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ABSTRACT Organisms can cope with stressful environments via a combination of phenotypic plasticity at the
individual level and adaptation at the population level. Changes in gene expression can play an important role in
both. Significant advances in our understanding of gene regulatory plasticity and evolution have come from
comparative studies in the field and laboratory. Experimental evolution provides another powerful path by which
to learn about how differential regulation of genes and pathways contributes to both acclimation and adaptation.
Here we present results from one such study using the nematode Caenorhabditis remanei. We selected one set
of lines to withstand heat stress and another oxidative stress. We then compared transcriptional responses to
acute heat stress of both and an unselected control to the ancestral population using a weighted gene coex-
pression network analysis, finding that the transcriptional response is primarily dominated by a plastic response
that is shared in the ancestor and all evolved populations. In addition, we identified several modules that
respond to artificial selection by (1) changing the baseline level of expression, (2) altering the magnitude of
the plastic response, or (3) a combination of the two. Our findings therefore reveal that while patterns of
transcriptional response can be perturbed with short bouts of intense selection, the overall ancestral structure
of transcriptional plasticity is largely maintained over time.
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When faced with novel and stressful environmental conditions, indi-
viduals may acclimate to survive and populations can adapt to flourish
(Hoffmann and Hercus 2000). Phenotypic plasticity is one mechanism

of acclimation (Bradshaw 1965). Like other complex phenotypes,
plasticity has a genetic basis and can evolve in response to selection
(West-Eberhard 2003; Moczek et al. 2011). The adaptive response of a
population to new, stressful conditions may therefore involve both
acclimation and adaptation via plasticity evolution (Via and Lande
1985; Gomulkiewicz and Kirkpatrick 1992; Gavrilets and Scheiner
1993; Lande 2009; 2014). Furthermore, novel environments in the wild
may present several stresses simultaneously that can lead to a correlated
response in means of different phenotypes (e.g., Grant and Grant 1995;
Fischer et al. 2007), and a shared genetic basis may lead to covariance
of phenotypic plasticity of different traits across environments (e.g.,
Czesak et al. 2006; Stinchcombe et al. 2010).

Phenotypic plasticity has been studied in the laboratory and the field
for more than a century (Baldwin 1896b; 1896a; Clausen et al. 1940;
Waddington 1953; 1956; Schmitt et al. 1995; Bennett and Lenski 1997;
DeWitt 1998; Nussey et al. 2005; Cheviron et al. 2013) and has been
shown to be adaptive in many different systems (e.g., Dudley and
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Schmitt 1996; Agrawal 1998; Aubret et al. 2004; Charmantier et al.
2008). More recently, molecular analyses of gene expression have be-
gun to identify systems that underlie phenotypic plasticity and its evo-
lution (e.g., Gasch et al. 2000; Swindell et al. 2007; Hodgins-Davis and
Townsend 2009; Badisco et al. 2011; Schunter et al. 2014; Alvarez et al.
2015). Gene expression levels can be characterized as a norm of re-
action for a given genotype across environments (Figure 1). If popula-
tions of organisms continue to experience the new environment long
enough for genetic changes to accumulate, then gene reaction norms
can change both in basal expression levels and in the plasticity of
expression itself (Figure 1).

Despite the advances in understanding gene regulatory differences
that underlie phenotypic plasticity that have come from comparative
analyses (Alvarez et al. 2015), the relative balance between rapid plastic
responses in gene regulation and longer term changes in baseline ex-
pression in response to a novel environment are largely unknown.
Experimental evolution provides a powerful approach to provide this
understanding because proximal exposure to both novel and ancestral
environments can be separated from long-term adaptation to the novel
environment in a robust and reproducible fashion (Yampolsky et al.
2012; Sikkink et al. 2015; Huang and Agrawal 2016). When whole
genome approaches (e.g., RNA-seq) are utilized, correlated changes
in reaction norms of numerous genes provide a systems level way to
tackle this question (Eisen et al. 1998; Wolfe et al. 2005; Promislow
2005; Barchuk et al. 2007; Rose et al. 2016).

We evolved phenotypic plasticity in populations of the nematode
C. remanei in the laboratory by selecting for resistance to heat stress and
oxidative stress (Sikkink et al. 2014b; Sikkink et al. 2015). In this paper
we use a differential gene expression approach via RNA-seq to deter-
mine the structure and evolution of gene coexpression networks. Our
goal was to address the relative balance between rapid plastic responses
in gene regulation and longer term changes in baseline expression of a
trait in response. In addition, we asked if adaptation to the heat and
oxidative stresses involved the same or independent co-regulated mod-
ules. Our findings reveal that while patterns of transcriptional response
can be perturbed with short bouts of intense selection, and that these
molecular changes are at least partially independent across stressors,
the overall ancestral structure of transcriptional plasticity is largely
maintained over time.

MATERIALS AND METHODS

Experimental evolution of C. remanei
We used the experimentally evolved populations of C. remanei that
have previously been described (Sikkink et al. 2014b; Sikkink et al.
2014a; Sikkink et al. 2015). Briefly, 26 isofemale strains of C. remanei
were isolated from terrestrial isopods (FamilyOniscidea) collected from
Koffler Scientific Reserve at Jokers Hill, King City, Toronto, Ontario.
These strains were crossed in a controlled fashion to promote equal
genetic contributions from all strains. The resulting genetically hetero-
geneous population (PX443) was the ancestral population for the ex-
perimental evolution.

