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Fine scale infectious disease 
modeling using satellite‑derived 
data
Nistara Randhawa1*, Hugo Mailhot2, Duncan Temple Lang3, Beatriz Martínez‑López4, 
Kirsten Gilardi1 & Jonna A. K. Mazet1*

Innovative tools for modeling infectious agents are essential for better understanding disease 
spread given the inherent complexity of changing and interacting ecological, environmental, and 
demographic factors. We leveraged fine-scale satellite data on urban areas to build a road-connected 
geospatial network upon which to model disease spread. This model was tested by simulating 
the spread of the 2009 pandemic influenza in Rwanda and also used to determine the effects of 
vaccination regimens on outbreak spread and impact. Our results were comparable to data collected 
during the actual pandemic in Rwanda, determining the initial places affected after outbreak 
introduction in Kigali. They also highlighted the effectiveness of preventing outbreaks by targeting 
mitigation efforts at points of outbreak origin. This modeling approach can be valuable for planning 
and control purposes in real-time disease situations, providing helpful baseline scenarios during initial 
phases of outbreaks, and can be applied to other infectious diseases where high population mobility 
promotes rapid disease propagation.

Anthropogenic activities have transformed one-third to one-half of Earth’s land surface, and human-altered 
landscapes continue to expand1. Changing ecological, environmental, and demographic conditions have led to 
the increased occurrence of emerging infectious diseases (EIDs) that pose an imminent threat to human health 
and have cost hundreds of billions of US dollars globally in economic losses over the past decades2,3. Simultane-
ously, the unprecedented speed, expansion, and volume of human travel has facilitated the rise of pandemics by 
coupling infectious disease spread with global transport4. Infectious disease dynamics are influenced by inherent 
stochasticity of real-world phenomena, i.e. effects of chance and non-sequential event progression, consequently 
making mathematical models and computational tools essential for representing the complexity of these pro-
cesses, although achievement of complete accuracy remains difficult5.

The spatio-temporal progression of outbreaks has commonly been studied using metapopulation models, 
wherein a population is divided into spatially explicit subpopulations connected to each other by human move-
ments, such as transportation by road or air. One such model, the GLobal Epidemic and Mobility Computational 
Model (GLEaM), allows the global spatio-temporal characterization of epidemics6. The GLEaM model incor-
porates both air travel and local commuting by partitioning geographic census areas based on their distances 
to nearby airports and extrapolating commuting processes between them6. GLEaM has been found to be accu-
rate and generalizable for determining global disease spread; however, it cannot be applied to determining the 
regional spread of diseases where few or no airports exist. We build upon GLEaM by changing the underlying 
network structure and subsequent regional mobility flow for areas inadequately serviced by airports, though 
they may still be susceptible to EID events. We use high resolution satellite imagery of urban built-up areas7 in 
combination with population and road data to create a regional network of urban areas coupled with underly-
ing population information and connections via roads. The resultant model incorporates the estimation of local 
commute between these urban areas using the radiation model8.

In March and early April 2009, a novel swine-origin influenza A (H1N1) virus was determined to have caused 
severe respiratory illness in several individuals in Mexico and the United States9. By June 2009, nearly 30,000 
confirmed cases were reported in 74 countries, prompting the World Health Organization (WHO) to officially 
declare the start of the 2009 influenza pandemic10. The first case of pandemic influenza in Rwanda’s neighbor-
ing country, Kenya, was identified on June 29, 2009, and by early October, Rwanda had detected its first case as 
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well11,12. While historical information on the burden and effect of Influenza-Like Illness (ILI) in African countries 
is scarce, projects such as the Influenza Sentinel Surveillance (ISS) system13 and Strengthening Influenza Sentinel 
Surveillance in Africa14 (SISA), launched in 2008 and 2011 respectively, have improved influenza surveillance 
and monitoring. The availability of H1N1 outbreak and GIS data for Rwanda11,15, as well as the fact that it is a 
hotspot region for EIDs16 enabled us to construct this modeling framework for Rwanda and simulate the spread 
of pandemic influenza across it. The ISS system in Rwanda allowed for the comparison of modeling results with 
data on the detection of actual cases for the 2009 pandemic influenza11.

