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Abstract 52 

Respiratory fungal infections pose a significant threat to human health. Animal models 53 

do not fully recapitulate human disease, necessitating advanced models to study 54 

human-fungal pathogen interactions. In this study, we utilized primary human airway 55 

epithelial cells (hAECs) to recapitulate the lung environment in vitro and investigate 56 

cellular responses to two diverse, clinically significant fungal pathogens, Aspergillus 57 

fumigatus and Coccidioides posadasii. To understand the mechanisms of early 58 

pathogenesis for both fungi, we performed single-cell RNA sequencing of infected 59 

hAECs. Analysis revealed that both fungi induced cellular stress and cytokine 60 

production. However, the cell subtypes affected and specific pathways differed between 61 

fungi, with A. fumigatus and C. posadasii triggering protein-folding-related stress in 62 

ciliated cells and hypoxia responses in secretory cells, respectively. This study 63 

represents one of the first reports of single-cell transcriptional analysis of hAECs 64 

infected with either A. fumigatus or C. posadasii, providing a vital dataset to dissect the 65 

mechanism of disease and potentially identify targetable pathways. 66 

 67 

Importance 68 

Fungal infections in the lungs are dreaded complications for those with compromised 69 

immune systems and have limited treatment strategies available. These options are 70 

restricted further by the increased prevalence of treatment-resistant fungi. Many studies 71 

focus on how our immune systems respond to these pathogens, yet airway epithelial 72 

cells remain an understudied component of fungal infections in the lungs. Here, the 73 

authors provide a transcriptional analysis of primary human airway epithelial cells 74 

stimulated by two distinct fungal pathogens, Aspergillus fumigatus and Coccidioides 75 

posadasii. These data will enable further mechanistic studies of the contribution of the 76 

airway epithelium to initial host responses and represent a powerful new resource for 77 

investigators. 78 

  79 
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Introduction 80 

Pulmonary fungal infections are dreaded, particularly in immunocompromised 81 

individuals, due to high mortality rates and limitations in treatment strategies (1, 2). We 82 

investigated two clinically relevant fungal pathogens, Aspergillus fumigatus and 83 

Coccidioides posadasii, as they have different cell wall compositions, life cycles, and 84 

pathogenic strategies. Importantly, the two pathogens are clinically distinct. A. fumigatus 85 

is ubiquitous in the environment making immunocompromised patients (e.g., lung 86 

transplant or allogenic bone marrow transplant recipients) vulnerable to invasive 87 

aspergillosis. The mortality from A. fumigatus-related pulmonary disease remains 88 

unacceptably high (58%), and rates of Aspergillus multidrug resistance continue to 89 

increase (3-5). Inhaled conidia germinate into hyphae, a strong virulence trait. This 90 

change in morphotype dramatically changes the cell wall composition, exposing more 91 

antigenic carbohydrates like β-1,3 glucan and galactomannan when the rodlet and 92 

melanin layers are shed. Insights into the mechanisms that lung epithelial cells employ 93 

to instruct direct immune cells against this dangerous fungus are thus clinically relevant 94 

and will guide new therapeutic strategies. 95 

 96 

The dimorphic fungi Coccidioides immitis or C. posadasii causes coccidioidomycosis 97 

and are endemic to the southwestern US, Mexico, and South America, with the 98 

historical endemic boundaries expanding with climate change (6, 7), increasing the 99 

number of humans and animals at risk of exposure (8-10). Unlike Aspergillus, C. 100 

posadasii produces infection in both immunocompetent and immunocompromised 101 

individuals, implying that C. posadasii can thwart host defense mechanisms that A. 102 

fumigatus cannot and that distinct mechanisms are involved in controlling these 103 

infections (11, 12). Only 40% of Coccidioides infections are symptomatic, and these 104 

patients often present with acute or progressive self-limiting pneumonia, including the 105 

formation of pulmonary nodules (localized disease). Coccidioides is inhaled as 106 

arthroconidia, which convert into spherules that release endospores. Coccidioides 107 

differs from Aspergillus in virulence and dose required to cause infection. Coccidioides 108 

causes disease with inhalation of 1-50 arthroconidia in immunocompetent mice (13), 109 

whereas Aspergillus requires ~104-105 CFU to cause disease in immunocompromised 110 
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(but not immunocompetent) patients and mice, again implying differences in host 111 

recognition and responses to these distinct fungal pathogens (14). We hypothesize that 112 

these differences provoke distinct and cell type-specific epithelial transcriptional 113 

signatures from human lung epithelium that direct the ensuing immune response.  114 

