiratory epi-

thelia and pivotal to mitigating the acute inflammatory 

response.40 Nrf2 regulates a large number of antioxidant 

and cytoprotective genes. Therefore, impairment of this 

transcription factor may underlie both the prooxidative and 

hyperinflammatory state. Several studies find an increased 

oxidative state in the CF airway, and reactive oxygen species, 

as intracellular messengers, are complicit in NFκB activation 

in respiratory epithelia.41 Data from CF models show low 

levels of NO resulting from a deficiency of inducible NO 

synthase in epithelial cells,42,43 and low concentrations of glu-

tathione in extracellular lining fluid, possibly due to deficient 

transport of this antioxidant through CFTR channels.44,45 

Many prooxidative and inflammatory signaling pathways are 

interrelated and, therefore, compounds with direct or indirect 

antioxidant properties may be effective anti-inflammatories. 

In support of this theory are data showing that Nrf2 ago-

nists reduce the airway inflammatory response in CF cell 

and mouse models, making Nrf2 signaling and antioxidant 

gene regulation another promising area for therapeutic 

development.46

Experiments utilizing Nrf2-knockout mice and bone 

marrow adoptive transfer show that Nrf2 function in the 

airway plays a pivotal role in both inflammatory response 

and structural damage after elastase-induced injury.47 

A significant protease/antiprotease imbalance exists in the 

CF airway, largely driven by excess free neutrophil elastase. 

This not only is a major contributor to progressive airway 

damage, but also likely helps to perpetuate the neutrophilic 

inflammatory response. Certain proteases (eg, MMP-8, 

MMP-9) abundant in the CF airway are capable of cleaving 

small peptides from collagen.48 These peptides can then 

serve as chemoattractants for neutrophil recruitment to the 

airway, demonstrating an important role of proteases in the 

inflammatory host response. Though further increased during 

pulmonary exacerbation, protease levels in the CF airway 

typically remain elevated even during times of relative health. 

Recent work highlights the ability of neutrophil elastase to 

cleave and activate MMP-9 while cleaving and inactivating 

its inhibitor TIMP-1.49 This reaffirms the neutrophil and its 

products as a central regulator and therapeutic target in the 

excessive and perpetual inflammatory state. Similarly, 2 

neutrophil serine protease inhibitors, secretory leukoprotease 

inhibitor and elafin, are both cleaved and inactivated by 

abundant neutrophil elastase in the infected CF airway.50,51 

In addition to augmenting the proteolytic imbalance, elastase 

also impairs the antimicrobial host defense properties of 

these proteins, again underscoring the need to address exces-

sive inflammation in a comprehensive treatment strategy.

Ultimately, there is evidence that many altered immu-

noregulatory pathways contribute to the inflammatory 

response in CF. Although no unified pathway directly con-

necting CFTR dysfunction to exuberant inflammation has 

been found, the combined effects of numerous dysregulated 

proinflammatory and anti-inflammatory signaling events are 

a significant part of the pathophysiology in CF lung disease. 

It may ultimately be less important to determine whether this 

is directly related to CFTR impairment or more indirectly 

due to the altered airway environment developing from 

both abnormal CFTR and ENaC channel activity. Despite 

inconsistencies in preclinical models, the majority of the CF 

research community view inflammation as a valid therapeutic 

target. This view is supported by greater lung health afforded 

from either systemic corticosteroids or high-dose ibuprofen 

in clinical trials.10,11,13 However, neither of these well-

studied anti-inflammatories is prescribed for the majority 

of patients with CF secondary to concern over unacceptable 

side effects.52 Therefore, research continues to search for 

more suitable agents that will likely benefit the majority of 

patients with CF by addressing a fundamental component of 

ongoing airway injury.

Prior clinical trials of  
anti-inflammatory therapy in CF
Corticosteroids
Though several potential anti-inflammatory drugs have been 

studied in clinical trials of patients with CF, results from 

prior trials with 3 medications largely drive this field of 

research: systemic corticosteroids, high-dose nonsteroidal 

anti-inflammatory drugs (NSAIDs), and azithromycin. 