Our aims were to build a model that could simulate the spread of diseases regionally at a very fine scale, 
initiate the infection from anywhere in the region, test the effect of control measures such as vaccination on the 
outbreaks, and derive inferences about patterns of disease spread. The resulting work provides a framework for 
modeling the likely spread of infectious diseases in data-scarce regions important for emerging infectious diseases 
and can thus be valuable for planning and control purposes in real outbreak scenarios.

Methods
Creation of geospatial network.  We generated the geospatial network by combining three spatial data-
sets: high resolution human settlement/urban footprint data derived from satellite imagery7 (~ 12 m GUF: Global 
Urban Footprint), human population distribution data by Worldpop17,18, and the Rwandan road network data15 
(Fig. 1). The urban footprint raster layer was converted into polygons, a 25 m buffer was created around them, 
and the corresponding population for these polygons was added using Worldpop data. All polygons within 75 m 
(for an effective distance of 100 m) from the roads were selected, and the nearest point from their centroids to 
the roads was determined. Thereafter, the shortest road distances between all points were calculated, resulting in 
a network whose nodes corresponded to urban settlement points with their associated populations and edges to 
the shortest road distances between all points. The network was pruned to keep only those nodes with popula-
tions of 10 or more people to improve computation speed for subsequent analyses. The geospatial network was 
constructed in ArcGIS 10.4 software by ESRI (2016, Redlands, CA), using its Network Analyst tool.

Figure 1.   Network creation process depicting how the three GIS layers (urban footprint7, population17,18, 
and roads15) were combined to form a network. (a) Section of urban footprint (UF) layer in raster form. (b) 
Conversion of the UF raster to polygon with added population information and 25 m buffer. (c) Subset urban 
areas that are near roads (100 m including the buffer). (d) Conversion of urban areas into points on the road 
network. (e) Calculation of road distances between urban points. (Edges with less than one human commuting 
between nodes have not been displayed in the generated network to facilitate network visualization).
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Human mobility.  In order to assist in predicting disease propagation, the edges of the network were 
weighted by commuting rates: that is, the proportion of the population in a source node that commutes to a 
destination node. In the absence of readily available commuting data for Rwanda, we chose to estimate these 
commuting rates by adapting the radiation model described by Simini et al.8 to incorporating road distances 
instead of straight-line Euclidean distances. We also used the same commuting proportion as Simini et al.8, 11%. 
The expected commuting rate σji from a source node j and a destination node i is:

where nj and ni are the populations for nodes j and i , and sji is the total population (excluding j and i ) of loca-
tions within the same road distance to j as that between j and i . The total commuting rate of individuals in j 
is σj = Nc/N = 11%, where Nc is the total number of commuters and N is the total population in the country.

Disease model.  To test the created network as a framework upon which to model infectious diseases, we 
simulated the spread of pandemic influenza A H1N1 (pH1N1) via a discrete stochastic SEIR compartmental 
model, in which the disease spread is simulated both within and between nodes (i.e. urban/built-up areas with 
their associated populations). Using the metapopulation model approach, each node in the network under-
went the compartmental model process that simulated disease progression in its population as a result of both 
within-node and between-node outbreak spread. In the SEIR model, a susceptible person becomes infected 
upon contact with an infectious individual and transitions to the latent compartment, after which the individual 
becomes infectious (symptomatic or asymptomatic) and subsequently recovers with immunity to future infec-
tions (Fig. 2). All disease parameters used in the model were obtained from existing literature on influenza and 
pH1N1 (Table 1) and no additional estimates were made. Transitions across the compartments were sampled 
from multinomial distributions with associated probabilities (transition rates) and sizes (number of individuals 
in the compartment).

