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Abstract: Nickel-rich layered LiNi1−x−yCoxMnyO2 (LiMO2) is widely investigated as a promising
cathode material for advanced lithium-ion batteries used in electric vehicles, and a much higher
energy density in higher cut-off voltage is emergent for long driving range. However, during extensive
cycling when charged to higher voltage, the battery exhibits severe capacity fading and obvious
structural collapse, which leads to poor cycle stability. Herein, Sn-doping and in situ formed
Li2SnO3 nano-coating layer co-modified spherical-like LiNi0.5Co0.2Mn0.3O2 samples were successfully
prepared using a facile molten salt method and demonstrated excellent cyclic properties and high-rate
capabilities. The transition metal site was expected to be substituted by Sn in this study. The original
crystal structures of the layered materials were influenced by Sn-doping. Sn not only entered into
the crystal lattice of LiNi0.5Co0.2Mn0.3O2, but also formed Li+-conductive Li2SnO3 on the surface.
Sn-doping and Li2SnO3 coating layer co-modification are helpful to optimize the ratio of Ni2+ and
Ni3+, and to improve the conductivity of the cathode. The reversible capacity and rate capability of
the cathode are improved by Sn-modification. The 3 mol% Sn-modified LiNi0.5Co0.2Mn0.3O2 sample
maintained the reversible capacity of 146.8 mAh g−1 at 5C, corresponding to 75.8% of its low-rate
capacity (0.1C, 193.7mAh g−1) and kept the reversible capacity of 157.3 mAh g−1 with 88.4% capacity
retention after 100 charge and discharge cycles at 1C rate between 2.7 and 4.6 V, showing the improved
electrochemical property.

Keywords: lithium-ion batteries; cathode material; LiNi0.5Co0.2Mn0.3O2; Sn-modification;
high cut-off voltage

1. Introduction

The lithium-ion battery (LIB) is one of the most promising power supply devices for portable
electronic products and electric vehicles because of its high energy density and power density,
long cycle lifetime and environmental benignity among various novel battery systems [1–5]. Because
the commercialized LiCoO2 cathode material has the disadvantages of high cost and poor thermal
safety, the aim of present research work is to develop the prospective alternatives for LiCoO2 toward
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better lithium batteries [6–10]. Nickel-rich layered LiMO2 is an important cathode material for LIB
because of its superior theoretical discharge capacity compared with that of olivine or spinel materials.
Herein, high nickel content in LiMO2 is beneficial to increase capacity, high manganese content
enhances the structural stability and high cobalt content improves the rate performance [11]. Among
these LiMO2 materials, LiNi0.5Co0.2Mn0.3O2 has been gradually used as a component of commercial
lithium secondary batteries due to its low price, high capacity and improved safety. Nevertheless,
LiNi0.5Co0.2Mn0.3O2 still suffers from several issues, including severe capacity degradation and
limited high-rate capability, especially at high cut-off voltage, which is ascribed to the transition metal
dissolution and surface structure transformation during cycling [11].

At present, surface coating has been implemented to improve the cyclic property of cathode
materials. Coatings like metal oxides (such as Al2O3 [12,13], antimony doped tin oxide (ATO) [14],
CeO2 [15], CuO [16], Cr8O21 [17], MoO3 [18], SiO2 [19], TiO2 [20], ZnO [21], and ZrO2 [22]), fluoride
(AlF3 [23]), lithium salts (such as LiAlO2 [24], LiBO2 [25], Li2MnO3 [26], Li2MoO4 [27], Li2SiO3 [28],
Li2TiO3 [29], Li3VO4 [30], and Li2ZrO3 [31]), and others (polypyrrole (PPy) [32], carbon nanotube
(CNT) [33]) are proven to be effective for alleviating the transition metal dissolution and then improving
the cyclic property of the cathode materials. On the other side, partial substitution with cations or
anions is considered as a promising method to stabilize the crystalline structure of LiNi0.5Co0.2Mn0.3O2