Nearly 3 decades ago, investigators noted that patients 

with CF who also had hypogammaglobulinemia treated 

with systemic corticosteroids had better lung function than 

those without hypogammaglobulinemia (and therefore 

not treated with steroids).53 This led to 2 large clinical 

trials of oral steroids in patients with CF. An initial study 

enrolled 21 patients aged 1–12 years with mild to moder-

ate lung disease, given with either placebo or prednisone 

1–2 mg/kg by mouth every other day.9 Subjects receiving 

prednisone showed better lung function, improved weight 

gain, and few hospitalizations over a 4-year observational 

period. No apparent adverse events were reported during 

this study, which led to a larger, multicenter trial, enrolling 
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285 patients aged 6–14 years with mild to moderate lung 

disease.54 Prednisone 1 mg/kg or 2 mg/kg by mouth every 

other day was compared with a placebo group, and again 

showed beneficial effects of corticosteroids on lung function 

– particularly in subjects infected with Pseudomonas 

aeruginosa. However, significant adverse events occurred 

in those receiving prednisone, including growth impair-

ment, cataracts, and glucose intolerance. The high-dose 

(2 mg/kg) group was halted half way through the 4-year 

study due to a high incidence of adverse events.55 Follow-up 

analysis 6 years after completion of the trial found persis-

tent growth deficits,56 and a separate analysis 5 years after 

the initial smaller study found growth deficits in 14/17 

subjects in the prednisone arm who completed the study.12 

For these reasons, regular use of systemic corticosteroids 

is not recommended for patients with CF, despite the ben-

eficial effects on pulmonary health. It is, however, worth 

noting that those receiving prednisone in these trials did 

not show greater risk of infection. Though unacceptable 

as a long-term therapy for most patients, shorter courses 

of systemic steroids may be useful,57 particularly for those 

with a prominent asthmatic phenotype or during treatment 

for acute pulmonary exacerbation when the inflammatory 

response is further increased.

The use of inhaled corticosteroids (ICS) to treat CF lung 

disease has been a topic of much interest in recent years. 

This therapy continues to be prescribed to a large number of 

patients, likely due to a relatively high incidence of asthma-

like symptoms in patients with CF and the perceived safety 

and familiarity among health care providers. However, in 

clinical trials subjects with CF, ICS have not consistently 

proven effective. A recent Cochrane Database Systematic 

Review of clinical trials found no conclusive benefits of ICS 

in CF and no apparent adverse events when discontinuing 

ICS.58 Authors also noted that data are not available to deter-

mine if long-term use of ICS will reduce lung inflammation 

in CF, and that this question is unlikely to be answered by a 

clinical trial at this point.

Ibuprofen
Seeking to identify an anti-inflammatory drug that might be 

better tolerated, Konstan et al59 in Cleveland began studying 

the use of high-dose ibuprofen in animal models, and then 

in clinical trials of patients with CF. A 4-year double-blind 

placebo-controlled trial in 85 subjects aged 5–39 years with 

mild lung disease showed that those receiving the NSAID had 

less decline in pulmonary function, preserved body weight, 

and fewer hospitalizations.11 Individual pharmacokinetics 

targeting a peak plasma concentration of 50–100 µg/mL 

(typical dose 20–30 mg/kg) were used in this study. This 

is 2–3 times higher than commonly prescribed doses and 

in vitro studies indicate that, at this concentration, ibuprofen 

may inhibit pertinent proinflammatory signaling events in 

the cell (ie, NFκB, AP-1 activation).60,61 A second trial was 

conducted in Canada with 142 subjects over 2 years and 

showed preserved forced vital capacity and a trend toward 

preserved forced expiratory volume in 1 second (FEV
1
) in 

the ibuprofen arm compared with placebo.13 The incidence 

of adverse events between placebo and ibuprofen did not 

significantly differ in these trials, and in the Canadian study 

a greater number of subjects receiving placebo dropped out 

of the study due to adverse events that could be attributable 

to NSAID therapy. This observation likely underscores the 

reason that fewer than 10% of patients with CF in the United 

States currently receive high-dose ibuprofen. The underlying 

disease often manifests with symptoms that overlap with 

NSAID toxicity (eg, abdominal pain, epistaxis, hemoptysis, 

gastrointestinal hemorrhage) and confusion or concern of 

these apparently rare, though at times dramatic, events is 

the reason most cited by practitioners for not prescribing 

this therapy.52 The need for individual pharmacokinetics has 

also been cited as a limitation to ibuprofen use.

