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Abstract

Coexpression has been frequently used to explore modules of functionally related genes in eukaryotic genomes. However,
we found that genetically interacting mammalian genes identified through radiation hybrid (RH) genotypes tend not to be
coexpressed across tissues. This pattern remained unchanged after controlling for potential confounding factors, including
chromosomal linkage, chromosomal distance, and gene duplication. Because .99.9% of the genetically interacting genes
were identified according to the higher co-retention frequencies, our observation implies that coexpression is not
necessarily an indication of the need for the co-presence of two genes in the genome, which is a prerequisite for
cofunctionality of their coding proteins in the cell. Therefore, coexpression information must be applied cautiously to the
exploration of the functional relatedness of genes in a genome.
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Introduction

Coexpression refers to the coherent transcription of genes in

spatial, temporal, or environmental dimensions [1–3]. Presum-

ably, proteins functioning together need to be co-present in a cell

or tissue; production of an individual protein without its partners

may lead to cell energy and material waste. Therefore, coexpres-

sion information has been frequently used to detect the functional

modules of genes in the genome [4–6].

Proteins that are produced together undoubtedly require the co-

presence of their coding genes in the genome. However, regulation

of protein abundance does not necessarily occur at the

transcriptional level [7,8], and gene expression does not determine

the fate of tissue differentiation [9]. In addition, analyses in

mammals [10], nematodes [11], and flies [12] indicate that many

coexpressed gene clusters are unlikely to have originated to

optimize gene regulation. Consequently, it remains elusive

whether the requirement for the co-presence of two genes in a

genome is reflected by an increased level of coexpression and,

therefore, whether coexpression predicts the cofunctionality of

genes.

To understand the biological implications of gene coexpression,

we examined whether elevated coexpression predicts the need for

the co-presence of genes in the genome, which is a prerequisite for

the cofunctionality of their protein products. Exploiting genotypes

of human, mouse, rat, and dog radiation hybrid (RH) panels,

researchers recently calculated the co-retention frequencies of all

mammalian gene pairs with an intergenic distance (D, see

Methods) of $10 megabases (Mb) in the human genome, which

resulted in the identification of .76106 ‘‘genetic interactions’’

among .18,000 genes [13]. Because .99.9% of these interactions

were identified through higher co-retention frequencies than by

chance, such interactions can be considered as an index for the

tendency of two genes to be co-present in the genome. In addition,

because the topology of the resulted interaction network suggests

the comprehensiveness of the interactions identified, the catalog of

interactions is ideal for us to perform systematic analyses without

inspection biases [14–16]. To our surprise, genes that were

preferentially co-retained in the genome consistently showed lower

coexpression compared to other gene pairs. This finding suggests

that coexpression information must be used cautiously in the

exploration of the functional relatedness of genes in a genome.

Results and Discussion

We measured coexpression between two genes from expression

profile similarities across 63 human or 58 mouse tissues, using the

equation ln[(1+CoExp)/(12CoExp)] (see Materials and Methods).

Larger values of ln[(1+CoExp)/(12CoExp)] indicate higher coex-

pression. If coexpression predicts preference for the co-presence

for two genes in the mammalian genome, then higher coexpres-

sion (and, hence, larger ln[(1+CoExp)/(12CoExp)]) is expected to be

found in pairs of ‘‘genetically interacting genes,’’ as defined in Lin

et al. (2010) (hereafter referred to as ‘‘co-retained gene pairs’’

[CRGPs]), than in other ‘‘non-co-retained’’ gene pairs (nCRGPs)

(Fig. S1).

Our initial analysis revealed that ln[(1+CoExp)/(12CoExp)]

values between CRGPs were significantly lower than those between

nCRGPs (P,102300, Mann-Whitney U test; Fig. 1A). However,

chromosomal linkage promotes coexpression: D between linked

genes is negatively correlated with their coexpression, even when

D is on the order of tens of Mb in length [10]. Our result showed

that the proportion of gene pairs located on the same human

chromosome (linked) for CRGPs (61,986/2,615,153 = 2.43%) was
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only approximately half of that for nCRGPs (2,234,672/

49,999,275 = 4.47%) (P,102300, x2 test). Compared to linked

nCRGPs, the linked CRGPs had significantly larger D values

(P,102300, U test; Fig. 1B) in the human genome.