materials and improve its high-rate capability, such as bulk doping with Al [24,34,35], K [36], Mo [37],
Na [38,39], Nd [40], Ti [41,42], Zr [22,32,42], Y [43], F [44], and Cl [36]. In principle, researchers
choose the ions which show a large ionic radius and high electronegativity to substitute for the
transition metals in LiMO2 because these kinds of ions can expand the channel-like Li+ diffusion
pathway and decrease the covalence characteristics of cation–oxygen bonds of LiMO2 materials. Ion
substitution inhibits the release of oxygen and has little effect on the structure of LiNi0.5Co0.2Mn0.3O2

materials, so the host lattice of the materials will be well maintained. As we know, the electrochemical
properties of LiMO2 materials can be greatly enhanced when combined with the advantages of
doping and coating co-modification by LiAlO2-coating layer and Al-dopant [24]. Mo-coating and
doping for LiNi0.5Co0.2Mn0.3O2 [45] have been studied by researchers and demonstrated enhanced
electrochemical properties.

Among various doping cations, Sn4+ has the same ionic radius of 0.69 Å as Ni2+, close to that of Li+

(0.76 Å). Meanwhile, the bonding energy of Sn-O is 548 kJ mol−1, while those of Ni-O, Co-O and Mn-O
are 391.6, 368 and 402 kJ mol−1, respectively. The high bonding energy of Sn-O is favorable to improve
the crystalline structural stability of cathode materials. In addition, Sn4+ has a high electronegativity,
leading to strong ionicity of the metal–oxygen bond [46]. Therefore, Sn-modification is expected to
enhance the cyclic property and high-rate capability of LiMO2 materials. The rate performances of
some layered LiMO2 materials have been enhanced by substituting stannum for transition metals.
For example, LiNi3/8Co2/8/Mn3/8-xSnxO2 has enhanced the chemical diffusion coefficient DLi of Li-ion,
leading to improved rate capability [47]. Sn-doped LiNi0.8Co0.2O2 has increased electronic conductivity
because a free electron was released into the conduction band after doping [48]. The electrochemical
properties of LiNi0.8Co0.1Mn0.1O2 have been enhanced by SnO2 at high voltage [49].

In this study, we report a facile synthesis of Sn-doping and Li2SnO3 in situ coating layer
co-modified (Sn-modified) LiNi0.5Co0.2Mn0.3O2. The crystalline structures, morphologies, surface
chemical states of cations and electrochemical performances of Sn-modified LiNi0.5Co0.2Mn0.3O2

samples are characterized. As expected, the amount of Sn has a major impact on the modification
treatment. Substituting a large amount of Sn for transition metals in LiNi0.5Co0.2Mn0.3O2 can form
Li2SnO3 on the surface. Suitable Sn-substituting can relieve the cation mixing degree and provide a
stable structure as well as form the Li+-conductive coating layer on the surface of the sample, leading
to improved physical and electrochemical properties.
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2. Materials and Methods

2.1. Materials Preparation

Layered Sn-modified LiNi0.5Co0.2Mn0.3O2 samples were synthesized using a facile molten salt
method. Molten salt (0.76LiOH·H2O–0.12Li2CO3), commercial Ni0.5Co0.2Mn0.3(OH)2 precursors and
nano-sized Sn powder were used as raw materials and mixed completely by mortar and pestle with
the appropriate amount of ethyl alcohol. LiOH·H2O with a purity of 98% was bought from Xilong
Chemical Co., Ltd. (Shantou, China). Li2CO3 with a purity of 99.5% was provided by Sichuan Tianqi
Lithium Co., Ltd (Chengdu, China). Ni0.5Co0.2Mn0.3(OH)2 with a transition metal element content of
62.27% was purchased from Chongqing Teri battery materials Co., Ltd. (Chongqing, China). Sn powder
with a purity of 99.9% was bought from Shanghai Chaowei Nano Technology Co., Ltd. The molar
ratio of the Li and M in LiMO2 was 1.05:1. The mixture was pre-heated at 480 ◦C for 120 min followed
by calcination at 880 ◦C for 720 min in air atmosphere. Finally, the obtained samples were ground
for 30 min for physical and electrochemical property tests. Here, Sn-modified LiNi0.5Co0.2Mn0.3O2