Azithromycin
Azithromycin is a commonly prescribed therapy for CF and 

likely has immunomodulatory effects. Data indicating that 

regular use of macrolides afforded better pulmonary health 

in another chronic lung disease, diffuse panbronchiolitis, 

led to studies in CF, including a trial of azithromycin in 185 

patients with CF who had mild to moderate lung disease and 

were infected with P. aeruginosa.62 This multicenter, placebo-

controlled trial found that subjects given azithromycin thrice 

weekly had better lung function, weight gain, quality of life, 

and fewer pulmonary exacerbations than those given placebo. 

Studies conducted in the United States and abroad similarly 

showed that chronic azithromycin provides clinically relevant 

health benefits, though more consistently so in those infected 

with P. aeruginosa.63,64 Many mechanistic studies have 

since been done to better understand how azithromycin is 

beneficial. From data available to date, it appears that there 

is a combined effect of both anti-inflammatory and anti-

infective properties. Azithromycin can inhibit neutrophil 

recruitment and oxidative burst, as well as proinflammatory 

cytokine production.65–67 This macrolide antibiotic also inhib-

its several virulence factors of P. aeruginosa, which may be 

more susceptible to azithromycin in the stationary growth 
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phase.68 The question of mechanism is further complicated by 

recent studies in both CF mouse and human models showing 

that treatment with azithromycin causes increased rather 

than decreased release of pivotal proinflammatory cytokines 

from primary airway epithelial cells.69,70 Similarly, sputum 

concentrations of IL-8 were not significantly altered in the 

largest US clinical trial of azithromycin in CF patients and 

patients receiving this treatment continue to have significant 

airway neutrophilia.62

Though not always reflected in spirometry, the clinical 

benefits of azithromycin therapy in CF appear to be sig-

nificant. However, the complexities noted above combined 

with an increased incidence of nausea and vomiting and 

increased antibiotic resistance71 (eg, Staphylococcus aureus, 

nontuberculous mycobacteria) with chronic use, lead many 

to conclude that this therapy is useful but not the ideal anti-

inflammatory treatment for CF. Recent data from a large clini-

cal trial suggest that azithromycin use for 24 weeks may not 

significantly affect pulmonary function in children without 

chronic P. aeruginosa infection.72 Despite the fact that FEV
1
, 

the primary outcome measure, was not affected, other poten-

tially important exploratory outcomes were improved with 

azithromycin use (eg, rate of pulmonary exacerbation).

There are many challenges to identifying a more suitable 

anti-inflammatory therapy. Despite what has been learned 

from prior research, the proper molecular targets are not clear 

and there is significant redundancy in proinflammatory signal-

ing within the lung. Highly specific drugs targeting individual 

pathways have often proven ineffective or potentially toxic. 

Those with the greatest proven clinical efficacy appear to have 

broad, rather nonspecific effects, which may predispose to 

more side effects. Despite these challenges, ongoing research 

is identifying multiple new and promising therapeutic targets, 

and there is significant hope that more effective and well-

tolerated therapies will be identified in the near future.

Challenges in preclinical models 
when testing new therapies
An essential step in developing new anti-inflammatory 

therapies is use of preclinical models to identify molecular 

targets and test drug activity. Although these models have 

provided fundamental information for our understanding 

of the role of inflammation in CF lung disease, each model 

under current use has limitations for the evaluation of  can-

didate therapies. Available cell culture and animal models 

are unable to reproduce the chronic airway impaction and 

infection underlying the perpetual inflammatory response. 