We can potentially explain the tendencies of CRGPs to be

unlinked, or to have a larger D when linked, in two ways. First,

CRGPs are more subject to transcriptional interference [10]. The

human genome has evolutionarily shaped its architecture to avoid

the deleterious effects of transcriptional interference [10]. Second,

the ‘‘genetic interaction’’ data obtained by Lin et al. (2010) poses

intrinsic biases in chromosomal linkage. Regardless of the cause,

the bias in chromosomal linkage is an important factor that needs

to be controlled in our analyses.

To determine whether a lower frequency of chromosomal linkage

or larger D of linked genes sufficiently explains the lower

coexpression of CRGPs (Fig. 1A), we classified all gene pairs into

linked and unlinked groups (those located on different chromo-

somes), on the basis of their coordinates on the human genome. We

further categorized linked gene pairs into 5 groups with similar D

values, to control for D (Fig. 1D). For unlinked genes, the CRGPs still

showed significantly lower ln[(1+CoExp)/(12CoExp)] values than did

the nCRGPs (P,102300, U test; Fig. 1C); for linked gene pairs,

CRGPs also consistently showed significantly lower ln[(1+CoExp)/

(12CoExp)] values than nCRGPs in nearly all groups (P#1027, U

test; Fig. 1D), except for the group of 10–25 Mb (P = 0.37, U test;

Fig. 1D). Hence, lower coexpression of CRGPs cannot be explained

by chromosomal linkage or D. Duplicate genes share similarity in

expression by ancestry and, thus, may confound our result [2,17].

However, the removal of paralogous gene pairs from the analysis

produced a virtually identical result (Fig. S3, S4), suggesting that

lower coexpression between CRGPs is unrelated to gene duplication.

To determine whether our observations are specific to human, a

parallel analysis was conducted on mouse data (see Materials and

Methods). We used the mouse genes that are one-to-one orthologs

to human genes mapped in Lin et al. (2010). When linkage was

defined by mouse genome coordinates and coexpression was

measured based on expression levels across 58 mouse tissues, the

result remained consistent with Fig. 1, although the statistical

significance of some of the comparisons was reduced (Fig. S5).

In several previous studies [4–6,18], researchers have claimed

that coexpression must be sufficiently high to be considered

‘‘biologically relevant’’ and to be used in exploring the functional

relatedness of genes [19]. Hence, we examined coexpression from

the aspect of frequencies of genes with high coexpression in the

group. We used different thresholds of CoExp to define high

coexpression (CoExp$0.6, 0.65, 0.7, or 0.75) [3]. Linked and

unlinked genes were separated to control for bias in the

chromosomal linkage. As shown in Fig. 2, regardless of the

threshold used, CRGPs consistently showed a lower proportion of

highly coexpressed gene pairs than nCRGPs. Parallel analysis with

mouse genome coordinates and gene expression data generated a

result consistent with Fig. 2 (Fig. S7).

Figure 1. Coexpression in and characteristics of chromosomal linkage of CRGPs vs. nCRGPs. Box plots of ln[(1+CoExp)/(12CoExp)] of CRGPs
vs. nCRGPs in (A) all gene pairs, (C) unlinked gene pairs, and (D) linked gene pairs with specified ranges of D. CoExp is measured by Spearman’s r of
expression levels between genes across human tissues (see Fig. S2 for CoExp measured by Pearson’s r). (B) Box plots of logD of linked CRGP vs. linked
nCRGPs. Upper quartile, median, and lower quartile values are indicated in each box. Bars outside the box indicate semi-quartile ranges. P-values are
from a Mann-Whitney U test.
doi:10.1371/journal.pone.0032284.g001

Genes Co-Present in Genomes Avoid Coexpression
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In summary, our analysis showed no indication that coexpres-

sion between genes indicates a need for co-presence in the

genome. In contrast, we consistently observed patterns indicating

that co-retained genes tend to avoid coexpression in both human

and mouse genomes. The result presented in this study implies that

factors unrelated to functionality (e.g. transcriptional interference

[10]), may cause the coexpression of mammalian genes. Because

high coexpression between most of the coexpressed gene pairs is

not necessarily evolutionarily conserved, our study implies that it is

perhaps evolutionary conservation of coexpression [5], and not

coexpression itself, that predicts cofunctionality.