compounds, in which certain amounts of transition metals were substituted by Sn, were marked as
MS1 (1 mol% Sn), MS3 (3 mol% Sn) and MS5 (5 mol% Sn), and were prepared via the above-mentioned
approaches. The pristine LiNi0.5Co0.2Mn0.3O2 compounds were obtained through the same method
and labeled as M523.

2.2. Characterizations

The crystalline structures of synthesized LiNi0.5Co0.2Mn0.3O2 materials were characterized using
X-ray diffraction (XRD, D/Max 2000/PC, Rigaku, Tokyo, Japan) with Cu Kα radiation (λ = 1.54056 Å)
from 10◦ to 90◦ with a scan rate of 5◦ per min. The morphologies of modified samples were
characterized by scanning electron microscopy (SEM, Sirion200, FEI Ltd., Eindhoven, The Netherlands).
The microstructure of the sample surface was analyzed using transmission electron microscopy (TEM,
TECNAI G2 F20, FEI Company, Hillsboro, USA). The element distributions were determined using
energy dispersive X-ray spectroscopy (EDS, Model 7426, Oxford, UK). The surfaces of the samples
were examined using X-ray photoelectron spectroscopy (XPS, K-Alpha 1063, Thermo Fisher Scientific,
Waltham, MA, USA) with AlKα line (1486.6 eV) as the source of X-ray.

The CR2025 cell assembly process, the electrochemical charge and discharge tests and the
electrochemical impedance spectroscopy (EIS) tests were conducted according to the experimental
section of our recently published article [36].

3. Results and Discussion

The crystalline structures of the Sn-modified LiNi0.5Co0.2Mn0.3O2 samples were studied using
XRD in order to characterize the effects of Sn-substitution on the crystal, and the typical diffraction
patterns of all samples are demonstrated in Figure 1. The XRD patterns of well-crystallized pristine and
Sn-modified LiNi0.5Co0.2Mn0.3O2 samples were all indexed to a hexagonal α-NaFeO2 layered structure
(R-3m space group) with sharp and clear diffraction peaks. The obvious splitting of diffraction peaks of
(006)/(102) and (108)/(110) reflects the highly ordered hexagonal structure. However, there are some
impurities in the patterns of samples MS3 and MS5 near the 2θ of 35 and 43◦, which are identified
as Li2SnO3. It is obvious that the formation of Li2SnO3 phase is related to the amount of dopant.
To identify the effects of tin substitution on the structures of Sn-modified samples, the crystallographic
data of samples are demonstrated in Table 1. Even though the doping amount was small, the cell
parameters of all samples changed, showing that Sn-modification affected the main structure of the host.
All the crystallographic data changed, which suggests that the substituting element entered into the
crystal lattice. All the crystallographic data ratios c/a are higher than 4.899, showing the highly ordered
crystal structure. The I003/I104 ratios (R) of modified samples are larger than the value of 1.2, indicating
that Sn-substituting can relieve the cation mixing degree. That is to say, Sn4+ helps to stabilize the
crystal structure of LiNi0.5Co0.2Mn0.3O2 during the Li+ intercalation and de-intercalation process
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because Sn-O has a higher bonding energy than those of transition metals and oxygen. The 3 mol%
substituting sample showed the largest intensity ratio R’((I006+ I102)/I101) and crystal volume, which
may have resulted in the best electrochemical performance.