A subset of the ancestral population was used for transcriptional
profiling. In addition to the ancestor, three experimentally evolved
populations were sampled for RNA-sequencing. All selection lines
had been evolved at 20� as described previously (Sikkink et al. 2014b;
Sikkink et al. 2015). One representative control population, one heat-
selected population, and one oxidative-selected population were used.
The heat-selected line was generated by exposing age-synchronized L1
larval worms to a 36.8� heat shock approximately every second gener-
ation. The oxidative-selected was similarly treated with a 1mM solution

of hydrogen peroxide. The control populations received a mock selec-
tion treatment, fromwhich worms were selected at random to continue
the selected line at a similar census size. All lines were frozen after every
two selection events. The final experimentally evolved populations used
for the transcriptomics had experienced a total of 10 acute selection
events and five freeze-thaw cycles.

Expression data
We collected L1 tissue from the ancestral, control, heat-selected, and
oxidative-selected populations to use for transcriptional profiling (Sup-
porting Information, Figure S1). All lines except the oxidative-selected
populationhave beenpreviously described (Sikkink et al.2014b; Sikkink
et al. 2014a). Briefly, we thawed frozen stocks of worms from each
population. Except in the oxidative-selected population, 6 replicates
per treatment were collected from a minimum of two independently
thawed populations from each line. For the oxidative-selected line, all
replicates were collected from a single thawed population of worms.
Worms were raised at 20� until the population was large enough to
collect enough individuals for RNA isolation. Age-synchronized L1
larvae were raised for 20 hr in liquid medium at either 20� or 30�
(Figure S1). Prior to tissue collection, larval worms were passed through
a 20-mmNitex screen to remove unhatched eggs and dead adults. Total
RNA was isolated from approximately 100,000 pooled individuals us-
ing standard TRIzol methods. Sequencing libraries were prepared
according to the protocols as previously described (Sikkink et al.
2014b; Sikkink et al. 2014a). Samples were sequenced from a single
end, to a length of 100 nucleotides in six lanes on an Illumina HiSeq
2000 at the University of Oregon Genomics Core Facility.

Initial processing of RNA-seq data
Initial quality filtering of raw sequence reads was performed using the
process_shortreads component of the software Stacks (Catchen et al.
2011; 2013). Reads were discarded if they failed Illumina purity filters,
contained uncalled bases, or if sample identity could not be determined
due to sequencing errors in the barcode sequence. Reads with ambig-
uous barcodes were recovered if they had fewer than two mismatches
from a known barcode. Using the alignment software GSNAP (Wu and
Watanabe 2005; Wu and Nacu 2010), we aligned all reads that passed
the quality filters to a reference genome for C. remanei assembled from
strain PX356 (Fierst et al. 2015). We then used the htseq-count tool
from the Python package HTSeq (Anders et al. 2015) to count all reads
unambiguously aligning to gene models.

For all expression analyses, we first normalized the gene counts from
all samples to account for differences in library size using the scaling
procedure implemented in the DESeq2 package (Anders and Huber
2010; Love et al. 2014) in R version 3.4.0 (R Development Core Team
2017). The expression dataset was next filtered to exclude the 40% of
genes with the lowest variance across treatments. Independent filtering
of genes with very low variance in expression across treatments gener-
ally improves power in subsequent analyses (Bourgon et al. 2010;
Anders et al. 2013). The expression values of the remaining genes were
transformed using the variance-stabilizing transformation within
DESeq2 for further analysis.

Finally, we used surrogate variable analysis (SVA) to reduce signal
from batch effects and other unknown sources of variance (Leek and
Storey 2007). SVA uses the residual expression matrix after accounting
for the variables of interest—in this case temperature and population—
to identify latent variables within the expression matrix. Using the R
package sva (Leek and Storey 2007), we identified five latent variables
encapsulating the unknown effects. To remove the effects of these
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variables from the gene expression data, we used limma (Ritchie et al.
2015) to build a regression model including only the latent variables
obtained from SVA. We retained the residual expression matrix for all
downstream analyses.

Multivariate analysis of transcriptional variation
We used non-metric multidimensional scaling (nMDS), which is an
unsupervised ordination method that enables highly-dimensional data
to be projected onto a few axes for visualization. For RNA-seq data,
nMDS may be preferable as an ordination method, because it does not
assume linear relationships within the data, enabling nMDS algorithms
to robustly extract complexpatterns fromgeneexpressiondata (Taguchi
and Oono 2005). One drawback of this nonparametric approach is,
however, that the scores for variables mapped onto ordination axes can
not be easily interpreted (in contrast to principal component scores, for
example), and other methods may be required to identify genes con-
tributing to differences between groups.

To carry out the nMDS ordination, a dissimilarity matrix was
calculated for the filtered dataset of SVA residuals using Bray-Curtis
dissimilarities (Bray and Curtis 1957). Using other distance metrics did
not substantially alter the ordination plot. Data transformation, ordi-
nation, and scaling were performed in five dimensions using the vegan
package (Oksanen et al. 2013). We tested for significant differences
among populations and treatments using a permutational analysis of
variance performed on the Bray-Curtis dissimilarity matrix. Popula-
tion, treatment, and the interaction term were included as effects in the
model, and 1000 permutations were run.

de novo Network Analysis
We used weighted gene coexpression network analysis (WGCNA),
implemented in the R package WGCNA (Langfelder and Horvath
2008) to identify sets of genes (modules) that are highly correlated in
their expression patterns. The initial network was constructed from all
replicate samples for all treatments (n = 48) using a signed adjacency
matrix with power = 5 to construct the topological overlap matrix.
Hierarchical clustering of the topological overlapmatrix was performed

using the hclust function of flashClust (method = “average”)
(Langfelder and Horvath 2012). Initial module assignments were made
using the dynamicTreeCut algorithm (Langfelder et al. 2008) with the
following options: cutHeight = 0.905, deepSplit = 2, minClustSize = 30,
pamRespectsHybrid = FALSE.