The force of infection, � , is the net infection rate per susceptible in a metapopulation model. Using the method 
elucidated by Balcan et al.6, the force of infection experienced by a susceptible individual in a subpopulation j , �j , 
is a function of the force of infection due to local infectious individuals in j ( �jj ) and infections in j ’s neighbors 
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Figure 2.   Flow diagram of the SEIR transmission model (boxes represent an SEIR compartment state and 
arrows represent the rate of transition from one state to another). A susceptible individual in each subpopulation 
(network node) contracts the infection at rate � and enters the latent compartment. The individual is infected 
but not infectious during the latent period ( ǫ−1 days). Latent individuals subsequently transition to being 
either asymptomatic infectious or symptomatic infectious with rates ǫpa and ǫ(1− pa) respectively. Infectious 
individuals recover permanently at rate µ.

Table 1.   Disease parameter values used in the modeling process.

Variable Meaning Value Source

Ro Reproductive rate 1.44 Pourbohloul et al. 200932

ǫ−1 Mean latent period (days) 2.62 Tuite et al. 201033

µ−1 Mean infectious period (days) 3.38 Tuite et al. 201033

pa Probability of asymptomatic infection 1/3 Longini et al. 200525

rβ Reduced infectiousness by asymptomatic infection 50% Longini et al. 200525

β Transmission rate Roµ/
(

rβpa +
(

1− pa
))

Balcan et al. 20106

� Force of infection Equations 2, 3, and 4 Balcan et al. 20106
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i ( �ji ) to which individuals from j commute. Incorporating the commuting flows ( σ ) and return rates ( τ ) of the 
commuting individuals, the formula for � as given by Balcan et al.6 is:

The force of infection experienced within node j is due to infectious individuals staying in j and infectious 
individuals from j ’s neighbors, i , visiting j:

Similarly, �ji , the force of infection due to infections in j ’s neighbors, i , to which individuals from j commute 
is given by:

where l  is the set of neighbors for i , whose members commute to i . N∗

j  and N∗

i  refer to the effective populations 
of j and i  respectively. The effective populations result from the coupling of human mobility with the node 
populations6,19 as described in Eq. 2 and shown in Fig. 3. Instead of using the exact population of a node, the effec-
tive population was determined by taking into account the movement of its individuals to neighboring nodes, the 
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Figure 3.   Schematic representation of the commuting flow and how it relates with effective populations and 
the force of infection. Each node population is divided into subpopulations Nxy , where x represents the node 
of residence and y represents the node of the actual location at time t  . Hence, Njj refers to the individuals of 
node j that remain in j , Nji refers to individuals of node j commuting to node i , and N∗

j  refers to the effective 
population of node j taking into account its commuting and non-commuting individuals. Three nodes are 
shown in the figure – i , j , and l  – to represent the various contributions to the force of infection (Eq. 2).
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influx of individuals from its neighbors into it, and the return of individuals to their respective subpopulations6 
(Fig. 3). Assuming a commuting return rate ( τ ) of 1/3 days6, the effective population of node j , N∗

j  , is given by:

where Nj and Ni are the populations of node j and its neighbors i , respectively; σi and σj are the daily total com-
muting rates for subpopulations i  and j , respectively; and σij is the commuting rate from population i  to its 
neighbor j.

We assumed that the populations were homogeneous with no host-specific attributes, such as age and immune 
status; closed, i.e. there were no births nor deaths in the country’s population during the simulation period; 
homogeneously mixing so all individuals have the same rates of disease-causing contacts; and there were no 
behavioral changes that could affect disease transmission during the course of the outbreak and its propagation. 
We also did not account for differences in the mode of transportation (e.g. bus, car, or bicycle) and assumed that 
people did not make any travel stops during the course of their commute from one area to another.