The SEM images of Sn-modified LiNi0.5Co0.2Mn0.3O2 samples and the EDS images are displayed
in Figure 2. As is shown, there were no significant differences in the grain sizes from the pristine and
Sn-modified samples. All the compounds showed a spherical-like morphology with a particle size
from 4 to 6 µm, which is made up by lots of fine primary particles with a length range of 0.5–1 µm.
The sample surface was not only compact but also provided enough surface area to make full contact
between the cathode and the electrolyte. According to the EDS measurements showing in Figure 2k,
it can be obviously seen that stannum and transition metals were uniformly distributed on the surface
of the MS3 compound.
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Figure 1. XRD patterns of Sn-modified LiNi0.5Co0.2Mn0.3O2 samples (∗ represents Li2SnO3).

Table 1. Lattice constants of Sn-modified LiNi0.5Co0.2Mn0.3O2 samples.

Sample a (Å) c (Å) c/a R(I003/I104) R’((I006+ I102)/I101) V (Å3)

M523 2.8673 14.2103 4.956 1.319 0.428 101.18
MS1 2.8694 14.2286 4.959 1.460 0.474 101.46
MS3 2.8710 14.2223 4.954 1.425 0.526 101.53
MS5 2.8715 14.1499 4.928 1.821 0.508 101.04

To reveal the in situ formation of the Li2SnO3 on the surface of the samples, the microstructure of
Sn-modified LiNi0.5Co0.2Mn0.3O2 sample MS3 was examined using TEM as shown in Figure 3. It can
be seen from Figure 3a that a nano-sized coating layer was obtained on the particle surface of MS3.
Three of the coating sites (Figure 3b–d) were enlarged in order to observe the thin layer more clearly.
The surface coating layer, which uniformly adhered to the bulk of MS3 particles, had a thickness
within the range of 5–10 nm. In addition, Figure 3b,c clearly indicates the crystalline interplanar
spacing of 0.495 and 0.228 nm, which can be indexed as (002) and (–221) facets of Li2SnO3 (JCPDS no.
31-0761), respectively. The (003) facet of bulk MS3 with the crystalline interplanar spacing of 0.478 nm
is demonstrated in Figure 3d. These results were consistent with the XRD result and further identified
the formation of Li2SnO3 nano-coating layer.
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Figure 3. TEM images of MS3 (a) and the selected areas in Figure 3a (b–d).

To understand the surface chemical composition of the transition metal elements (Ni, Co, Mn)
and Sn, the pristine M523 and Sn-modified sample MS3 were examined using XPS. The XPS patterns
are shown in Figure 4 and Figure S1. Compared to the pristine M523, the peak positions of Co 2p3/2

and Mn 2p3/2 in 3 mol% Sn-modified sample MS3 had no obvious shift, showing that the surface
chemical states of the transition metals did not change. To further clarify the effect of Sn-modification
on the chemical states of cations, the peak positions and mole fractions of transition metal ions and
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Sn4+ in the crystal of M523 and MS3 compounds deduced from XPS fittings are listed in Table 2.
According to the corresponding binding energies of Ni 2p3/2, Co 2p3/2 and Mn 2p3/2, we can ascertain
that the chemical valences of Ni are Ni2+ (853.6 and 854.7 eV) and Ni3+(856.2 eV), while those of Co
and Mn are Co3+ (779.8 eV) and Mn4+ (642.4 eV), respectively. The results show that the oxidation
valences of Ni, Co and Mn in the Sn-modified samples are still the same as those of the pristine one,
only that the mole fraction ratio of Ni2+/Ni3+ increased from 72.27%/27.73% to 74.88%/25.12% after
Sn-modification, which indicates that MS3 has better structure stability. Sn3d peaks appear at 486.5
and 494.9 eV, showing that Sn exists in +4 chemical state [47]. Additionally, Sn-modification has a
great influence on the chemical state of O1s. The peak at 529.35 eV was caused by the interaction
of transition metal ions and oxygen in the crystal structure, and the peak at 531.54 eV is related to
formation of lithium carbonate at the sample surface [50]. The peak intensities of the two characteristic
peaks of O1s occur in deflection, which indicates that the lattice oxygen increased and the adsorbed
oxygen on the surface decreased after modification. It is beneficial to keep the layered structure stable
and reduce the formation of impurities on the sample surface.
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Table 2. Peak positions and mole fractions of the metal elements for M523 and MS3 samples obtained
from XPS fittings.