 115 

To elucidate the cellular responses and pathogen-specific mechanisms of these 116 

pulmonary fungal infections, we utilized human airway epithelial cells (hAECs) as an in 117 

vitro model to recapitulate the lung epithelium. The hAECs form a pseudostratified 118 

epithelial layer, closely mimicking the cellular environment of the human airway (15). In 119 

this study, hAECs were cultured and infected with either A. fumigatus or C. posadasii. 120 

Following infection, we isolated the cells and performed single-cell RNA sequencing 121 

(scRNA-seq) to obtain a high-resolution view of the transcriptional responses of specific 122 

cell types comprising the lung epithelium (16). 123 

 124 

This approach enabled us to unveil both common and unique cell-specific responses 125 

and stress pathways activated by A. fumigatus and C. posadasii infection. Our findings 126 

revealed that A. fumigatus infection primarily affected ciliated cells, inducing protein-127 

folding-related stress, whereas C. posadasii infection triggered a hypoxia response in 128 

secretory cells, coupled with increased cytokine expression. The distinct cellular 129 

responses to A. fumigatus and C. posadasii infections provide a valuable dataset for 130 

understanding the mechanisms of pulmonary fungal diseases and identifying potential 131 

therapeutic targets. 132 

 133 

Results 134 

Experimental Design and hAEC Differentiation and Characterization 135 

To better understand the mechanisms by which fungal pathogens infect and cause 136 

disease in the lung, we designed a study wherein we generated ex vivo human lung 137 

epithelia from basal cells isolated from the same donor, infected differentiated hAECs 138 

with either A. fumigatus or C. posadasii, and then performed scRNA-seq (Fig. 1A). To 139 

create a robust in vitro model of the human airway epithelium, we began by isolating 140 

basal cells from human donor lung tissues. These primary basal cells were cultured 141 
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according to previously published protocols (17, 18). Briefly, we expanded cells in small-142 

airway epithelial cell medium (SAGM) supplemented with various growth factors and 143 

inhibitors to promote their expansion (details are provided in the methods section). 144 

Basal cells were seeded onto Transwell inserts to establish an air-liquid interface (ALI) 145 

culture, which were maintained for approximately 23 days. During this period, the basal 146 

cells differentiate into a pseudostratified epithelium that mimics the cellular composition 147 

and architecture of the human airway (19, 20). 148 

 149 

To confirm that our differentiation was successful, we fixed and stained hAECs in a 150 

subset of Transwells grown in parallel to ensure the major airway cell subtypes were 151 

present. Specific antibodies were used to stain for basal cells (KRT5) (21), club cells 152 

(SCGB1A1) (22), and ciliated cells (acetylated tubulin) (23). The immunofluorescent 153 

images illustrate the successful establishment of a pseudostratified airway epithelium, 154 

comprising key cell subtypes of the human airway, signaling that our model had 155 

representative cell types at predicted proportions (Fig 1B-C).  156 

 157 

Infection of Differentiated Airway Epithelium with A. fumigatus and C. posadasii 158 

Once validated, our hAECs were infected with A. fumigatus or C. posadasii to 159 

investigate the response of the differentiated airway epithelium to infection. Each ALI 160 

culture was incubated with 107 fungal particles of A. fumigatus or C. posadasii for 6 or 161 

18 hr, respectively. A shorter infection period was required for A. fumigatus due to its 162 

hyphal formation, which makes the isolation of single cells difficult (24) and the kinetics 163 

of cytokine responses seen in hAECs (18). Single cell suspension from the in vitro 164 

infected hAEC cultures were used to load individual channels on the 10x Chromium 165 

Controller and gene expression libraries were subsequently created using the 3' V3.1 166 

chemistry (25). Pooled libraries were sequenced at a depth of 9,751 or 11,059 reads 167 

per cell for A. fumigatus vs. mock, respectively. For the C. posadasii experiment, the 168 

depth sequences were 6,180 or 6,531 reads per cell for infected vs. mock, respectively. 169 