As highlighted earlier, the interrelated nature of multiple 

processes in the CF airway (chronic infection, airway obstruc-

tion, and host inflammatory response) is clear. Therefore, 

improved methods, likely employing better animal models, 

will be necessary to more accurately predict clinical utility 

when testing promising candidate therapies.

Cell lines and cultured epithelial cells
A comprehensive list of established cell lines used in CF 

research is beyond the scope of this article, but has been 

reviewed.73 Use of immortalized cell lines from patients 

with CF has been especially useful to study the effects 

of CFTR dysfunction and to test drugs that may improve 

CFTR function.73,74 Some features of the CF inflammatory 

response have been demonstrated in primary and immortal-

ized CF cells, such as an increased inflammatory response 

following P. aeruginosa exposure,75,76 and higher levels of 

proinflammatory cytokines and nuclear transcription factors 

involved in the inflammatory pathway.25,77–80 However, it is 

unlikely that the immunologic response to chronic bacterial 

infection seen in the CF lung can be fully reproduced in 

either cultured primary cells or in immortalized cell lines. 

For example, phenotypic characteristics that are expressed 

by a particular clone from an immortalized cell line may not 

completely reflect that of the original mixed population of 

epithelial cells from which it was derived. Furthermore, the 

transformation process and cell passaging (or in the case of 

primary cells, transferring the cells into culture) can lead to 

differential expression of phenotype. Finally, cells in vitro 

have a limited ability to tolerate live bacterial challenge, and 

the strain of P. aeruginosa that is used in an experiment can 

influence the inflammatory response.73 In vitro cell culture 

studies have been extremely useful in CF inflammation 

research and models are being improved to better recapitulate 

the human airway. However, it appears unlikely that these 

methods, in isolation, will be adequate to accurately predict 

the most promising drugs for clinical trials.

Animal models
The mouse, which has 78% sequence homology with humans, 

has been used extensively in CF research.81 Mice are relatively 

inexpensive, easy to produce and to manipulate genetically, 

and widely available compared with other CF animal models. 

However, there are differences in airway morphology between 

the mouse and human.82,83 More importantly, although many 

CF mouse models show exaggerated inflammatory response 

in the airway and certain mice demonstrate aspects of altered 

pulmonary physiology consistent with CF lung disease, 

none develops the full spectrum of chronically inflamed 
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and infected airways.84 Furthermore, the phenotype of each 

mutant mouse is dictated not only by the Cftr mutation, 

but also by the genetic background and environment of the 

animal, making proper controls essential in these studies.84 

For many reasons, the CF mouse has been a useful in vivo 

mammalian model for inflammation research; however, 

present limitations must be considered when using these 

animals to determine clinical promise of new therapies.

Because of the limitations posed by the mouse model, 

researchers have investigated use of other animal models 

with the hope that lung function, size, and architecture 

would be more like that of humans. The sheep, ferret, 

and the pig, each having .90% sequence homology with 

humans, are models under development.85–88 Early data from 

the CFTR -/- pig shows that the newborn piglets have nasal 

voltage measurements consistent with CFTR dysfunction 

and pancreatic exocrine insufficiency.89 Recent reports from 

5 CF pigs surviving to several months of age indicates that 

they may develop a lung phenotype similar to that seen in 

humans.90 If survival for these animals can be improved and 

this model does consistently develop lung disease similar 

to that of humans, the model will be humans, it will be an 

invaluable resource for testing new drug therapies. Practical 

considerations of cost and broad availability to the research 

community will also need to be addressed in this process. 

Finally, it should be noted that thus far, survival of CF piglets 

has required intestinal surgery at birth performed by skilled 

investigators.