Model experimentation, sensitivity analysis, and validation.  We initiated outbreaks by converting 
a susceptible individual to infectious in specific nodes. In the first scenario, we seeded an infectious individual 
in Kigali, the capital of Rwanda, and the purported starting location of the 2009 pH1N1 outbreak in Rwanda. 
The results of this scenario were compared to observed data on the pandemic influenza outbreak in Rwanda11, 
specifically the observed outbreak length and order of infection of different populated areas. Assuming these 
simulations were sufficiently close to reality, we ran further simulations under various scenarios described below 
and compared their outcomes with each other (Supplementary Table S1).

To compare disease spread under different starting circumstances, we separately seeded another big city, 
Rubavu, and a smaller town Kibungo, the second and the last places documented to have had pH1N1 infected 
individuals11.

The effect of vaccinating Kigali’s population was simulated assuming a vaccine with 80% efficacy20,21. For sen-
sitivity analysis, we varied vaccine efficacies from 50 to 90%, and the vaccine coverage of Kigali’s population from 
20 to 100%. Effectively immunized individuals (product of Kigali’s population, proportion vaccinated, and vac-
cine efficacy) were considered fully immune and transferred to the "Recovered" compartment prior to start of the 
simulations. The other seeded cities, Rubavu and Kibungo, were also vaccinated similarly, and comparisons were 
made across different vaccination scenarios: comparing outbreaks originating in Rubavu/Kibungo without any 
vaccinations, and those with vaccinations in either Kigali, Rubavu/Kibungo, or both Kigali and Rubavu/Kibungo.

Thirty-four sets of simulations were performed, corresponding to each of the scenarios mentioned above; 
each scenario was run independently 500 times; therefore, we conducted a total of 17,000 simulations across 
the study. The results are presented using epidemic curves, tables, and maps, including a heat map depicting 
the distribution of the average number of infectious individuals across Rwanda. The code for setting up the 
scenarios and running the simulations is presented in https://​doi.​org/​10.​5281/​zenodo.​40142​72. All simulations 
and analyses, except for network creation, were done with the R statistical software22; in particular, packages 
igraph23 and dplyr24 were used in the simulation code.    

Results
Epidemic size for infections initiated in Kigali without vaccination.  Approximately 39% of the 500 
simulations (197/500) in the first scenario resulted in widespread influenza outbreaks, infecting more than 1000 
nodes corresponding to urban areas in Rwanda, while 60.6% (303/500) did not spread beyond three nodes and 
resolved within 52 days. Of the remaining 303 simulations, 97 (32%) did not result in further infections, 190 
(63%) did not spread beyond one node and resolved within 52 days, and 16 (5%) spread to a maximum of three 
nodes and resolved within 35 days. Going forward, because of our focus on the geospatial spread of pH1N1 in 
Rwanda, we consider those simulations resulting in widespread incidence of influenza in Rwanda as outbreaks. 
The length of all simulations and infectious curves of the 197 outbreaks are shown in Fig. 4. The mean and 
median outbreak lengths were 287.8 (IQR: 26.4) and 284.0 (IQR: 33.0) days, respectively.

The distribution of average number of influenza cases across simulated outbreaks is presented in Fig. 5 along 
with a network map showing the connectivity of urban areas via commuting processes over roads. Areas with 
greater connectivity are influential during outbreak propagation events and, as observed in Fig. 5, they are also 
associated with higher number of influenza cases.

Order of outbreak spread.  The laboratory confirmation of new influenza clusters during the 2009–10 
influenza outbreak in Rwanda11 identified the first cluster in Kigali, followed by Rubavu, Muhanga, Musanze, 
Cyangugu, Huye, and finally Kibungo (Fig. 6). Under the first simulation scenario, we started the outbreaks in 
Kigali, and the subsequent order of infection in the aforementioned cities is comparable to the observed out-
break order, with Rubavu, Musanze, and Muhanga being identified as the next three areas to be infected after 
Kigali (Fig. 6). Further, there were many more areas found to be infected in the simulation results beyond those 
observed during the actual outbreak, implying that undetected outbreaks in these areas probably occured in 
reality (Fig. 5).