 170 

The sequencing data from lung epithelium of both A. fumigatus and C. posadasii 171 

infected samples were analyzed using unsupervised clustering – which allowed us to 172 
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identify and categorize the relevant cell types – and visualized using uniform manifold 173 

approximation and projection (UMAP) (Fig. 2A-B). These UMAP plots highlighted the 174 

distinct cell populations of the airway epithelium, including basal, club, ciliated, hillock, 175 

goblet, and other rarer epithelial subtypes (e.g., ionocytes, tuft, and neuroendocrine 176 

cells). The proportion distribution of each cell type was quantified and found to be 177 

similar to reported numbers from human airways (26), providing further support for the 178 

validity of our model (Fig. 2C-D). 179 

 180 

We then examined the number of differentially expressed genes (DEGs) during infection 181 

compared to mock-treated cells. In both infections, we observed little in the way of 182 

DEGs in our rare cell subtypes (i.e., ionocytes, neuroendocrine, and tuft cells) because 183 

of the low number of hAECs detected in those groups, limiting our statistical power 184 

(Supplemental Fig. 1). All other cell types, however, displayed a multitude of 185 

differentially expressed genes. Our analysis revealed that A. fumigatus infection 186 

appeared to most dramatically impact ciliated cells, significantly (FDR<0.05) altering the 187 

expression of greater than 5,000 genes (Fig. 2E), whereas C. posadasii infection 188 

displayed the greatest effect on secretory cells, inducing significant changes in over 189 

6,000 genes (Fig. 2F). This differential response underscores potentially unique cellular 190 

targets and mechanisms employed by each pathogen during infection. 191 

 192 

Analysis of Ciliated Cells During A. fumigatus Infection: 193 

Given that ciliated cells were the most impacted cell type during A. fumigatus infection, 194 

we performed a detailed analysis of the gene expression profile of these cells compared 195 

to mock-treated controls (Supplemental Figure 2). Top DEGs were identified using 196 

pairwise comparisons with the MAST test. We applied thresholds of a minimum UMI 197 

count of 0 and expression in more than 10 cells. The genes were further filtered based 198 

on a log2 fold change greater than 0.25 and an adjusted p-value (FDR) of less than 0.05. 199 

These genes were then visualized using heatmaps, and enrichment analysis was 200 

conducted to explore their functional associations. We examined the top-upregulated 201 

genes in A. fumigatus infected ciliated cells and their corresponding pathways (Figure 202 

3).  203 
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 204 

Our analysis revealed a strong enrichment for stress response genes, particularly those 205 

associated with the unfolded protein response (UPR). Notably, the genes encoding heat 206 

shock proteins such as HSPA1A, HSPA1B, HSPA8, HSP90AA1, DNAJB1, HSPB1, and 207 

DNAJA1 were all strongly upregulated. Many of these cytoplasmic chaperones are 208 

transcriptionally regulated by the heat shock factor 1 (HSF1) protein, which is 209 

sequestered by HSP90 until unfolded proteins compete for HSP90 allowing HSF1 210 

release and non-canonical UPR activation (27). Additionally, the gene DDIT4, which is 211 

involved in cellular stress response and cell survival, was also highly expressed 212 

following stimulation with A. fumigatus. This indicates that A. fumigatus infection triggers 213 

a robust UPR in ciliated cells, likely as a defense mechanism against the pathogen-214 

induced cellular stress. 215 

 216 

Moreover, genes encoding key cytokines (i.e., CXCL8, CXCL2) and NFKBIA were 217 

elevated in infected ciliated cells. CXCL8 and CXCL2 are critical chemokines involved in 218 

neutrophil recruitment and activation, which play a vital role in the host’s pro-219 

inflammatory immune response to fungal infections and have previously been shown to 220 

be involved in the host response to A. fumigatus (17, 18, 28). Innate responses, 221 

however, must be tightly regulated to ensure that clearance of the invading pathogen 222 

does not lead to unnecessary host cell damage. NFKBIA encodes IκBα, an inhibitor of 223 

the NFκB pathway, which regulates inflammation and immune responses as well as cell 224 

survival, highlighting potential regulation of this complex immune response (29). Taken 225 

together, the increased expression of these cytokines suggests an active inflammatory 226 

response to A. fumigatus infection, aimed at controlling and clearing the pathogen. 227 

 228 

Analysis of Secretory Cells During C. posadasii Infection:  229 

We next performed a detailed examination of the transcriptional changes induced by C. 230 

posadasii infection in secretory cells (Supplemental Figure 3) and identified enriched 231 

pathways among the top genes upregulated during C. posadasii infection (Figure 4). 232 

