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Postpartum depression (PPD) is a depressive condition that is associated with a high

risk of stressful life events, poor marital relationships, and even suicide. Neuroimaging

techniques have enriched our understanding of cerebral mechanisms underlying PPD;

namely, abnormalities in the amygdala-insula-frontal circuit might contribute to the

pathogenesis of PPD. Stanford Accelerated Intelligent Neuromodulation Therapy (SAINT)

is a recently validated neuroscience-informed accelerated intermittent theta-burst

stimulation repetitive transcranial magnetic stimulation (rTMS) protocol. It has been

shown to be effective, safe, tolerable, and rapid acting for treating treatment-resistant

depression, and may be a valuable tool in the treatment of PPD. The purpose of the

current study was to detect inter-hemispheric connectivity changes and their relationship

with the clinical treatment effects of rTMS. Resting-state fMRI data from 32 patients with

PPD treatedwith SAINTwere collected and comparedwith findings from 32 agematched

healthy controls. Voxel-mirrored homotopic connectivity (VMHC) was used to analyze the

patterns of interhemispheric intrinsic functional connectivity in patients with PPD. Scores

on the 17-itemHamilton Depression Rating Scale, Edinburgh Postnatal Depression Scale

(EPDS) scores, and the relationships between these clinical characteristics and VMHC

were the primary outcomes. Patients with PPD at baseline showed reduced VMHC in

the amygdala, insula, and medial frontal gyrus compared with the HCs. These properties

showed a renormalization after individualized rTMS treatment. Furthermore, increased
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connectivity between the left and right insula after SAINT was significantly correlated

with the improvement of EPDS scores. Our results reveal the disruptions in the intrinsic

functional architecture of interhemispheric communication in patients with PPD, and

provide evidence for the pathophysiological mechanisms and the effects of rTMS.

Keywords: postpartum depression, repetitive transcranial magnetic stimulation, voxel-mirrored homotopic

connectivity, treatment effects, fMRI

INTRODUCTION

Postpartum depression (PPD) is characterized by a series of
symptoms, such as depression, agitation, and even suicide,
and affects 13% of women who have just given birth (1).
Psychotherapy, psychotropic medications, and electroconvulsive
therapy are the primary and commonly used treatments for
PPD (2, 3). Although the efficacy of these treatments has
been documented, each has its limitations and shortcomings.
For example, psychotherapy requires a long treatment duration
and is costly (4). Women who are breastfeeding may be
concerned that their infant will be exposed to psychotropic
medications, and worried about the long-term developmental
effects of this exposure (5). Electroconvulsive therapy is strongly
recommended for the treatment of major depression, but is
associated with acute adverse effects such as memory disorder
and headaches (6). As such, there is an urgent need for new
therapies for PPD that have minimal side effects and can
be used over long durations. Repetitive transcranial magnetic
stimulation (rTMS) is an effective FDA-approved treatment for
major depression and is a promising treatment for PPD (7).
The mechanism of rTMS in the treatment include activation
of neurotransmitter systems, modulation of neural circuits and
brain networks, and synaptic plasticity.

Previous studies using resting-state functional magnetic
resonance imaging (fMRI) have found that patients with PPD
show decreased activities in several brain regions, including
the dorsolateral prefrontal cortex (DLPFC), anterior cingulate
cortex, amygdala, and hippocampus, as well as attenuated
cortico-cortical and cortico-limbic connectivity (8, 9). Functional
network studies have also demonstrated that connectivity
between the posterior cingulate cortex and right amygdala
was disrupted in patients with PPD (10). Task-related fMRI
studies have revealed reduced activity in the orbitofrontal cortex,
dorsomedial prefrontal cortex, amygdala and striatum in patients
with PPD (11). Furthermore, a diffusion tensor imaging (DTI)
study found evidence of aberrant integrity of the corpus callosum,
which connects the bilateral hemispheres (12). These results
indicate that amygdala-insula-frontal circuit abnormality might
contribute to the pathogenesis of PPD.

The DLPFC is the key TMS targeting area for treating
major depressive disorder (13). Stanford Accelerated Intelligent
Neuromodulation Therapy (SAINT) is an accelerated, fMRI-
guided intermittent theta-burst stimulation (iTBS) protocol that
has recently been shown to be effective, safe, tolerable, and
rapid acting for treating treatment-resistant depression (7, 13).
Whether this protocol also has promising treatment effects in
patients with PPD has yet to be examined. In the current

study, we applied SAINT in patients with PPD and used the
voxel-mirrored homotopic connectivity (VMHC) method to
investigate how SAINT influenced interhemispheric connectivity
(14). We hypothesized that core regions within the amygdala-
insula-frontal circuit would show normalized connectivity after
SAINT protocol administration.