Intervention using vaccinations under different scenarios.  For outbreaks (simulations resulting 
in widespread influenza infections) originating in Kigali, vaccinating just 20% of Kigali’s population with an 
80% efficacious vaccine reduced the outbreak probability by almost half, from 0.39 to 0.21. Increasing vacci-
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Figure 4.   Left: Histogram of simulation lengths (epidemic sizes) of 500 simulations, 197 of which resulted in 
widespread geospatial outbreaks (infecting greater than 1,000 nodes corresponding to urban areas in Rwanda). 
Right: Infectious epidemic curves (progression of influenza infections over time) of the 197 simulations that 
resulted in widespread geospatial outbreaks. The red arrows point out the reported length of the observed 2009 
pH1N1 outbreak in Rwanda (242 days) and the mean simulated outbreak length (287.8 days).

Distribution of influenza cases across simulated outbreaks

Low High

Average number of infected individuals

Areas without human
settlements or cases

Connectivity (node degree)

HighLow

Connectivity of urban areas

Figure 5.   Left: Heat map of the average influenza cases over the course of simulated outbreaks in Rwanda. 
Right: Map showing connectivity of urban areas in the network.
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nation coverage and efficacy resulted in decreasing outbreak probabilities (Fig. 7). The benefits of vaccination 
beyond 60–80% coverage yielded diminishing gains: for example, increasing the proportion of people vaccinated 
in Kigali from 60 to 100% only reduced the outbreak probability from 0.018 to 0.012 (Fig. 7).

Simulated outbreaks starting in Rubavu and Kibungo (without vaccination) resulted in similar probabilities 
of outbreaks and numbers of infectious individuals compared to the one starting in Kigali (Fig. 8). Vaccinating 
Kigali led to fewer numbers of infections without much effect on the outbreak probabilities. While vaccinating 
Rubavu and Kibungo resulted in fewer numbers of outbreaks, the numbers of infected individuals remained 

Figure 6.   Comparison between observed and simulated outbreak spreads across Rwanda. Left: Map showing 
the location of influenza surveillance sites11 and the cities documented to have confirmed pH1N1 influenza 
clusters (map made with QGIS 3.6). Right: Comparison between the observed and simulated order of pandemic 
influenza spread in Rwanda.
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Figure 7.   Effect of varying vaccine coverage and efficacy on the probability of an outbreak (the proportion of 
simulations that resulted in widespread influenza infections across Rwanda).



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6946  | https://doi.org/10.1038/s41598-021-86124-2

www.nature.com/scientificreports/

high. The lowest outbreak probabilities and numbers of infected individuals were observed when both Kigali 
and the cities where outbreaks were initiated (Rubavu and Kibungo) were vaccinated.

Discussion
We simulated the spatial spread of an epidemic by creating a fine-scale network of urban areas using satellite-
derived imagery and GIS datasets and incorporating human mobility over the resulting network. This is the 
first time an infectious disease has been modeled utilizing these kinds of georeferenced datasets at such a fine 
geographic scale. Using freely and publicly available data to create the Rwanda urban area network, running a 
set of 500 simulations over this network took approximately 11 h to run on a 16 GB RAM machine. The result-
ing discrete stochastic metapopulation model followed the duration of the observed outbreak (Fig. 4) as well as 
the order of infection (Fig. 6) of the pandemic influenza A (pH1N1) in Rwanda during 2009–1011, illustrating 
its potential utility in predicting real outbreak scenarios.