Challenges for design of clinical 
trials when testing new therapies
Until an adequate animal model of CF lung disease is 

developed, much of the efficacy and safety data must be 

generated in human subjects with CF for new therapies that 

show promise in current preclinical models. As an orphan 

disease with only approximately 30,000 patients in the United 

States and 70,000 worldwide, the number of patients available 

to participate in clinical trials is limited.91–93 Furthermore, 

because it is a progressive, multisystem disease, there is 

wide variability in disease burden between patients. Potential 

confounders that must be considered in trial design and 

analysis include but are not limited to pulmonary function, 

gender, bacterial infection, presence of CF-related diabetes, 

mutation class, pancreatic function, and nutritional status.74

Large, placebo-controlled, double-blinded, multicenter 

clinical trials are necessary to provide adequate data for 

Federal Drug Administration (FDA) approval. However, to 

demonstrate that these large trials are warranted, smaller 

trials that evaluate efficacy and safety of a candidate drug 

must be conducted first. One such trial design is the proof 

of concept.81 A successful proof of concept study provides 

positive outcome data that is specific to the biological 

process the drug is intended to effect. It should also provide 

preliminary data that reflects that the drug is safe. In addi-

tion, because pharmacokinetics often differ in patients with 

CF,94–96 it is important to establish appropriate dosing prior 

to progressing to large trials of a new drug. In consideration 

of all these factors, design of proof of concept trials must 

include stringent inclusion and exclusion criteria, collection 

of outcome measures that support the biologic effects of the 

drug, and pharmacokinetic data that suggests the chosen 

dose is adequate for patients with CF. These requirements 

must be balanced so that the cost and burden to subjects will 

not prevent completion of the study. Study design of these 

initial trials is critical as CF studies, similar to those of many 

orphan diseases, can easily become underpowered to detect 

significant differences in the primary outcomes. This makes 

it difficult to justify larger, more costly studies and promising 

new therapies may be lost to future development.

One of the most signif icant challenges to testing 

new therapies in CF is determining appropriate outcome 

measures. Outcomes used in clinical trials for treatment 

with anti-inflammatory therapies have traditionally included 

clinical efficacy measures such as time to next exacerbation, 

or surrogate end points such as pulmonary function (usually 

FEV
1
 and/or rate of decline of FEV

1
).10,11,13,14,97,98 As a result 

of improvements in clinical care, the rate of decline of lung 

function in patients with CF has slowed substantially.99 In 

addition, rates of exacerbation in patients with relatively 

less lung damage are lower than in those with more 

severe disease.100 However, it is these patients who may 

benefit most from anti-inflammatory treatment to prevent 

pulmonary decline over time. Thus, using lung function or 

pulmonary exacerbations as primary end points in clinical 

trials requires a large number of patients over a significant 

length of time to detect differences in these clinical 

parameters.101 The FDA is increasingly accepting and 

encouraging the use of measures designed to assess Patient 

Reported Outcomes (PROs) such as health-related quality 

of life (eg, the Cystic Fibrosis Questionnaire-Revised).102 

However, this may be problematic when studying a chronic 

therapy aimed at reducing the rate of decline in health 

over a lifetime. As in the case of FEV
1
 and pulmonary 

exacerbations, either prohibitively long follow up or large 

numbers of subjects may be needed to detect a significant 

difference in PROs.74
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Given the limited numbers of potential research subjects 

and the need to maximize limited resources, early phase 

studies must delicately balance the risk of underpowered 

results with the burden of subject participation and cost. For 

new anti-inflammatory therapies, other outcome measures 

may be more sensitive for detecting short-term response to 

treatment. In recognition of the need to develop and implement 

novel outcome measures for use in CF clinical research, the 

Cystic Fibrosis Foundation (CFF) Therapeutics Development 

Network (TDN) established outcome-measures working 

groups to make recommendations.103 Mayer-Hamblett et al103 

also defined standards by which new outcome measures 

should be evaluated: a new outcome measure should be bio-

logically relevant, sensitive and specific to treatment effects, 

reproducible, and feasible. The remainder of this portion of 

the review focuses on potential outcome measures for use in 

trials of new anti-inflammatory therapies.