MATERIALS AND METHODS

Subjects
Patients with PPD were recruited from the First Affiliated
Hospital of Xinxiang Medical University. All patients were
diagnosed with major depression with a puerperal onset
according to the DSM-IV diagnostic criteria. No participants
were receiving any pharmacological treatment. Women were
excluded from the study if they had a past or current diagnosis
of bipolar disorder, post-traumatic stress disorder, or other
psychosis. Age matched healthy controls (HCs) were recruited
from the local community. Exclusion criteria for both groups
were as follows: (1) history or presence of significant neurological
or medical illnesses; (2) body mass index (BMI) ≥ 30; (3) history
of alcohol, drug, or smoking abuse; (4) contraindications for 3T
MRI, such as claustrophobia, metal implants, and pacemakers.

MRI Data Collection
A 3.0-T UNITED Discovery 770 MRI scanner was used for all
MRI acquisitions. Participants were required to keep still and
stay awake during the entire session. The resting-state functional
images were obtained with the following parameters: field of view
(FOV) = 224 × 224mm, data matrix = 64 × 64, echo time
(TE)= 30ms, repetition time (TR)= 2,000ms, slice thickness=
4mm, flip angle= 90◦ and voxel size= 3.5× 3.5× 40 mm3. For
anatomical reference, a high-resolution T1-weighted image was
also acquired with the following parameters: TR= 7.24ms, TE=

3.10ms, FOV = 256 × 256mm, flip angle = 10◦, slice thickness
= 0.5mm, and and voxel size = 0.5 × 0.5 × 1 mm3. The same
parameters were used for follow-up scans of the patients with
PPD and healthy controls.

fMRI Data Preprocessing
The resting-state fMRI images were preprocessed using the
Data Processing & Analysis for Brain imaging (DPABI, http://
rfmri.org/dpabi) software. The first 10 images were removed
for magnetization equilibrium, and the remaining 200 images
were subjected to motion realignment and slice timing, during
which the mean frame-wise displacement (FD) was calculated.
Subjects with more than 2mm of maximal translation or 2◦ of
maximal rotation were excluded. Then, the Friston-24 model
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was used to regress head motion effects and nuisance signals
from cerebrospinal fluid white matter and head motions. Then,
the fMRI data were normalized into the MNI space using the
diffeomorphic anatomical registration through exponentiated lie
algebra (DARTEL) method; the resulting images were finally
smoothed with a Gaussian kernel of 6mm full width at
half-maximum and band-pass filtered (0.01–0.08Hz). Before
calculation of the VMHC, all preprocessed rs-fMRI data were
transformed into the group-specific symmetric template; then,
VMHC was computed as Pearson’s correlation coefficient
between each voxel’s residual time series and that of the
corresponding voxel in the opposite hemisphere. Subsequently,
the correlation values were converted to z-values using Fisher’s
r-to-z transformation to enhance the normality of the values.

Treatment
Repetitive transcranial magnetic stimulation was delivered by
a commercially available magnetic stimulator (Black Dolphin
Navigation Robot). Individual L-DLPFC stimulation target
was determined according to a previous study (13). First, a
hierarchical agglomerative clustering algorithm was applied to
divide the DLPFC and subgenual anterior cingulate cortex
(sgACC) into numerous functional subunits, which were defined
as voxel pairs to be correlated. For each functional subunit,
a single time-series value was identified, which was defined
as the time-series that was most strongly correlated with the
median time series. Then, Spearman’s correlation coefficients
were used to calculate the correlation matrix. Finally, the optimal
target in DLPFC was determined considering the anticorrelation,
size, spatial concentration, and dispersion of subunits. Fifty
intermittent theta-burst stimulation (iTBS) sessions (1,800 pulses
per session, 50-min interval) were delivered in 10 daily sessions
over 5 consecutive days at 90% resting motor threshold.

Statistical Analysis
Demographic characteristics were compared between patients
with PPD and HCs using Student’s t-tests in SPSS (IBM SPSS
Statistics for Windows, version 18.0, IBM Corp.). Two-sample t-
tests (HCs vs. patients with PPD at baseline; HCs vs. patients with
PPD at follow-up) or paired t-tests (baseline vs. follow-up) were
used to identify interhemispheric FC changes. The threshold for
significance was P < 0.05, corrected with the FDR criterion.
Age, and mean FD calculated during the preprocessing step were
accounted for by including them as covariates. We extracted the
mean VMHC values of the brain regions exhibiting significant
differences (baseline vs. follow-up); then, Pearson’s correlation
coefficient was used to examine the associations between the
changes in VMHC and clinical scores in SPSS. Significance was
set at a threshold of P < 0.05, Bonferroni-corrected. Correction
for multiple comparisons was accomplished using the FDR
criterion with the “mafdr” script implemented in MATLAB.