Our findings revealed significant transcriptional changes activating the hypoxia 233 

response system and immune cell chemotaxis, both of which are hallmarks of C. 234 
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posadasii infection in the lung (30). 235 

Many top genes induced by C. posadasii are strongly involved in hypoxia and/or cellular 236 

stress, highlighting its importance during the early period of infection. VEGFA (vascular 237 

endothelial growth factor A) is a critical regulator of angiogenesis and is typically 238 

upregulated under hypoxic conditions to promote blood vessel formation and increase 239 

oxygen supply (31), a pathway that is very important in the host response to other 240 

fungal pathogens (32, 33). Similarly, HILPDA (hypoxia-inducible lipid droplet-associated 241 

protein), NDRG1 (N-myc downstream-regulated gene 1), and PGK1 (phosphoglycerate 242 

kinase 1) are also all associated with cellular adaptations to low oxygen levels, playing 243 

roles in lipid metabolism, stress response, and regulation of anaerobic metabolism, 244 

respectively (34-36).  245 

 246 

Additionally, the genes FTL (ferritin light chain) and FTH1 (ferritin heavy chain 1) were 247 

significantly upregulated, indicating an involvement in ferroptosis and hypoxia. Ferritin is 248 

a key regulator of iron homeostasis and plays a role in protecting cells from oxidative 249 

stress by sequestering free iron, which can catalyze the formation of reactive oxygen 250 

species. The upregulation of FTL and FTH1 suggests a potential mechanism by which 251 

C. posadasii could be inducing hypoxic stress, namely the disruption of iron 252 

homeostasis.  253 

 254 

In addition to hypoxia and stress-associated genes, our analyses highlighted the 255 

upregulation of several immune-related genes, specifically those involved in regulating 256 

immune cell recruitment. Chemokines including CXCL8, CCL20, and MIF recruit 257 

immune cells, such as neutrophils, macrophages, and T cells, to sites of infection and 258 

inflammation, and play critical roles in the immune response to pathogens (37-40). 259 

Furthermore, we identified two members of the S100 family, S100P and S100A9, 260 

among the top induced genes in response to C. posadasii. The S100 family is a group 261 

of calcium-binding proteins that are strongly associated with inflammatory processes 262 

and immune cell chemotaxis. Interestingly, CCL20 and other CC chemokines, as well 263 

as S100 family members, are heavily induced by hypoxia pathways (41), suggesting a 264 

potential link between the specific hypoxic and immune responses induced by C. 265 
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posadasii. 266 

 267 

 268 

 269 

Common and Differential Gene Expression During A. fumigatus and C. posadasii 270 

Infections 271 

Given the prevalence of immune modulators in both our A. fumigatus and C. posadasii 272 

gene lists, as well as the importance of immune cell recruitment for controlling and 273 

clearing fungal respiratory pathogens, we directly compared DEGs encoding paracrine 274 

signaling molecules induced by these two pathogens. Figure 5 illustrates the common 275 

and unique differential expression of cytokines and immune regulators across the major 276 

cell types (i.e., basal, secretory [goblet & club cells], ciliated, and hillock) of our hAECs 277 

during infection with A. fumigatus and C. posadasii. CXCL8, the most potent human 278 

neutrophil attracting chemokine, was the only chemokine robustly induced by both fungi, 279 

albeit to differing degrees depending on the cell subtype. 280 

 281 

Both pathogens displayed robust signatures of cytokine expression involved in the 282 

regulation of immune cell recruitment, suggesting that the specific subsets of immune 283 

cells recruited might differ between the two fungi. A. fumigatus specifically upregulated 284 

CXCL2 and CXCL3, in addition to CXCL8, in almost all cell types examined. Like 285 

CXCL8, both chemokines play significant roles in the recruitment and activation of 286 

neutrophils which are essential for the early immune response to fungal infections. 287 