Materials and Methods

CRGPs, which were defined as human genes with ‘‘genetic

interactions’’ based on their having RH genotypes with an FDR

threshold of #0.05, were obtained from the supplementary

materials of [13]. The use of a more stringent FDR threshold

(#0.001) to define CRGPs and nCRGPs did not change the results

of the analysis (Fig. S8). Chromosomal coordinates, one-to-one

orthologs, and annotations of paralogous relationships of human

and mouse genes based on Ensembl v62 were retrieved through

BioMart (http://www.biomart.org/). The intergenic distance D

was calculated as the distance in nucleotides between the

transcriptional start sites of two genes.

Expression levels in 63 normal human tissues or 58 normal

mouse tissues were obtained from Gene Atlas v2 [20] following a

previous study [10]. Only 10,313 human genes with genetic

interaction data, Ensembl annotations, and microarray data were

used (Fig. S1). CoExp was defined by the Spearman’s correlation

coefficient (r) or Pearson’s correlation coefficient (r) of expression

levels across human tissues. Because CoExp measured by Spear-

man’s r yielded statistically more significant results, those results

are presented in the main text. Consistent results derived from

using Pearson’s r to calculate CoExp are shown as Figs. S2 and S6.

In addition to CoExp, the expression profile ‘‘dissimilarity’’

between genes was calculated from the Euclidean distance

d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

RAA ið Þ{RAB ið Þ½ �2
� ��

n

s
[21], where n is the number

of tissues, and RAA ið Þ or RAB ið Þis the relative transcriptional

abundance of gene A or gene B, respectively, in tissue i. The

relative transcriptional abundance was calculated from the

expression level of a gene in the tissue examined divided by the

summation of expression levels of that gene in all of the tissues in

the dataset [21]. A lower d indicates a higher level of coexpression.

Use of d yielded a result (Fig. S9) that was consistent with the result

based on CoExp (Fig. 1), suggesting the robustness of the conclusion

reached.

Supporting Information

Figure S1 Flow chart illustrating the processes used to

generate CRGPs and nCRGPs for comparisons in co-expression.

(PDF)

Figure 2. nCRGPs comprise a higher percentage of highly coexpressed genes. Compared with nCRGPs, CRGPs have a lower percentage of
gene pairs with high coexpression, as defined by the threshold of CoExp shown in the bottom, after controlling for chromosomal linkage. CoExp is
measured by Spearman’s r of expression levels between genes (see Fig. S6 when CoExp was measured by Pearson’s r). Error bars show one standard
error of the proportion. P-values are from a x2 test.
doi:10.1371/journal.pone.0032284.g002

Genes Co-Present in Genomes Avoid Coexpression

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e32284



Figure S2 Regenerated Figure 1 when CoExp is calculated by

Pearson’s r of expression levels between genes. See legend of Fig. 1

for detailed description.

(PDF)

Figure S3 Regenerated (A) Fig. 1C and (B) Fig. 1D by

excluding gene pairs that are paralogous from the analysis.

(PDF)

Figure S4 Regenerated (A) Fig. S2C and (B) Fig. S2D by

excluding gene pairs that are paralogous from the analysis.

(PDF)

Figure S5 Regenerated Fig. 1 when CoExp is measured using

mouse gene expression data and linkage and D are defined using

mouse genome coordinates. See legend of Fig. 1 for detailed

description.

(PDF)

Figure S6 Regenerated Fig. 2 when CoExp is calculated by

Pearson’s r of expression levels between genes. See legend of Fig. 2

for detailed description.

(PDF)

Figure S7 Regenerated Fig. 2 when CoExp is measured using

mouse microarray data and linkage and D are defined using mouse

genome coordinates. See legend of Fig. 2 for detailed description.

(PDF)

Figure S8 Regenerated Fig. 1 using a more stringent FDR

threshold (#0.001) to define CRGPs and nCRGPs. See legend of

Fig. 1 for detailed description.

(PDF)

Figure S9 Regenerated Figure 1 when expression dissimilarity is

calculated by d, the Euclidean distance of the relative transcrip-

tional abundance between genes. A lower d indicates a higher level

of coexpression. See legend of Fig. 1 for detailed description.

(PDF)
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