RESULTS

Demographic Information
All participants (patients with PPD and healthy controls) were
right-handed. There were no significant differences in age, body

TABLE 1 | Demographic and clinical characteristics of participants.

Characteristics PPD (31) HCs (31) p

Age (years) 31.5 ± 3.4 31.7 ± 6.3 0.91

Education (years) 13.7 ± 2.5 14.1 ± 2.9 0.65

BMI 24.3 ± 4.5 23.9 ± 4.2 0.55

Length of pregnancy(days) 281.2 ± 17.3 280.4 ± 16.9 0.76

EPDS 16.7 ± 4.6 4.75 ± 2.2 <0.01

HAMD 32.6 ± 5.2 8.64 ± 3.8 <0.01

Characteristics PI at baseline PI at follow-up

EPDS 16.7 ± 4.6 7.88 ± 2.4 <0.01

HAMD 32.6 ± 5.2 12.1 ± 4.5 <0.01

PPD, Postpartum depression; HCs, healthy controls; BMI, body mass index; EPDS,

Edinburgh Postnatal Depression Scale; HAMD, 24-Item Hamilton Depression Scale.

mass index, education levels and length of pregnancy between
women with PPD and HCs. As expected, the patients with
PPD exhibited significantly higher EPDS scores (P < 0.001)
and HAMD scores (P < 0.001) than the HCs. After rTMS
treatment, all scores showed a significant improvement (P< 0.01
for EPDS, P < 0.01 for HAMD). Detailed information is listed
in Table 1. The head motion indicated by mean FD did not differ
significantly between baseline and follow-up in patients with PPD
(p > 0.05; mean FD = 0.142 ± 0.035 for baseline, mean FD =

0.135 ± 0.029 for follow-up), or between patients with PPD and
HCs (all p > 0.05; mean FD= 0.108± 0.041 for HCs).

VMHC Differences Between Groups
Significant VMHC differences were found between patients
with PPD and healthy controls at baseline, whereby patients
with PPD showed reduced VMHC in the bilateral insula,
bilateral amygdala, bilateral medial frontal gyrus, bilateral
putamen, bilateral pallidum, bilateral anterior cingulate cortex,
and bilateral middle cingulate cortex. After rTMS treatment,
compared with baseline values, patients with PPD at follow-up
showed increased VMHC in these regions, in addition, bilateral
middle temporal gyrus. No significant differences were found
between patients with PPD at follow-up and healthy controls.
The detailed results are shown in Figures 1, 2 and Table 2.

To clearly demonstrate the dynamic changes in VMHC values
after TMS treatment, the VMHC values within those brain
regions were extracted across the three groups, as shown in
Figure 3. A renormalization of VMHC changes was found in
patients with PPD after TMS treatment.

Correlation Results
The changes of VMHC values after TMS treatment (baseline–
follow-up) were extracted, and correlations with the clinical
features in patients with PPD were assessed. A significant
negative correlation was found between EPDS score changes
and VMHC value changes in the left and right insula (r
= −0.47, P < 0.001). The correlation results are shown in
Figure 4. No significant correlations were found for HAMD and
VMHCmetrics.
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FIGURE 1 | Significant differences of VMHC between PPD patients at baseline

and HCs (P < 0.05, FDR corrected).

FIGURE 2 | Significant differences of VMHC between PPD patients at baseline

and PPD patients at follow-up (P < 0.05, FDR corrected).

DISCUSSION

In the current study, we found that SAINT applied to patients
with PPD significantly reduced depressive symptoms. Increased
inter-hemispheric connectivity was found in the amygdala-
insula-frontal circuit after SAINT administration. Furthermore,
the increased connectivity between the left and right insula after
SAINT was significantly correlated with the improvement of the
Edinburgh Postnatal Depression Scale score. Our study is the first
to demonstrate that SAINT could be a promising TMS protocol
for treating patients with PPD.