Sample
Elements

Ni2+ Ni3+ Co3+ Mn4+ Sn4+

Peak position/eV M523 853.6 854.7 856.2 779.8 642.4 –
MS3 853.6 854.7 856.2 779.8 642.4 486.4

Mole fraction/% M523 72.27 27.73 100.0 100.0 –
MS3 74.88 25.12 100.0 100.0 100.0
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The curves of electrochemical performance are characterized in Figure 5. The initial charge and
discharge capacities were tested at 0.1 C rate at room temperature. We can determine from Figure 5a
that the initial discharge capacities for the M523, MS1, MS3 and MS5 samples are 203.9, 196.8, 193.7
and 188.0 mAh g−1, and the corresponding coulombic efficiencies are 79.2%, 82.6%, 84.9% and 84.0%,
respectively. As discussed previously, a large amount of Sn-doping and Li2SnO3 impurity existed in
MS5, which probably led to the lowest initial discharge capacity. The coulombic efficiency values of
the Sn-modified samples are all higher than that of the pristine one. This should be attributed to the
Sn-substituting, which can relieve the cation mixing degree and is favorable for Li+ transfer.
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Figure 5. Electrochemical performance of Sn-modified LiNi0.5Co0.2Mn0.3O2 samples: (a) Initial
charge–discharge curves at 0.1C, (b) rate performance from 0.1 to 5C, (c) cyclic ability at 1C,
and (d) electrochemical impedance spectroscopy (EIS) plots of Sn-modified LiNi0.5Co0.2Mn0.3O2

samples after the 100th cycle.

The rate performances of LiNi0.5Co0.2Mn0.3O2 samples are compared in Figure 5b, in which the
charge–discharge cycle was successively taken from 0.1 to 5 C at 2.7–4.6 V for every five cycles. The
Sn-modified samples displayed more enhanced rate performance than the pristine M523 at high rates.
The MS3 sample presented a reversible capacity of 146.8 mAh g−1 at 5 C, corresponding to 75.8%
of its initial capacity (0.1C, 193.7mAh g−1). However, the pristine M523 kept a reversible capacity
of 116.0 mAh g−1, just 56.9% of its initial capacity (0.1C, 203.9 mAh g−1). This can be attributed to
the fact that the bonding energy of Sn–O is higher than those of the transition metal and oxygen
in LiNi0.5Co0.2Mn0.3O2 samples. It can be seen from the previous XRD results that Sn-substituting
can relieve the cation mixing degree and benefit the Li+ intercalation/de-intercalation, even in high
current density. Furthermore, the formed Li+-conductive Li2SnO3 nano-coating layer prevents the side
reaction at the cathode and the electrolyte interface and accelerates the transport of lithium ions as well.
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The cyclic stability properties of Sn-modified LiNi0.5Co0.2Mn0.3O2 at 1C are illustrated in Figure 5c.
It is observed that the Sn-modified sample MS3 exhibited excellent capacity retention with a capacity
of 157.3mAh g−1 and discharge capacity retention of 88.4% at the 100th cycle, while the pristine sample
M523 only kept a capacity of 124.9 mAh g−1 and discharge capacity retention of 73.2%. These results
indicate that Sn-modification is favorable for keeping the structural stability of the pristine materials
and obtaining enhanced cycle performance. Doping can improve the conductivity of the material, and
the increase of conductivity after a small amount of doping is reflected in the increase of capacity;
however, with the increase of doping amount, the active material decreases, resulting in the loss of
electrochemical capacity. Therefore, there is a lack of continuous changes for data shown in Figure 5b,c
with the trend of MS5 < MS3 < MS1 or MS1 < MS3 < MS5.