Given this unique signature for several key neutrophil-specific chemokines, our data 288 

suggest that the lung epithelium is a critical early initiator of the neutrophil response 289 

against A. fumigatus. 290 

 291 

In sharp contrast, C. posadasii induced the expression of chemokines that were much 292 

less skewed towards neutrophil recruitment. CCL20, also known as MIP-3α, is a far less 293 

potent recruiter of neutrophils, instead displaying a stronger preference for lymphocytes 294 

and dendritic cells, helping develop adaptive immune responses at the site of infection 295 

as opposed to just innate immunity (38, 39, 42, 43). Curiously, we revealed the unique 296 
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induction of both IL1α and IL1RN (Interleukin 1 Receptor Antagonist) during C. 297 

posadasii infection. IL-1α is a potent pro-inflammatory cytokine that not only activates 298 

TNFα signaling but also recruits neutrophils to the site of fungal infection (41). IL1RN, 299 

however, functions as a direct antagonist to IL-1α, and based on our analysis, the gene 300 

is induced at higher levels than IL1α. These observations once again point to another 301 

piece of evidence where neutrophil recruitment to the lung is uniquely blunted during C. 302 

posadasii infection as compared to A. fumigatus. Overall, these data suggest that 303 

infection by A. fumigatus or C. posadasii does indeed induce unique inflammatory 304 

signatures in specific cell subtypes of the lung epithelia that likely impact the outcome 305 

and disease presentation. 306 

 307 

Discussion  308 

In this study, we investigated the transcriptional responses of primary hAECs to 309 

infections by A. fumigatus and C. posadasii. By leveraging unbiased, single-cell 310 

sequencing approaches, we delineated the cellular and molecular alterations induced 311 

by these respiratory fungal pathogens, providing novel insights into the specific 312 

pathways and genes involved in the host response. Our results revealed both distinct 313 

and shared transcriptional changes elicited by A. fumigatus and C. posadasii infections. 314 

The induction of stress response genes, particularly those associated with the UPR, 315 

was a prominent feature of A. fumigatus infection. Notably, ciliated cells exhibited the 316 

highest number of DEGs, underscoring their vulnerability to fungal assault. C. posadasii 317 

exhibited a similar, but clearly distinct profile. Secretory cells, not ciliated cells, were 318 

most heavily impacted by C. posadasii, and the activated cellular stress pathways were 319 

strongly associated with hypoxia response as opposed to protein folding. Overall, the 320 

initial analysis of the dataset has already identified several interesting avenues of future 321 

research that could uncover key insights into the differing mechanisms of controlling 322 

and potentially treating these infections.  323 

 324 

Perhaps the most obvious difference noted between epithelial immune responses 325 

generated to Aspergillus compared to Coccidioides infection was in chemokine 326 

expression. While both pathogens displayed an induction of CXCL8, the strongest 327 
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chemoattractant for neutrophils, A. fumigatus appeared to induce a stronger neutrophil 328 

recruitment signature than C. posadasii as it uniquely induced CXCL2 and CXCL3. It is 329 

well established that both A. fumigatus and C. posadasii induce neutrophil recruitment 330 

to the lung (17, 44-47), but to our knowledge there has not been a direct comparison of 331 

the neutrophil recruiting capabilities of the two. It is possible that A. fumigatus may be 332 

far more potent than C. posadasii, and perhaps this discrepancy in neutrophil 333 

recruitment explains why healthy patients are able to control A. fumigatus infection but 334 

not C. posadasii.  335 

 336 

Another interesting finding was the induction of hypoxia-associated genes by C. 337 

posadasii, which to our knowledge had not been directly shown before, although one 338 

study implicated upregulation of HIF1α in C. immitis-resistant mice compared to 339 

susceptible mice (30). While we did not detect hypoxic signatures during A. fumigatus 340 

infection, others have reported it during lung infections at later timepoints than 6 hr (48, 341 

49). The current role in the creation of a hypoxic environment in the lung by fungal 342 

pathogens is unclear. Hypoxia regulates both angiogenesis and immune cell 343 

signaling/recruitment, vital pathways for controlling dissemination and spread of the 344 

pathogen, as well as potentially regulating the fungal lifecycle (33). Furthermore, 345 

hypoxic respiratory failure is a rare, but extremely fatal condition that can develop during 346 

severe Coccidioides infections (50). It is also possible largescale spreading of the 347 

pathogen throughout the lung and the induction of this signature contributes to the 348 

formation of this severe disorder.  349 

 350 

This dataset and our analysis not only enhance our understanding of pulmonary fungal 351 

infections but also opens new avenues for research into targeted therapies and 352 

interventions and provide opportunities for other investigators to explore pathways 353 

within human lung epithelial cells. These data, coupled with recent scRNA-seq datasets 354 

from mouse innate immune cells responding to in vivo challenge with C. posadasii (51, 355 