Systemic biomarkers
Because a systemic biomarker of inflammation would be 

readily obtainable (in blood or urine) from a patient of any 

age and with any severity of pulmonary disease, researchers 

have evaluated such measures in patients with stable disease 

and in those experiencing exacerbations.104–119 Although, 

some systemic markers have shown response to systemic 

antibiotic therapy,104,110,112,115,120 there is concern that approach 

may not be sufficiently sensitive to detect changes that are 

occurring in the lung in response to a new anti-inflammatory 

therapy (Table 1).121

Bronchoalveolar lavage
The lung or, more precisely, the airway is the most active site 

of CF-related inflammation; thus, there has been substantial 

focus on developing biomarkers that are measurable in airway 

samples. Bronchoscopy with BAL is considered the gold 

standard for evaluation of lung inflammation, and has been 

used to evaluate response to therapy in many CF clinical 

trials.122–131 However, this procedure is invasive, resource 

intensive and samples only a small portion of the lung.121 

Two less invasive means of capturing airway specimens are 

exhaled breath condensate (EBC) and sputum collection.

Exhaled breath condensate
EBC collection allows measurement of markers even in those 

CF patients who do not produce sputum. Markers of inflam-

mation, NO, and pH have been studied in the EBC of adult 

and pediatric patients with CF.132–139 In some studies, pH and 

markers of inflammation in EBC from patients with CF who 

are experiencing an exacerbation have been shown to respond 

to antibiotic therapy.132,136,138 In response to the increasing inter-

est in use of EBC to study pulmonary disease, the American 

Thoracic and European Respiratory Societies collaborated to 

make recommendations for optimal collection and analysis 

techniques.6 These efforts are promising, though concerns 

over sensitivity and specificity of this technique have been 

expressed. Many traditional inflammatory indices may not be 

volatile enough to accurately measure by this technique.

Sputum biomarkers
More extensive work has been done by CF researchers to 

evaluate the use of sputum biomarkers to sample lower airway 

secretions and response to therapy. Because patients with 

mild disease rarely produce sputum when stable, some studies 

have utilized sputum induction. For example, Ordonez et al140 

studied pretherapy and posttherapy inflammatory markers 

in induced sputum following treatment with IV antibiotics. 

Table 1 Current and potential outcome measures for use in clinical trials of new anti-inflammatory therapies in CF

Outcome measure Examples Reference(s)

Clinical efficacy FEV1, rate of decline of FEV1, rate of exacerbations 10, 11, 13, 14, 97, 98
Patient reported  
outcome

CF-HQR 102

BAL markers Neutrophils, bacterial count, elastase IL-8, TNF-α,  
soluable ICAM-1, LB4

122–131

EBC markers NO, pH, MMP-9 132–139
Sputum markers White cell count, bacterial count, elastase IL-6, 

IL-8, IL-10, TNF-α
140–143

Systemic markers CRP, NE-APC, TNF-α, IL-1, IL-2, IL-8, EGF 104–119
CT scan CT score, airway trapping, airway wall thickening 145–152
MRI Structural changes, lung perfusion/pulmonary blood  

flow, ventilation defects
154–158

Note: Table does not include exhaustive list of examples for each outcome measure. For comprehensive review of outcome measures in clinical trials for CF patients/
candidate biomarkers for CF airway inflammation. See references 74 and 121.
Abbreviations: FEV1, forced expiratory volume in 1 second; IL, interleukin; TNF, tumor necrosis factor; L, leukotriene; NO, nitric oxide; MMP, matrix metalloprotein; CRP, 
C-reactive protein; NE-APC, neutrophil antiproteinase complex; EGF, endothelial growth factor; CT, computed tomography; MRI, magnetic resonance imaging; CF, cystic fibrosis.
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Total sputum white cell count, active elastase, IL-8, and 

P. aeruginosa counts were significantly decreased after anti-

biotic therapy.140 Although sputum induction was used in this 

study, expectorated sputum has also been shown to reflect 

airway inflammation in CF.141,142 Sagel et al143 demonstrated 

that in patients with CF, measurement of inflammatory mark-

ers is comparable in induced and expectorated sputum. Thus, 

either method can be successfully employed in clinical trials 

in which sputum biomarkers will be an end point.