Wane et al.11 described the clinical and epidemiological features of the pH1N1 outbreak in Rwanda and the 
public health response by the Rwandan government for its control and mitigation. In 2008, approximately one 
year before the outbreak, an influenza surveillance system was established in six public hospitals in the capital 
city of Kigali and the other four provinces of Rwanda (Fig. 6). These sentinel sites served to systematically 
identify Influenza-Like-Illness and Severe Acute Respiratory Illness cases, and sourced and shipped samples 
from enrolled cases to the National Reference Laboratory in Kigali. Rwanda’s response to the outbreak involved 
two phases: the containment phase comprising "intensive contact tracing, laboratory testing of suspect cases, 
mass communication, oseltamivir (Tamiflu) distribution to suspect and laboratory-confirmed cases, and school 
closure"11; and the mitigation phase, initiated upon widespread transmission of pH1N111. The mitigation phase 
consisted of decentralized outbreak management to the district hospitals, targeted laboratory testing, restricted 
use of oseltamivir, and enhanced surveillance.

Laboratory testing for pH1N1 in the mitigation phase was limited to 1–5% of suspect cases in an outbreak 
cluster with a maximum of 10 samples, as well as to severely ill or high-risk suspect cases (e.g. those with asthma 
or HIV/AIDS) due to cost and logistics. The exact magnitude, path of spread, and distribution of the pH1N1 
outbreak in Rwanda are therefore difficult to determine, considering that about 33% of influenza cases can be 
asymptomatic25 and not all suspected influenza cases were tested. Hence, while the actual outbreak was observed 
to last from early October, 2009 to May 31, 2010, it is likely that the outbreak actually started earlier and finished 
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Figure 8.   Comparison of the numbers infected and the outbreak lengths for scenarios involving different sites 
for the start of a potential epidemic and places of vaccinations (60% population coverage with an 80% efficacious 
vaccine). Outbreak probabilities and numbers of infected individuals were lowest when both Kigali and Rubavu/
Kibungo (other cities where outbreaks were initiated) were vaccinated.
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later than what was observed. Our simulated outbreak length of 287.8 (IQR: 26.4) days encompasses the observed 
outbreak length of approximately 242 days and possibly provides a more realistic estimate of the actual outbreak 
duration (Fig. 4).

Pandemic influenza was first confirmed in Kigali, followed by the West, South, and North provinces, and 
lastly the East province (at the Kibungo sentinel site)11. Three foreign nationals arriving from the US and Europe 
were confirmed positive for pH1N1 as well, and were thought to have acquired the infection outside of Rwanda. 
Districts with the influenza sentinel sites accounted for the majority of the confirmed pH1N1 cases, showing a 
possible lack of reporting from districts without surveillance centers. Thus, given the bias of detection around 
surveillance centers and the fact that only 1–5% of suspect cases in infection clusters were tested, the exact, 
complete order of the outbreak in Rwanda cannot be accurately quantified. Despite this limitation, our simula-
tions depicted a similar order compared to reports of these sentinel sites (Fig. 6) and identified additional areas 
which may be of interest for future surveillance and control activities (Fig. 5).

The relative importance of cities and towns during an outbreak depends upon their connectivity with other 
locations, which in turn is associated with their population sizes and distances by road from each other. Due to 
the nature of the urban satellite data used to create the network, some cities may have been divided into further 
subcomponents. For example, Cyangugu appears to have been fragmented into multiple nodes (Supplementary 
Figure S1), each having lesser populations than that of the city itself. As a result, its overall importance is reduced 
(via the radiation commuting flow model) and its nodes get infected later than when they would have if they were 
combined. This division into subcomponents could be addressed by increasing the buffers around urban areas 
prior to network formation or by further ground-truthing of the urban areas before modeling.