We used a resampling approach to determine the probability that
eachgenewasassignedto theappropriatemodule.Todothis,weselected
four of the six replicates for each treatment group at random to create a
new subsampled dataset with 32 samples each. A total of 100 resampled
datasetswere created in thisway.Using the sameparameters as in the full
dataset, we reconstructed the gene coexpression network for each of the
resampled datasets. We then assessed whether each gene belonged in a
given module by the following criteria. (1) If a module within a
resampled network comprised at least 10% of a module in the full
network, the genes in the resampled module were considered a signif-
icant groupwithin the originalmodule. Thus, eachmodule from the full
network could consist of several well-supported modules from the
resampled data, but the network topology is biased toward the modules
created fromthe full dataset. (2)Every gene fromthe resampledmodules
that was included in such a group in at least 70% of the resampled
networks was determined to be strongly supported as a member of that
module in the original network.All genes that didnotmeet these criteria
were removed to the “unassigned” bin. After poorly supported genes
were removed from eachmodule, wemerged highly correlatedmodules
together based on the correlations amongmodule eigengenes. Modules
with highly correlated eigengenes (r . 0.9) were merged into single
modules. Finally, the genes from any remaining modules that con-
tained fewer than the minimum cluster size of 30 genes were moved
to the “unassigned” bin.

Functional Annotation of Evolving Modules
The eigengene for each module, defined as the first principal compo-
nent of the expression of all the genes in the module, was calculated to
represent the general pattern of expression seen within each module.
With the samples from the ancestral population, we first performed a
t-test for significant differences in eigengene expression across the two

Figure 1 Different patterns for the evolution of
phenotypic plasticity in response to environmental
change. In each panel, the norm of reaction for the
ancestral population is denoted by the gray line and
that of the derived population by the red line.
Patterns of plasticity can either remain the same,
evolve to become different, or change in overall
mean level of expression. The various options
illustrated here are not an exhaustive list, as combi-
nations of many of these options are also possible.
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environments to identify modules contributing to the ancestral re-
sponse to thermal stress. We then performed an analysis of variance
onmodule eigengenes to test for effects of population, temperature, and
population-by-temperature interactions on the overall module expres-
sion. For modules that had a significant effect of population, we used
Tukey HSD to identify pairwise differences between lines. All statistical
tests on the eigengene expression were carried out in the R statistical
environment (R Development Core Team 2017).

Tofunctionally annotate thegenesexpressed inourdata,wesearched
the nr protein database using BLAST+ (v2.2.28) (Camacho et al. 2009)
to find significant (E-value . 1023) matches to each gene. We used
Blast2GO v3.0 (Conesa et al. 2005; Conesa and Götz 2008) to map
significant BLASTx results to gene ontology terms and to compute a
Fisher’s Exact Test to test for significant over-representation of GO
terms in each module.

Weexaminedeachmodule for enrichmentof knownregulatory targets
of 23 transcription factors for which binding data are available for the
related nematode C. elegans. Binding targets for all transcription factors
except for the FOXO transcription factor DAF-16 were obtained from the
C. elegansmodENCODE project (Niu et al. 2011). These targets were all
identified from chromatin immunoprecipitation sequencing (ChIP-seq)
of transgenic strains tagged with a dual GFP:3xFLAG tag and immuno-
precipitated using anti-GFP antibodies (Niu et al. 2011). Putative target
genes bound by DAF-16 have been previously identified using two dif-
ferent approaches: ChIP using anti-DAF-16 antibodies (Oh et al. 2006)
and DNA adenine methyltransferase identification (DamID; Schuster
et al. 2010). Target genes could be included multiple gene sets if they
are bound by more than one transcription factor.

C. remanei homologs for each of the C. elegans transcription factor
targets were determined based on the annotations that have been cu-
rated in the WS220 release of WormBase (Harris et al. 2009). Homol-
ogous genes identified by any method were included as possible
transcription factor targets in C. remanei. In cases where multiple
C. remanei genes were matched to a single gene in C. elegans, all
possible homologous genes were included in the gene set, since no
information was available to determine whether transcription factor
binding was preserved preferentially in either possible homolog.

Moduleswere tested for significantenrichmentof targetgenesbound
by each transcription factor using a one-tailed Fisher’s exact test. In
addition, we tested for enrichment of the C. remanei heat shock pro-
teins previously identified (Sikkink et al. 2014b).

Data Availability
Sequence data for the ancestral, control, and heat populations were
previously deposited in the NCBI Gene Expression Omnibus (GEO)
database as part of series GSE56510 with accession numbers
GSM1362987-1363022. All of this data, as well as additional RNA-
seq data for the oxidative population, were realigned and reannotated
and deposited in GEO under accession number GSE115496. Supple-
mental material are available at Figshare: https://doi.org/10.25387/
g3.7361183.