52), will enable us to understand the pathogenesis of these invasive fungal diseases. 356 

Furthermore, these data provide an exciting new tool for the fungal field to expand their 357 

investigation. Future studies will delve deeper into the unexplored aspects of this data, 358 
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potentially uncovering novel biomarkers and therapeutic targets to improve the 359 

management and treatment of fungal respiratory diseases.  360 

 361 

 362 

Methods 363 

Fungal Culture 364 

The A. fumigatus B5233 strain was gifted by K.J. Kwon-Chung (National Institutes of 365 

Health; NIH) and grown as previously described (18). Briefly, A. fumigatus was cultured 366 

at 37oC for 3-5 days on glucose minimal medial slants. To harvest conidia, a sterile 367 

solution of deionized water with 0.01% Tween 20 was added to each slant, and the 368 

surface was gently agitated with a sterile cotton swab. The resulting suspension was 369 

filtered through a 40 μm cell strainer to remove hyphal fragments. The conidia were 370 

then washed three times with sterile PBS and counted using a LUNA™ automated cell 371 

counter. Conidia were used immediately and applied to the apical surface in HBSS 372 

media (total volume of 400 µL) (StemCell, #37150). 373 

 374 

The C. posadasii Silveira strain was received from BEI (NR-48944). WT C. 375 

posadasii were plated on 2x GYE media (20 g D-(+)-Glucose [Sigma-Aldrich, 376 

Cat#G5767], 10 g Bacto Yeast Extract [ThermoFisher, Cat#212750], 15 g 377 

Bacteriological agar [Sigma-Aldrich, Cat#A5306], in 1 L of diH2O). Cultures were grown 378 

at 30ºC at ambient CO2 for 4-7 weeks with weekly observation. Arthroconidia were 379 

harvested using sterile 1x PBS (Corning, Cat# 21-040-CV) and agitated with cell 380 

scraper (Corning, Cat#3010). Suspension was passed through 40 µm cell strainer 381 

(CellTreat, Cat#229481), vortexed, and centrifuged at 12,000 g for 8 mins. The pellet 382 

was resuspended in PBS and washed twice. Arthroconidia were used immediately and 383 

applied to the apical surface in HBSS media (total volume of 400 µL).  384 

 385 

Isolation and Differentiation of Human Airway Epithelial Cells 386 

Primary hAECs were cultured following established protocols (17, 18). Basal cells were 387 

maintained in SAGM (PromoCell, #C-21170), supplemented with 5 μM Y-27632 (Tocris, 388 

#1254), 1 μM A-83-01 (Tocris, #2939), 0.2 μM DMH-1 (Selleck Chemicals, #S7146), 0.5 389 
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μM CHIR99021 (Tocris, #4423), and 1% penicillin/streptomycin (Gibco, #151410122) on 390 

plates coated with laminin-enriched 804G-conditioned media. For differentiation into a 391 

pseudostratified epithelium at the ALI, the apical compartments of 12 mm Transwell 392 

inserts with 0.4 µm pore polyester membranes (Corning, #3460) were pre-coated with 393 

804G-conditioned media for at least 4 hours. After removing the coating media, a 394 

suspension of basal cells in SAGM was applied to the apical compartment, and SAGM 395 

was added to the basolateral compartment for overnight incubation. The next day, 396 

SAGM was replaced with a 1:1 mixture of PneumaCult-ALI medium (StemCell, #05001) 397 

and DMEM/F-12 (Gibco, #11320033) for further overnight incubation. The medium in 398 

the apical compartment was then removed to establish the ALI. The hAECs were 399 

maintained at ALI for 16-23 days, with the apical compartment kept dry and the 400 

basolateral medium refreshed regularly. To ensure intact epithelium, we measured the 401 

transepithelial electrical resistance (TEER) on the day of experiment. All epithelium 402 

demonstrated a TEER reading of at least 1,000 ohms. 403 

 404 

Infection of hAECs and Isolation of Single Cells 405 

107 infectious units of A. fumigatus B5233 or C. posadasii Silveira strain were added to 406 

the apical side of the hAEC Transwells for 6 or 18 hr, respectively. Once infection was 407 

complete, all ALI media was aspirated and hAECs were washed with ice cold wash 408 

buffer (1000 µL basolateral, 500 µL apical; 10% heat-inactivated fetal bovine serum 409 