To better understand the effect of Sn-modification on the electrochemical properties of cathode
materials, EIS analysis was carried out. Figure 5d demonstrates the EIS profiles of the Sn-modified
LiNi0.5Co0.2Mn0.3O2 cathodes after the 100th cycle at 1C. According to the equivalent circuit [40] in the
inset in which Rsei stands for the resistance of solid electrolyte interface (SEI) layer, Rct is the charge
transfer impedance at the interface of electrolyte–electrode, and Zw is the Li ion diffusion in the crystal
lattice, the EIS spectra were analyzed using Zview-2 software. The values of the total resistance of
the Rsei and Rct are 306.0, 233.1, 171.0 and 152.6 Ω for M523, MS1, MS3 and MS5, respectively. It is
shown that the Rsei and Rct of the modified samples are significantly smaller than those of the pristine
one. The MS3 and MS5 samples show lower total resistance, which may be relative to the formed
Li+-conductive Li2SnO3. This is helpful for the intercalation/de-intercalation of Li ions during the
charge/discharge process. To investigate the influence of bulk performance of LiNi0.5Co0.2Mn0.3O2

modified by Sn-doping on electrochemical performance, the relationships between ω−1/2 and Z’ based
on the experimental results are shown in Figure S2. The apparent Li+ diffusion coefficient was calculated
via a widely used method [8], and it was 1.64 × 10−10, 1.75 × 10−10 2.11 × 10−10 and 1.82 × 10−10

cm2 S−1 for M523, MS1, MS3 and MS5, respectively. Hence, it could be claimed that Sn-modification
contributes to decreasing the charge transfer impedance and improving the Li+ diffusion, resulting in
better capacity reversibility.

4. Conclusions

Uniform near-spherical Sn-doping and Li2SnO3 co-modified LiNi0.5Co0.2Mn0.3O2 were obtained
using a facile molten salt method with 0.76LiOH·H2O-0.12Li2CO3, commercial Ni0.5Co0.2Mn0.3(OH)2

and Sn nano-powders as the raw materials. The crystal structures, morphologies and electrochemical
properties were investigated in detail. The results of the analyses indicate that suitable
stannum-modified samples exhibit low cation mixing degrees, enhanced rate capabilities and excellent
cyclic performances. Notably, the MS3 sample with 3 mol % Sn-modification aimed at the transition
metal site maintained a capacity of 146.8 mAh g−1 at the current density of 5C, corresponding to
75.8% of its low rate capacity (0.1C, 193.7mAh g−1), while the pristine one kept the capacity of
116.0 mAh g−1, just 56.9% of its initial capacity (0.1C, 203.9 mAh g−1). The pristine sample also kept
the reversible capacity of 157.3 mAh g−1 as well as a favorable capacity retention of 88.4% after 100
cycles (2.7–4.6 V, 1C), which is 15.2% higher than that of the pristine M523 (124.9 mAh g−1, 73.2%).
The MS3 sample exhibited a lower mole fraction of Ni3+, implying less structural transition during
the charge–discharge cycles. The improvement of the electrochemical properties can be attributed to
the suitable Sn-substituting and formed Li+-conductive Li2SnO3, which can relieve the cation mixing
degree, offer more stable crystalline structure for the fast Li+-intercalation/de-intercalation during
repeated cycles and improve the conductivity to obtain enhanced high-rate reversibility and cycle
stability. These results illustrate that Sn-modified LiNi0.5Co0.2Mn0.3O2 is an excellent cathode material
for increasingly wide utilization in the fields of electric vehicles and energy storage systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/5/868/s1,
Figure S1: XPS spectra of the synthesized materials: Co 2p3/2 (a), Mn 2p3/2 (c) spectra of M523, Co 2p3/2 (b),
Mn 2p3/2 (d) spectra of MS3; Figure S2: The relationships between ω−1/2 and Z’.
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