RESULTS

Transcriptional regulation divergence occurs both
across temperatures and between evolved populations
We first sought to determine whether samples from the various pop-
ulationsor temperatures couldbedifferentiatedbasedonglobal patterns
of gene expression. To do this, we used non-metric multidimensional
scaling (nMDS), a powerful ordination method that does not assume
linear relationships among variables (Taguchi and Oono 2005). On the

first axis, we observed distinct separation between the two temperature
treatments (Figure 2A). To assess the significance of the observed dif-
ferences between temperature treatments, we used a permutational
analysis of variance (PERMANOVA) on the dissimilarity matrix. This
analysis confirmed that temperature had a highly significant effect on
global gene expression (F1,40 = 6.41, P = 0.001).

The four populations also differed significantly from one another
(PERMANOVA; F3,40 = 3.17, P = 0.001). The population differences
accounted for variation observed on Axis 2 and Axis 3 in the nMDS
analysis (Figure 2B). Both the oxidative and heat selected lines diverged
from the ancestral population on Axis 2, but in opposite directions
(Figure 2D). In contrast, the control population separated from the
ancestral and selected populations on Axis 3 (Figure 2E). This pattern
of divergence from the ancestor suggests that the three different selec-
tion regimes (two stresses and lab adaptation) lead to unique changes in
transcriptome regulation in these populations. In addition, the response
to the temperature treatment was strongly dependent on the popula-
tion (PERMANOVA, population-by-temperature interaction: F3,40 =
1.77, P = 0.002). The consequences of the interaction effect are most
apparent on Axis 4 (Figure 2F), where the control-selected population
responds to temperature in the opposite direction compared to the
remaining lines, and Axis 5 (Figure 2G), on which the heat population
responds in the opposite direction.

Network modules are differentially associated with line-
and temperature-specific variation in expression
Because nMDS is a non-metric method, the contribution of specific
genes (or suites of genes) to divergence on each axis is not readily
interpretable. To address this limitation, we used weighted gene
co-expression network analysis (Zhang and Horvath 2005; Langfelder
and Horvath 2008) to identify modules, which are sets of genes with
strongly correlated expression patterns that aremore loosely connected
to other such modules. We sought to identify modules that were im-
portant in the differential regulation of stress resistance in our evolved
populations of C. remanei, because members of a gene module often
share a common function (Eisen et al. 1998; Wolfe et al. 2005), and
highly correlated gene sets may share transcriptional regulators
(Allocco et al. 2004, but see also Marco et al. 2009).

Network analysis identified 13 co-expressed modules containing a
total of 5,622 genes (Table 1). An additional 9,212 genes were not
consistently assigned to any module after resampling and were desig-
nated as “Unassigned”. For each module, we calculated the eigengene
(Langfelder and Horvath 2008), defined as the first principal compo-
nent of the module. An eigengene’s expression explains the largest
proportion of variance for the genes within the module and is therefore
representative of the expression of the combined set of correlated genes
within the module (Figure S2). For all assigned (numbered) modules,
the eigengene explains more than 40% of the expression variance
within the module, with several explaining 50 to 70% (Table 1). The
second principal component explains no more than 5.6% in any
assigned module (Figure S2), confirming that the eigengene is in fact
an appropriate representation of expression for the genes within the
assigned modules.

Despite evolution the ancestral structures of gene
expression reaction norms are largely retained
Inthebalancebetweenenvironmentandevolutioninchanges inpatternsof
transcriptional regulation (Figures 1 and 3), plasticity and/or the retention
of ancestral plasticity via the evolution of baseline expression predomi-
nates. Significant temperature differences or temperature-by-population
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interactions were observed in 12 out of 13 modules (Table 1). In fact, the
two largest modules, Module 1 and Module 2, show effects only attribut-
able to temperature (“shared plasticity”). Module 1 is composed of genes
that are upregulated in all populations under immediate heat stress,
whereas Module 2 contains genes that are downregulated in response
to heat (Figure 3). The largest class of modules retained the overall pattern
of plasticity displayed across populations, but changed their baseline level
of expression within each environment (“divergent baseline”, Figure 3,
Table 1). Finally, four of the modules showed heterogeneity among the
pattern of plasticity that was dependent upon their specific evolutionary
history (“evolved and/or divergent plasticity”, Figure 3). In one case (Mod-
ule 5), the oxidative stress population lost its apparent response to heat
stress entirely, indicative of genetic assimilation.

Tomore specifically address evolutionary divergence among lines, we
examined pairwise differences among them for modules that showed a
significant population effect (Figure 3). Focusing specifically within the
ancestral population, five modules (Modules 1, 2, 3, 4, and 7), which
together contain 4,836 genes, had significant expression differences

across environments (Table 2). Evolved lines that diverged from the
ancestral population are of particular interest, as these could indicate a
set of genes that are adaptive for stress resistance. Two modules, Module
6 and Module 9, differed in the heat-selected population only. These
modules are expected to contain genes that are important for adaptation
to heat stress. Similarly, five modules (3, 4, 5, 7, and 8) are significantly
different from the ancestor only in the oxidative-selected population.
Two additional modules, Module 10 and Module 13, have evolved in
both stress-selected populations. In both cases, the responses are in op-
posite directions in each stress-selected population (Figure 3), similar to
the observed differences on Axis 2 in the nMDS analysis (Figure 2B).