[Gibco] in PBS). The wash buffer was pipetted up and down several times to liberate 410 

non-adherent particles and repeated twice. After three total washes, the Transwells 411 

were transferred to a 50 mL conical containing 6 mL of dissociation solution (TrypLE 412 

[Thermo Fisher, #1264013]) and incubated on a rocking platform at 37°C. Every 3-5 413 

minutes conical tubes were vortexed to break up clumps. Once the Transwell had 414 

turned clear, dissociation was complete, and the reaction was quenched using one 415 

volume of wash buffer. Samples were then passed through a 40 µm filter to remove any 416 

large clumps before being spun down at 42 g for 5 min. Cells were then resuspended in 417 

fresh wash buffer and viability/counts were attained using Trypan Blue (A. fumigatus 418 

experiment) or acridine orange (C. posadasii experiment) and a LUNA™ automated cell 419 

counter. Viability was >90%.  420 
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 421 

Single-Cell RNA Sequencing and Library Preparation 422 

Single cell suspensions from infected and mock hAECs were loaded into the Chromium 423 

Controller (10x Genomics) for droplet generation. For each sample,16,000 cells were 424 

loaded per channel aiming for a recovery of 10,000 single cells. There was only one 425 

channel per condition. The scRNA-seq libraries were constructed using the Chromium 426 

Next GEM single cell 3’ V3.1 Reagent Kit (10x Genomics, PN 1000268). Library quality 427 

was assessed with an Agilent 2100 Bioanalyzer and TapeStation. All gene expression 428 

libraries were multiplexed and sequenced at the Harvard Biopolymers Core Facility at a 429 

depth of 9,751 reads/cell for A. fumigatus infected, 11,059 reads/cell for A. fumigatus 430 

mock, 6,180 reads/cell for C. posadasii infected, and 6,531 reads/cell for C. posadasii 431 

mock on an Illumina Nextseq 500/550 instrument using the high output v2.5 75 cycles 432 

kit with the following sequencing parameters: read 1 = 26; read 2 = 56; index 1 = 8; 433 

index 2 =0. Demultiplexing the sequence reads to create FASTQ files and alignment to 434 

the human genome reference GRCh38 (version refdata-gex-GRCh38-2020-A, 10X 435 

Genomics) were performed using Cell Ranger (version 7.1.0, 10X Genomics) 436 

commands mkfastq and count, respectively, and subsequent analysis was performed to 437 

evaluate transcriptional changes. 438 

 439 

Data Analysis 440 

Quality filtering, variable gene selection, and clustering were performed as described 441 

previously (53). We interpreted clusters using known markers of airway epithelial 442 

subtypes, merging clusters expressing the same markers. For each cell, we quantified 443 

the number of genes for which at least one read was mapped, and then excluded all 444 

cells with fewer than 800 or greater than 10,000. We also excluded cells in which more 445 

than 30% of transcripts mapped to the mitochondrial genome. Expression values Ei,j for 446 

gene i in cell j were calculated by dividing UMI count values for gene i by the sum of the 447 

UMI counts in cell j, to normalize for differences in coverage, and then multiplying by 448 

10,000 to create TPM-like values, and finally calculating log2(TPM+1) values.  449 

 450 
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For each gene, we modeled the relationship between detection fraction (proportion of 451 

cells in which at least one UMI was observed) and the log of total number of UMIs using 452 

logistic regression. Outliers from this curve are expressed in a lower fraction of cells 453 

than would be expected, and are thus highly variable, that is, they are specific to a cell-454 

type, treatment, condition, or state. We selected the top 3,000 genes with the highest 455 

residuals as highly variable genes. We restricted the expression matrix to the subsets of 456 

variable genes and high-quality cells noted above, and values were centered and 457 

scaled before input to PCA. For C. posadasii, data from different conditions were then 458 

integrated using the Harmony algorithm (54), before shared nearest-neighbor network 459 

construction and clustering using the Leiden algorithm as we have described previously 460 