Like any epidemiological modeling study, we made several assumptions that led to a simplification of the 
modeling process and greatly reduced the computational power needed to run it. We incorporated stochasticity 
in the model to account for some of the assumptions. In addition to assuming homogeneous populations and 
mixing within them, we did not account for changes in behavior which could affect disease-causing interactions 
and therefore alter the course of an outbreak26,27. With respect to the network creation process, we incorporated 
only those urban areas that were within 100 m from the road network in Rwanda, thereby excluding apparently 
unconnected areas from the network model. Further improvements could be made by creating a more inclusive 
network via addition of buffers around unconnected areas, joining areas within a reasonable distance from each 
other, and considering other means of travel or impedances to travel, such as land elevation. Most importantly, 
we assume that the urban footprint data used to create the network reasonably accounts for the human dwell-
ings important for the outbreak spread. Despite the above assumptions, this model seems to capture well the 
observed epidemic in Rwanda, as it was comparable with the actual outbreak data from 2009–10 with respect to 
the epidemic length and spatial spread of cases. The model is also relatively more realistic with respect to human 
mobility than those using straight-line Euclidean distances between places because it incorporates human move-
ment via roads. Further validation or ground-truthing of this approach to estimating human movements using 
actual mobility data would be a valuable next step for studies using this modeling process.

Vaccination was instrumental in reducing the probability of an epidemic, with the probability sharply declin-
ing with increasing vaccination percentages of up to 60% of Kigali’s population. An 80% coverage afforded nearly 
as effective protection as vaccinating the entire population of Kigali, a highly unrealistic scenario, since complete 
coverage is difficult to attain. Of note is that when the infections were initiated in Rubavu and Kibungo, slightly 
lower numbers of outbreaks took place, with approximately the same number of infections as when the outbreaks 
started in Kigali. This outcome resulted because once the outbreaks reached Kigali, an important node due to 
its high connectivity with the other areas in the network, they spread from this city to the rest of the network. 
Vaccinating the population in Kigali while starting the outbreaks from Rubavu and Kibungo reduced the total 
number of infections, but did not reduce the probability of an outbreak. Vaccinating Rubavu, Kibungo, and Kigali 
reduced both the probability of outbreaks and numbers of infections, whereas vaccinating Rubavu and Kibungo 
reduced the probability of outbreaks but did not affect the number of infections.

To reduce the impact of an outbreak in terms of numbers of people who get sick, vaccinating cities with 
greater connectivity and higher populations is most effective. However, to reduce the probability of an outbreak 
in the first place, it is important to detect cases early, and to target the source of the outbreak, regardless of its 
connectivity or population size. This is especially important given the fact that vaccines may not be available at 
the start of an outbreak28. Strengthening public health surveillance to provide early warnings of emerging infec-
tions and initiation of control responses at the source is important if we are to protect ourselves from emerging 
infections29. The influenza surveillance system set up in Rwanda11 is critical if outbreaks are to be prevented at 
the source before widespread human epidemics30. The rapid identification and restriction of Ebola and Marburg 
virus diseases in Uganda and the Democratic Republic of Congo demonstrate the returns for investing in surveil-
lance systems and diagnostic capacities31.

In conclusion, our high resolution modeling approach can be useful in predicting the spread of, and plan for, 
future outbreaks in regions where modeling data are scarce or unavailable. This process can be especially helpful 
during initial phases of outbreaks, before changes in human behavior affect the course of epidemics. Additionally, 
while we simulated influenza, it is possible to model other infectious diseases, such as SARS-CoV-2 or Ebola, 
where mobility can lead to rapid and devastating outbreak propagation31. In outbreak scenarios, our tool can 
be valuable for risk-based disease surveillance, emergency planning, and control purposes. It tells us how an 
epidemic might spread regionally and informs us that controlling an outbreak at its source is more effective than 
post-outbreak control measures aimed at large influential areas alone.
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Data availability
Data used in this study were accessed from the Global Urban Footprint, Worldpop Rwanda 2010 100 × 100 m 
resolution population data, and Rwanda Transport Development Agency. The compiled network dataset used 
for modeling is provided at https://​doi.​org/​10.​5281/​zenodo.​40142​72.

Code availability
All R code used for this project is available at https://​doi.​org/​10.​5281/​zenodo.​40142​72.
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