Surprisingly, among the unassigned genes, we observed a significant
effect of both temperature and population in the eigengene expression,
supporting the observation that a pattern of “divergent baseline” pre-
dominates the overall structure of the evolution of gene expression
across the genome (Table 1). Given the conservative approach we used
to assign genes into modules following resampling, it is likely that genes
contributing to the unassigned modules were falsely removed from a

Figure 2 Non-metric multidimensional scaling of RNA-seq samples based on the filtered set of all expressed transcripts. (A) Axes 1 and 2 from the
ordination. Light gray circles indicate samples raised at 20�C, while dark gray triangles represent samples raised at 30�C. Crosses and ellipses
indicate the centroid and standard deviation for each temperature treatment. (B) Axes 2 and 3 from the ordination showing the distribution of
samples from the ancestor (gray), control (green), heat-selected (red), and oxidative-selected (blue) populations. Circles indicate samples raised at
20�C, and triangles represent samples raised at 30�C. Crosses and ellipses indicate the centroid and standard deviation for each population. (C-G)
The mean nMDS score (6 1 SD) for all treatment combinations on each nMDS axis.
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real module. However the proportion of variance explained by the
eigengene for the unassigned module is relatively small (9.3%). There-
fore, it is unlikely that the lack of module assignment for these genes
substantially alters the overall network topology we have observed.

Gene expression modules are each enriched for
functionally related genes
We next examined the functional relationships among genes in identified
modules by looking for enrichment of Gene Ontology terms within each
module, especially terms in the biological process ontology (Figure 4).
Enrichment of molecular function and cellular component terms are
shown in Figures S3 and S4, respectively. Modules 1, 4, and 5, which
contain genes upregulated in response to temperature, were enriched
for terms falling under the GO categories pertaining to embryonic devel-
opment, reproduction, and cellular transport, as well as metabolic

processes relating to nucleic acid metabolism and translation. Module 2,
which encompasses the largemodule of genes down-regulated in response
to heat, was enriched for genes involved in cell-cell signaling. Modules
3 and 7, which had lower expression in the oxidative-selected population,
were enriched for immune system genes and genes involved with trans-
lation, respectively. Modules 9 and 11 were enriched for genes involved in
metabolic processes acting on molecules other than nucleic acids.

Regulatory targets of stress-responsive transcription
factors are enriched in network modules
In C. elegans, several transcription factors are known to be critical
regulators of cellular responses to stress. However, these regulators
may not be differentially expressed in response to stress themselves,
but rather undergo protein modifications to activate them under cer-
tain conditions. For example, the FOXO transcription factor DAF-16 is

n Table 1 Eigengene analysis of modules identified in gene coexpression network analysis.

Module
Number
of Genes

% Variance
Explained by

PC1
Eigengene
Effects F

df(num),
df(denom) P value Evolveda

Evolved
Population Functional annotation

1 1992 42.4% Temperature 46.33 1, 40 .0.001� embryo development,
reproduction, transport, othersPopulation 2.55 3, 40 0.069

Temp x Pop 0.13 3, 40 0.942
2 1471 42.5% Temperature 46.69 1, 40 .0.001� cell-cell signaling

Population 2.38 3, 40 0.084
Temp x Pop 1.00 3, 40 0.401

3 865 42.3% Temperature 48.73 1, 40 .0.001� d immune system process
Population 15.53 3, 40 .0.001� ox
Temp x Pop 0.85 3, 40 0.472

4 389 49.8% Temperature 38.24 1, 40 .0.001� d embryo development,
reproduction, transport, othersPopulation 23.97 3, 40 .0.001� ox

Temp x Pop 0.48 3, 40 0.700
5 278 50.3% Temperature 11.20 1, 40 0.002� d embryo development,

transport, cell motility, othersPopulation 50.32 3, 40 .0.001� ox
Temp x Pop 2.95 3, 40 0.044�

6 120 65.3% Temperature 33.60 1, 40 .0.001� d

Population 8.06 3, 40 .0.001� heat
Temp x Pop 1.06 3, 40 0.378

7 119 49.5% Temperature 17.18 1, 40 .0.001� d translation
Population 44.89 3, 40 .0.001� ox
Temp x Pop 10.90 3, 40 .0.001�

8 98 55.8% Temperature 9.07 1, 40 0.004� d

Population 26.99 3, 40 .0.001� ox
Temp x Pop 3.34 3, 40 0.029�

9 77 67.9% Temperature 13.42 1, 40 0.001� d metabolic process, aging
Population 6.56 3, 40 0.001� heat
Temp x Pop 0.79 3, 40 0.506

10 72 58.9% Temperature 0.01 1, 40 0.931 d

Population 51.13 3, 40 .0.001� ox, heat
Temp x Pop 1.49 3, 40 0.232

11 60 58.8% Temperature 27.77 1, 40 .0.001� metabolic process
Population 6.25 3, 40 0.001�

Temp x Pop 0.32 3, 40 0.809
12 49 68.6% Temperature 24.95 1, 40 .0.001�

Population 8.38 3, 40 .0.001�

Temp x Pop 1.56 3, 40 0.213
13 32 65.5% Temperature 1.07 1, 40 0.306 d

Population 19.80 3, 40 .0.001� ox, heat
Temp x Pop 3.84 3, 40 0.017�

Unassigned 9212 9.3% Temperature 13.96 1, 40 0.001� d

Population 21.11 3, 40 .0.001� ox, heat
Temp x Pop 0.59 3, 40 0.625

a
Significant difference (Tukey’s HSD; P , 0.05) between ancestor and any evolved line.
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Figure 3 Module eigengene expression across temperatures for each population. Each box illustrates the relative expression for a population
(ancestor, control, heat stress, oxidative stress) for individuals raised at either 20� or 30�C. Module ID is specified by the number following “M”.
Expression levels for “unassigned genes” are provided under “UA”. Modules are roughly grouped into the categories outlined in Figure 1. For
modules in which there was a significant effect of population (Modules 3-13), the letters indicate populations which were different by Tukey’s
HSD. Experimental populations that share a letter are not significantly different in the pairwise comparison.
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a major target of the insulin/insulin-like growth factor signaling (IIS)
pathway in worms and is responsible for mediating responses to heat
and oxidative stress, among others (Honda and Honda 1999; Hsu et al.
2003). DAF-16 is normally localized to the cytoplasm, but in stress
conditions, DAF-16 is activated and transported to the nucleus, where
it regulates transcription of many target genes (Lin et al. 2001; Lee et al.
2001). We identified C. remanei homologs of known binding targets of
23 transcription factors with previously published transcription factor
binding profiles (Oh et al. 2006; Schuster et al. 2010; Niu et al. 2011),
and tested for significant enrichment in each of the network modules.
We also examined enrichment of another stress-related candidate
gene set, the heat shock protein families (hsps) previously examined
in Sikkink et al. (Sikkink et al. 2014b).

We observed significant enrichment (FDR , 0.05) of regulatory
targets for all but four of the available transcription factors (Figure 5).
Many of the transcription factors are key regulators of embryonic de-
velopment. Unsurprisingly, Module 1 is enriched for transcriptional
targets of most of these genes, including three HOX transcription fac-
tors—LIN-39, MBA-5, and EGL-5—consistent with the functional
annotation of Module 1’s role in development.

Several transcription factors that regulate stress responses also
showedenrichmentof their targetgenes inoneormoreof thesemodules.
PHA-4, a developmental regulator necessary for formation of the
pharynx (Mango et al. 1994; Horner et al. 1998), has also been impli-
cated in regulating heat shock response through HSP90 (van Oosten-
Hawle et al. 2013). Targets of PHA-4 were enriched inModule 1 as well
as the oxidative-evolved Modules 4 and 5. Genes regulated by SKN-1,
another target of IIS that is critical for oxidative stress resistance (An
and Blackwell 2003), were also enriched in Modules 1 and 4. Modules
2 and 3 were both enriched for targets of PQM-1, a C2H2 zinc finger
and leucine zipper-containing protein (Tawe et al. 1998). In C. elegans,
PQM-1 is responsive to certain types of oxidative stress (Tawe et al.
1998), and is a key regulatory target of IIS, in addition to DAF-16
(Tepper et al. 2013). Module 2 was also enriched for DAF-16 targets.

Module 9, which was significantly divergent in the heat-selected pop-
ulation, was significantly enriched for heat shock proteins. Thismodule was
alsoenrichedfor targetsofELT-3,aGATAtranscriptionfactorthat functions
duringhypodermal development inC. elegans (Gilleard et al.1999) andmay
also function downstream of IIS to influence longevity (Budovskaya et al.
2008), pathogen resistance (Pujol et al. 2008), and osmotic stress response
(Rohlfing et al. 2010). ALR-1, a homeodomain transcription factor involved
in development of sensory and GABAergic motor neurons (Tucker et al.
2005), and EOR-1 which regulates RAS/RAF-mediated signaling during

development (Rocheleau et al. 2002; Howard and Sundaram 2002) also
bind to more genes than expected within this module.

Modules 7, 8, 10 and 13were also significantly different between the
ancestor andat least oneevolvedpopulation;however, theydidnot show
significant enrichment of target genes for the available transcription
factors. However, ChIP binding data from C. elegans was not yet avail-
able for some key transcription factors involved in stress response,
particularly HSF-1 and HIF-1. Heat shock proteins are known to be
regulated by HSF-1 in response to heat stress (Wu 1995; Åkerfelt et al.
2010), therefore enrichment of hsps inModule 9 may indicate a role for
HSF-1 in regulation of that module.

DISCUSSION
For many organisms, phenotypic plasticity is a vital adaptation that has
evolved to copewith environmental stress. After almost a century ofwork
on plasticity, researchers are now beginning to dissect the genetic regu-
latory networks that underlie a plastic phenotypic response (Promislow
2005; Barchuk et al. 2007; Rose et al. 2016; Nocedal et al. 2017). Here, we
add to this growing body of work by examing global changes in gene
expression in the evolution of phenotypically plastic responses using
experimental evolution of C. remanei in response to the two related,
but distinct, evolutionary stresses of heat and oxidative shock.

Global patterns of gene expression describe
evolutionary divergence
We observed clear differentiation attributable to the induction of a
response to temperature (i.e., plasticity), as well as evolved differences
between populations (Figure 2). Exposure to the inducing temperature
resulted in very pronounced changes in the global patterns of gene
expression in all populations, which were primarily encapsulated by
the primary axis resulting from nMDS analysis (Figure 2A). The scale
of the observed response to the temperature shift in all populations
(Figure 2C) largely confirms our previous observations for the heat
selected population. Increased resistance to acute heat stress is not
conferred by changing the degree to which genes respond to changes
in the thermal environment (Sikkink et al. 2014b). However, the more
powerful multivariate statistical framework used here reveals that the
response to temperature changes did in fact differ among the evolved
populations on secondary axes of ordination. These interaction effects
were most evident on nMDS Axes 4 and 5 (Figure 2F and 2G), and
suggest that some changes in transcriptional plasticity may be respon-
sible for changes in phenotypic plasticity as well.