To assess the association between sputum biomarkers 

and clinical parameters, Mayer-Hamblett et al101 constructed 

a database of sputum biomarkers and pulmonary function 

data from 4 multicenter CF clinical trials to demonstrate 

the strength of association between expectorated sputum 

biomarkers and lung disease severity. Both elastase and 

IL-8 were negatively correlated with lung function in this 

diverse group of CF patients. Of the markers tested, sputum 

elastase showed the strongest correlation with FEV
1
 (correla-

tion, 0.35; 95% confidence interval [CI], −046 to −0.22). On 

average, CF patients whose sputum elastase measurements 

differed by 0.5 logs differed in their FEV
1
 values by −7.3% 

(95% CI, −9.7 to −4.6). Finally, sputum elastase was shown 

to have a significant longitudinal association with FEV
1
: 

a −2.9% decline in FEV
1
 for every log increase in elastase. 

Thus, differences in sputum elastase correlated well with 

clinically meaningful differences in lung function, providing 

a useful biomarker, particularly for studies in which the inter-

vention would likely preserve function through mechanisms 

that would also reduce the airway elastase concentration.101

Aware that differences in collection of sputum and analysis 

of biomarkers may lead to variability in results, and thus 

decrease the reproducibility of test results, the CFF TDN created 

standard operating procedures (SOPs) for both collection of 

sputum by induction and processing of sputum.121 In addition, 

core laboratories were established for analysis of sputum 

inflammatory biomarkers and sputum cytology (The Children’s 

Hospital/University of Colorado Health Sciences Center and 

Case Western Reserve University, respectively.) Use of SOPs 

and core laboratories for centralized analysis will insure 

consistency of results from single and multicenter studies.

Computed tomography (CT)
Although induced sputum and EBC can be collected from 

children (as young as 10 years for induced sputum121 and 

3–4 years for EBC,)144 neither procedure is feasible in very 

young children and infants. Imaging such as CT and magnetic 

resonance imaging (MRI) would be applicable to subjects 

of all ages. Furthermore, therapies aimed at correcting the 

basic defects in CF are hoped to prevent or delay the onset 

of functional lung disease. Airway imaging would allow 

researchers to serially assess the presence and progression 

of structural lung damage.

Two separate longitudinal studies in patients with CF 

using every 2 or 3 year CT scans showed that scored CT 

images were more sensitive than spirometry for detecting 

disease progression.145,146 In addition, Brody et al147 showed 

that there was correlation between the frequency of pulmo-

nary exacerbations and CT score. Small intervention studies 

in patients with CF have demonstrated improvement in overall 

CT score following treatment.148,149 

In addition to evaluation of general structural changes, 

CT scan can be used to reproducibly measure airway wall 

thickness. Airway wall thickness can be reproducibly 

measured by CT scan.150–152 Because airway wall thickness 

is thought to correspond to airway inflammation, this 

measurement may be useful to monitor the efficacy of anti-

inflammatory therapies. Airway wall thickness has been suc-

cessfully used to demonstrate response to inhaled steroids in 

asthmatic subjects.153 More data are needed to determine if this 

outcome measure will be useful in anti-inflammatory studies 

in CF lung disease. Investigators are faced with concerns over 

cumulative radiation exposure and potential need for sedation 

in the very young when designing these experiments.

Magnetic resonance imaging
Using proton-MRI sequences, structural changes such as 

bronchial wall thickening, mucus plugging, bronchiectasis, 

consolidation, and segmental destruction can be visualized.154 

Although the spatial and temporal resolution of MRI of the 

lung is inferior to that of CT, the lack of ionizing radiation 

makes MRI appealing as a repeated measure in clinical trials. 