Multiple fMRI studies have improved our understanding of
the neural mechanisms of patients with PPD. Task-related fMRI

TABLE 2 | Significantly altered VMHC across the three groups.

voxels Peak Coordinates (MNI) t-value

x y z

Baseline < HC Right insula 202 42 9 0 −11.19

Left insula 202 −42 9 0 −11.19

Right amygdala 39 27 −3 −12 −7.84

Left amygdala 39 −27 −3 −12 −7.84

Right medial frontal cortex 32 24 36 −12 −4.95

Left medial frontal cortex 32 −24 36 −12 −4.95

Right putamen 152 21 21 3 −5.99

Left putamen 152 −21 21 3 −5.99

Right pallidum 40 24 −3 6 −6.01

Left pallidum 40 −24 −3 6 −6.01

Right anterior cingulate cortex 39 9 33 15 −4.39

Left anterior cingulate cortex 39 −9 33 15 −4.39

Right middle cingulate cortex 60 3 9 30 −5.21

Left middle cingulate cortex 60 −3 9 30 −5.21

Follow-up > Baseline

Right insula 186 42 9 0 10.59

Left insula 186 −42 9 0 10.59

Right amygdala 30 27 −3 −12 7.15

Left amygdala 30 −27 −3 −12 7.15

Right medial frontal cortex 43 18 48 6 3.72

Left medial frontal cortex 43 −18 48 6 3.72

Right putamen 134 21 21 3 5.46

Left putamen 134 −21 21 3 5.46

Right pallidum 23 24 −6 6 4.95

Left pallidum 23 −24 −6 6 4.95

Right middle temporal gyrus 25 60 −6 −24 3.65

Left middle temporal gyrus 25 −60 −6 −24 3.65

studies have indicated that during exposure to emotional stimuli,
patients with PPD have increased activity in the amygdala (15)
and reduced activity in the middle frontal gyrus (MFG) and
inferior frontal gyrus (IFG). Resting-state fMRI studies have
reported significant disruption of the posterior cingulate cortex
(PCC)–right amygdala functional coupling in patients with PPD
(16). Another resting-state study using regional homogeneity
(ReHo) analysis found that PPD is characterized by decreased
ReHo in the left DLPFC, right insular right ventral temporal
cortex, amygdala, and hippocampus (17). The MFC, IFC, and
PCC constitute the so-called default mode network (DMN),
which is active at rest and involved in monitoring the external
and internal environment (18); the right insula is a core region of
the salience network (SN), which is crucial for detecting salient
external stimuli and internal mental events (19). Consistent with
previous studies, our findings suggest that disrupted activity
within the amygdala, DMN, and SN is important for the
pathophysiology of PPD.

Owing to the potential impact of medication side effects
on their newborn infant or the perceived risk of breastfeeding
while on medication, many mothers do not consider using
psychotropic medication to treat their PPD. Compared with
other depression therapies, repetitive TMS is unique in that
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FIGURE 3 | VMHC values in bilateral insula, bilateral amygdala, bilateral medial frontal gyrus, bilateral putamen, bilateral pallidum, bilateral anterior cingulate cortex,

bilateral middle cingulate cortex and bilateral middle temporal gyrus across the three groups. HC, healthy controls.

FIGURE 4 | correlation results between the VMHC change (left insula - right

insula) and the Edinburgh Postnatal Depression Scale improvements after

rTMS treatment.

it has no systemic side effects that would interfere with child
care. Previous studies have indicated that the improvement of
EPDS scores were higher in the rTMS group than the control
group. As reported in previous studies, standard rTMS protocols
provide marginal effects in improving the depressive mood and
cognitive function of patients with PPD compared with the
control group (20, 21). SAINT, however, has several advantages in
improving treatment effects, such as individual DLPFC targeting,
long intersession intervals to produce cumulative effects on
synaptic strengthening, individualized resting motor threshold,
and the use of 1,800 pulses rather than the typical 600 pulses per
iTBS session.

After SAINT, increased interhemispheric connectivity was
found in the amygdala, insula, and frontal gyrus, which
suggests that SAINT exerts its effects by increasing inter-
hemispheric communication. Interestingly, we found that the
increased connectivity between the left and right insula was
correlated with the improvement of depressive symptoms
(indicated by a reduced Edinburgh Postnatal Depression
Scale score). These findings are consistent with those of
previous studies that have highlighted the importance of the
salience network in the pathogenesis of depressive disorders.
The salience network (SN) is involved in monitoring salient
events and processing emotions (19). The deficient role
of the insula might disrupt the cross-network interactions
between the SN network, DMN, and limbic network, and
SAINT might normalize these interactions to improve the
clinical manifestations.

This study has several limitations that should be noted.
First, this study had a small sample size. In the future, a larger
sample size is needed to enhance the generalizability of the
present findings. Second, we only explored interhemispheric
functional connectivity and did not consider brain structural
connectivity, other statis, or dynamic functional connectivity;
examining these factors in future work will provide
more important information. Third, not all PPD patients
showed great improvement after SAINT administration,
the underlying mechanism should be further studied in
the future.
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