(55). Differential expression (DE) tests were performed using MAST (56). All DE tests 461 

were run by comparing all cells of each type between conditions. For each cell type, 462 

genes were only tested if they were detected in greater than 10 cells. Chemokines were 463 

selected using the HUGO gene set chemokine ligands (group 483, 464 

https://www.genenames.org/data/genegroup/#!/group/483). Pathway enrichment was 465 

performed using the ‘EnrichR’ R package.  466 

 467 

Data Availability Statement 468 

The raw data associated with scRNA-seq studies are available in the GEO database at 469 

[ascension number not assigned yet]. 470 
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ALI – air-liquid interface 662 

DEGs – differentially expressed genes 663 

DE – differential expression 664 

FTH1 – ferritin heavy chain 1 665 

FTL – ferritin light chain 666 

hAECs – human airway epithelial cells 667 

HSF1 – heat shock factor 1 668 

IL1RN – interleukin 1 receptor antagonist 669 

NDRG1 – N-myc downstream-regulated gene 1 670 

PGK1 – phosphoglycerate kinase 1 671 

SAGM – small-airway epithelial cell medium 672 

scRNA-seq – single-cell RNA sequencing 673 
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UMAP – uniform manifold approximation and projection 674 

UPR – unfolded protein response 675 

VEGFA – vascular endothelial growth factor A  676 
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Figure Legends 677 

 678 

Figure 1. Experimental design and generation of human airway epithelial cell 679 

models. (A) A schematic outlining the experimental design wherein airway basal cells 680 

are isolated from human volunteers, expanded and differentiated, and then infected with 681 

either A. fumigatus or C. posadasii before undergoing scRNA-seq. (B) Representative 682 

images of fully differentiated hAECs. Cell markers for ciliated cells (AcTub), basal stem 683 

cells (KRT5), secretory cells (CCSP), ionocytes (BSND), neuroendocrine (TUJ1), were 684 

used. Size bar = 20 μm. (C) Quantification of epithelial subtypes per mm2 from images 685 

captured in (B). 686 

 687 

Figure 2. Cell clustering and differential gene expression of scRNA-seq following 688 

hAEC infection. UMAP embeddings of 20,560 (hAECs, points) infected with A. 689 

fumigatus (107 conidia, B5233 strain) (A) or 28,724 (hAECs, points) infected with C. 690 

posadasii (107 arthroconidia, Silveira strain) (B) and uninfected controls (mock). Points 691 

are colored by assignment to cell types using unsupervised clustering with the Leiden 692 

algorithm. Cell type proportions identified during UMAP generation during A. fumigatus 693 

[Af] (C) or C. posadasii [Cp] (D) infection as compared to mock. Scatter plots showing 694 

the relationship between the number of hAECs of each cell type in the scRNA-seq 695 

analysis (x-axis) and the number of differentially expressed genes (FDR<0.05) between 696 

A. fumigatus (E) or C. posadasii (F) and uninfected controls. Blue line: linear model fit, 697 

shaded area 90% confidence interval. Red arrows indicate the cell subtype with the 698 

highest DEGs. n=1 699 

 700 

Figure 3. Ciliated cell-specific transcriptional programs activated in hAECs by A. 701 

fumigatus. Top upregulated (FDR<0.05) genes and gene ontology (GO) biological 702 

process pathways in human airway ciliated cells (right columns) by infection with A. 703 

fumigatus. Individual gene membership in pathways is indicated in the color legend, left. 704 

Relevant GO pathways highlighted by the red boxes. 705 

 706 

Figure 4. Secretory cell-specific transcriptional programs activated in hAECs by C. 707 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2024. ; https://doi.org/10.1101/2024.09.09.612147doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.09.612147
http://creativecommons.org/licenses/by-nc-nd/4.0/


posadasii. Top upregulated (FDR<0.05) genes and gene ontology (GO) biological 708 

process pathways in human airway secretory cells (right columns) by infection with C. 709 

posadasii. Individual gene membership in pathways is indicated in color legend, left. 710 

Relevant GO pathways highlighted by the red boxes. 711 

 712 

Figure 5. Cell type-specific paracrine signaling responses to fungal pathogens. 713 

‘Lollipop’ plots show the relationship between differential expression effect size (x-axis) 714 

and significance (dot size, legend) for any chemokine, interleukin, or cognate receptor 715 

(rows, HUGO gene sets189, 483, 601, and 602), by each fungal pathogen (color legend; 716 

Af = A. fumigatus; Cp = C. posadasii) for each indicated cell type.  717 
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