Use of intravenous or inhaled contrast expands the potential 

of MRI in assessing CF lung disease. For example, with 

gadolinium-based intravenous contrast, MRI can examine 

lung perfusion and pulmonary blood flow.155,156 Inhaled 

hyperpolarized gas can provide a high MRI signal from 

airspaces of the lung. No ionizing radiation is used for these 

contrast studies and reported adverse events are mild.157 Using 

ventilation MRI imaging, Mentore et  al158 demonstrated 

correlation between ventilation defects and spirometry. Fur-

thermore, MRI imaging correlated with treatment and could 

detect abnormalities in subjects with normal spirometry. As 

in the case of sputum biomarkers, in order to use imaging 

techniques as outcome measures in clinical trials, SOPs will 

need to be created, and centralized reading centers where a 

common scoring system is used must be developed.159
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Future directions
CFF pipeline-drug discovery program/CF 
therapeutics development network
Through research funded by the CFF, both ibuprofen and 

azithromycin were shown to be beneficial in CF as described 

earlier. The CFF TDN is sponsoring a number of trials of 

potential new anti-inflammatory drugs, including both novel 

compounds and drugs that are FDA approved for other 

indications.160 Based on promising preclinical data, 3 FDA-

approved drugs were recently tested in proof of concept trials 

including the immunosuppressant hydroxychoroquine, the 

HMG CoA reductase inhibitor, simvastatin and the PPAR 

gamma agonist, Pioglitazone.161–163 Although results of safety 

and efficacy of these 3 therapies were inconclusive, consid-

eration is being given for longer trials.164

Another FDA-approved therapy, the phosphodiesterase 

inhibitor, sildenafil, is being studied through the CF TDN 

for its potential as an anti-inflammatory. Toward et  al165 

demonstrated that pretreatment with sildenafil inhibited 

LPS-induced airway hyperreactivity, white cell influx, and 

NO dysfunction in 2 guinea pig models of airway disease.165 

In CF respiratory epithelial cells, Poschet et  al166 showed 

that sildenafil exposure could reverse the excessive proin-

flammatory response to P. aeruginosa. In separate work, 

DBA/2 mice sensitive to P. aeruginosa were fed a diet 

with or without sildenafil. Following aerosol-delivered P. 

aeruginosa respiratory infection, myeloperoxidase in lung 

homogenates (a reflection of neutrophil infiltration) was 

reduced by 42% ± 11% (P = 0.047) in animals who received 

sildenafil-containing diets.167 Based on these data, sildenafil 

is currently being tested in a phase 2 trial.

A novel drug that is under investigation through the CF 

TDN is SB656933, a selective chemokine receptor (CXCR2) 

antagonist. This once-daily oral medication is also in a phase 2 

multicenter study. The CFF is also funding investigation of 

drugs that may combat the pathogenic result of excessive 

inflammation by targeting antioxidant deficiencies. The ability 

of N-acetylcysteine (an oral agent that replenishes glutathione 

levels) to modulate inflammation in CF was studied by Tirou-

vanziam et al.168 In this proof of concept study, CF patients were 

treated for 4 weeks, and inflammatory markers in expectorated 

sputum were assessed. In addition to increased glutathione lev-

els in blood and in neutrophils, researchers found that sputum 

elastase was significantly decreased following treatment with 

N-acetylcysteine. Based on these results, a multicenter phase 

2b is underway. Targeting similar mechanisms, a phase 2 trial 

of inhaled glutathione is being conducted in Germany. Finally, 

a multicenter study of DHA supplementation is also ongoing. 

As discussed earlier, DHA supports anti-inflammatory 

signaling that may be impaired in CF (eg, PPARγ).

In summary, preclinical models of CF have provided 

invaluable information about the pathophysiology of CF lung 

disease, highlighting many molecular mechanisms which 

promote an exaggerated host inflammatory response. However, 

significant limitations of these models present challenges when 

trying to identify promising anti-inflammatory therapies for 

clinical trials. Similarly, inherent qualities of CF (eg, variable 

disease burden, relatively slow progression, limited number 

of potential subjects, etc) require thoughtful planning for early 

human studies to balance patient burden and cost with risk of 

underpowered data. Improving preclinical models of CF lung 

disease and developing useful and more dynamic surrogates 

of pulmonary function (ie, biomarkers) will help to overcome 

these challenges and significantly accelerate progress toward 

identifying new anti-inflammatory therapies. The CF research 

community continues to identify and test promising drugs, 

while many patients benefit from those already in use.
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