We also detected changes in gene regulation attributable to the
evolutionary history of each line. Notably, the three selected populations
have diverged from the ancestor in different directions on nMDS Axis 2
and Axis 3 (Figure 1B). This pattern suggests that at least partially in-
dependent axes of gene regulation contribute to adaptation in each case.
These findings are consistent with the observations we have previously
made—that there is no genetic correlation between heat and oxidative
resistance under the environmental conditions inwhich these populations
evolved (Sikkink et al. 2015). In short, although one might reasonably
hypothesize a correlated selective response to heat and oxidative stresses
that acts through a generic stress response pathway, our data support the
alternative hypothesis. Evolution results from changes in different GRNs,
or least different modules within a GRN, for these two related stresses.

Gene expression evolves in a modular fashion
The pattern of expression differences that we observed in our data
indicates a high degree of modularity. Despite a relatively small num-
ber of experimental treatments, wewere able to identify 13 transcriptional
modules with highly correlated patterns of expression. Furthermore,

n Table 2 Effect of temperature on module expression in the
ancestral population

Module Number of Genes t df P value

1 1992 23.19 11 0.019�

2 1471 2.70 11 0.041�

3 865 4.20 11 0.006�

4 389 25.32 11 0.000�

5 278 22.27 11 0.068
6 120 1.99 11 0.100
7 119 3.59 11 0.008�

8 98 0.98 11 0.368
9 77 21.79 11 0.123
10 72 0.50 11 0.637
11 60 21.65 11 0.158
12 49 1.87 11 0.115
13 32 0.29 11 0.779
Unassigned 9212 20.86 11 0.429
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Figure 4 Enrichment of biological process gene ontology terms in coexpression modules. Red outlines and shading signify that there is
significant enrichment of genes mapping to the GO term (rows) within a given module (columns) (FDR , 0.05). The intensity of the shading
corresponds to the odds ratio for the GO term.
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the eigengenes that describe expression patterns within each module
are differentially associated with the experimental treatments.

Totestourability todrawmeaningful inferences fromRNA-seqdatawe
examined a well-known pathway, heat shock proteins (hsps), which are
molecular chaperones known to be a critical component of response to
heat stress (Lindquist and Craig 1988). Therefore, we expected these genes
to form one or moremodules that covary strongly with temperature. One
module (9) seems to fulfill this expectation by capturing many of the
elements of the hsp response. This module was strongly enriched for
the set of heat shock proteins (Figure 5), and was also significantly regu-
lated by temperature (Table 1).

Significant expression differences attributable to line were also observed
within this heat shock response module (Figure 3). On closer examination,
the heat-selected population was the only selected line to show divergence
from the ancestral population. The eigengene expression of this module
reveals that the heat-selected population has higher overall expression of
these genes relative to the other populations even at 20� (Figure 3).However,
these genes were still upregulated in response to temperature. The shift in
expression in this module is consistent with our previous observation that
the heat selected line evolved resistance to heat stress by shifting the thermal
threshold for induction of the heat stress response (Sikkink et al. 2014b).

Gene expression module evolution is independent
between stresses
Most of the identified modules, with the exception of Modules 1 and 2,
show significant evidence for an evolved response in either of the stress-
adapted populations (Table 1). Interestingly, the response in the heat

and oxidative selected lines occurs primarily in independent modules,
consistent with the lack of phenotypic correlated responses we have
observed previously in this system (Sikkink et al. 2015).

Two modules, Module 10 and Module 13, do show evidence of
evolutionary change in regulation in both the heat- and oxidative-
selected lines (Table 1). However, our data do not support the evolution
of a generalized stress response pathway contributing to adaptation in
both of the populations that were evolved under these different stres-
sors. In both modules, selection for heat resistance results in an overall
change in gene expression in one direction, while selection for oxidative
resistance occurs in the opposite direction (Figure 2). Presumably, these
modules would contain a portion of the overlap in pathways expected
based on the pleiotropy in the known stress response networks in
C. elegans (Sikkink et al. 2015). However, these two modules together
contain only 104 total genes, about 5% of the genes assigned to evolved
modules, and the effect of selection to one stressor is antagonistic to the
preferred response for the other stress.

The overall independence we observed in the genetic network be-
tween the evolved lines may contribute to the decoupling of the
phenotypic responses to these different stressors, as certain modules
within the greater responsenetworkhavedifferentdegreesof pleiotropy,
and can potentially allow for fine-tuning of the response.

Adaptation to different stressors involves non-overlapping
subsets of the ancestral stress response network
Six modules, together comprising 4836 genes (about 86% of the genes
assigned to modules) had significant responses to temperature in the

Figure 5 Enrichment of transcription factor target
genes in coexpression modules. Each box repre-
sents the degree to which the targets of a given
transcription factor (rows) are enriched within a
given co-expression module (columns). Red outlines
signify that there is significant enrichment of target
genes in the module (FDR , 0.05). Transcription
factors are roughly grouped by functional category.
The intensity of the shading indicates the odds ratio
for the set.
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ancestral population (Table 2). Most of these genes were in Modules
1 and 2, which show no evidence for evolved changes in any of the
selective populations (Table 1). This suggests that the majority of the
ancestral heat shock response remains unchanged under diverse selec-
tive scenarios. Several of the modules that have evolved only in the
oxidative selective environment (Modules 3, 4, and 7) also had a sig-
nificant response to temperature in the ancestral population (Tables 1
and 2). A reasonable interpretation of this pattern is that these modules
contributed to the core stress response in the ancestral population,
along with the genes in Modules 1 and 2. However, in the oxidative-
selected populations, different subsets of genes are selected upon, en-
abling resistance to the oxidative stress instead of heat stress.

Incontrast, in themodules that respond toheat selection (Modules 6,
9, 10, and 13), there was no strong evidence for plasticity in the ancestral
population (Table 2). The genes in these modules are therefore unlikely
to be involved in the ancestral plasticity in response to the inducing
temperature, but rather are other sets of genes from a different regula-
tory cascade that have been modified under particular conditions. It is
surprising that it is the heat-selected line that utilized novel stress re-
sponse components, while oxidative selection in large partmodified the
existing stress response pathway. Because the eigengene is a combined
metric of expression for multiple correlated genes, a trivial interpreta-
tion is that some individual genes within this module do in fact respond
significantly to temperature in the ancestor, but we have limited power
to detect the change when considered as a group. If this is true, then
selection for heat stress may use components of the ancestral heat re-
sponse, although these modules are still largely independent of those
invoked for the oxidative stress response.

A more interesting explanation of the pattern is that the core heat
stress response in the ancestor is already maximized and therefore that
furtheradaptationrequires cooptionof additional genes that arenotpart
of the core stress pathway. These interpretations may not be mutually
exclusive, and determining the relative contributions of the ancestral vs.
novel components of the stress response pathway in adaptation to heat
stress will require additional investigation into the roles of individual
genes within each population.

Regulation and function of the evolved gene expression
plasticity modules
Genes that are co-regulated by a common transcription factor are likely
to have highly correlated expression (Marco et al. 2009) and therefore
should be classified as part of the same module. Identifying the tran-
scriptional regulators of each module can provide important insight
into which pathways contribute to the evolution of plasticity. In this
study, we tested for enrichment of known targets of 23 transcription
factors within each of the identified gene modules (Figure 4). Most of
these transcription factors have vital roles in regulating developmental
processes, but a few also have well-characterized roles in mediating
stress responses to a variety of different stress types. It is important
to note that the sets of target genes included here were initially identi-
fied in C. elegans and may not be comprehensive. However, the func-
tions of these transcription factors are likely to be highly conserved in
C. remanei, and these targets represent the best current hypothesis for
transcription factor binding during Caenorhabditis development.

Many of the tested transcription factors are enriched in Module
1 (Figure 4). Given that the tested factors are key regulators of devel-
opment, it is not surprising this module is also functionally annotated
as involved in growth, embryonic development, and reproduction—
organismal processes which are highly dependent on temperature in
the poikilothermic C. elegans and its relatives (Riddle 1997). Consistent

with that role, the genes in Module 1 do not appear to have evolved
differences in gene expression between the ancestor and any of the
evolved populations, and likely represent a core set of highly conserved
developmental programs that are difficult to alter on short evolutionary
timescales.

Not all of the components of these pathways are so highly conserved
however.Module 4, for example, is alsoenriched for regulatory targets of
many of the same transcription factors as Module 1, with the notable
exception of the transcription factors required for neuronal develop-
mental (Figure 4). This module had higher overall expression in the
oxidative-selected population compared to the ancestor. It is reason-
able to think that tissue-specific differences, and the combinatorial
control of gene expression, together might allow for the increased
evolvability of transcription in this module, despite the overlapping
functional role of these genes and those in Module 1.

Another intriguing result from this study is the enrichment of PQM-
1targets inModules2and3.PQM-1, likeDAF-16, is amajor targetof the
IIS pathway, and the two transcription factors appear to function in
opposition to one another (Tepper et al. 2013). Both transcription
factors appear to act together to control a portion of the ancestral stress
response identified in Module 2. However, Module 3 also shows evi-
dence for evolved differences in expression in the oxidative-selected line
(Table 1), and is enriched for targets of PQM-1 (Figure 4). PQM-1 is
known to respond to oxidative stress, although previous studies de-
scribe a response to the oxidative stressor paraquat (methyl viologen;
Tawe et al. 1998)) rather than the hydrogen peroxide used in this study.
Further study will be required to determine whether PQM-1 and its
targets are in fact important contributors to evolution of the oxidative
stress response.

Conclusion
Using a powerful experimental evolution approach in C. remanei nem-
atodes, we identified the evolution of transcriptional modules in re-
sponse to selection in two stress environments. In general, patterns of
ancestral plasticity dominated the evolutionary response, with the pre-
dominant mode of adaptation occurring through changes in baseline
gene expression within an environment rather than changes in plastic-
ity per se. The evolutionary responses to the two different stressors each
modified unique modules, consistent with previous observations of low
pleiotropy between these two responses (Sikkink et al. 2015). Surpris-
ingly, the response in the population selected under heat stress condi-
tions did not modify components of the ancestral response to heat
shock, while the oxidative selection line did. We identified a number
of modules with significant evolutionary and plastic responses that
were enriched for targets of key developmental and stress response
transcription factors. The scale of the total number of genes involved
is daunting, however. Indeed, a major conclusion from this work is that
short-term adaptation, although it may be built upon existing systems
that facilitate a plastic response to the environment, can nonetheless
alter the overall pattern of regulation of the majority of the genes in
the genome (Boyle et al. 2017). Complex responses to environmental
stress remain complex even when adapting to simplified selective
environments.
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