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Abstract

Background: The lower incidence of breast cancer among Asian women compared with Western countries has been partly
attributed to soy in the Asian diet, leading to efforts to identify the bioactive components that are responsible. Soy Bowman
Birk Inhibitor Concentrate (BBIC) is a known cancer preventive agent now in human clinical trials.

Methodology/Principal Findings: The objectives of this work are to establish the presence and delineate the in vitro activity
of lunasin and BBI found in BBIC, and study their bioavailability after oral administration to mice and rats. We report that
lunasin and BBI are the two main bioactive ingredients of BBIC based on inhibition of foci formation, lunasin being more
efficacious than BBI on an equimolar basis. BBI and soy Kunitz Trypsin Inhibitor protect lunasin from in vitro digestion with
pancreatin. Oral administration of 3H-labeled lunasin with lunasin-enriched soy results in 30% of the peptide reaching target
tissues in an intact and bioactive form. In a xenograft model of nude mice transplanted with human breast cancer MDA-MB-
231 cells, intraperitoneal injections of lunasin, at 20 mg/kg and 4 mg/kg body weight, decrease tumor incidence by 49%
and 33%, respectively, compared with the vehicle-treated group. In contrast, injection with BBI at 20 mg/kg body weight
shows no effect on tumor incidence. Tumor generation is significantly reduced with the two doses of lunasin, while BBI is
ineffective. Lunasin inhibits cell proliferation and induces cell death in the breast tumor sections.

Conclusions/Significance: We conclude that lunasin is actually the bioactive cancer preventive agent in BBIC, and BBI
simply protects lunasin from digestion when soybean and other seed foods are eaten by humans.
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Introduction

Breast cancer is the most common malignant tumor among

women and the leading causes of death of women in Western

countries [1]. In contrast, breast cancer incidence in most Asian

countries is approximately 10% that of the general population of the

USA and Europe [2]. Of all environmental factors known to

influence breast cancer, diet appears to be one of the most significant.

Asian diets are rich in soybean products containing factors that have

been found to provide important protection against initiation,

promotion and/or progression of breast cancer in animal models

[3]. In 1980, Troll and coworkers suggested the possibility that soy

protein might have a role in preventing breast cancer in irradiated

rats [4]. Animal experiments carried out during the last decade have

confirmed the breast cancer preventive role of soy protein [2,3]. In

particular, bioactive peptides isolated from soybeans, such as lunasin

and the Bowman-Birk protease inhibitor (BBI) are now being

intensively studied as cancer chemopreventive agents.

Lunasin is a novel peptide initially identified in soybean [5] and

subsequently, isolated in wheat, barley and other seeds [6–9]. It is

a 43-amino acid peptide which efficacy has been demonstrated in

mammalian cells against chemical carcinogens and viral onco-

genes [10,11]. The first mouse model confirmed the chemopre-

ventive activity of lunasin against skin cancer induced by a

chemical carcinogen [10]. These results suggest that lunasin may

exert a promising role as preventive agent against other types of

cancer, such as breast cancer.

BBI is a polypeptide of 71 amino acids with the ability to inhibit

the serine proteases trypsin and chymotrypsin. The trypsin

inhibitory site of BBI has been associated with negative effects

on bioavailability of dietary proteins, whereas the chymotrypsin

site has been implicated in cancer chemopreventive effects [12,13].

The high cost of BBI’s purification process has made necessary

the use of an impure form of BBI called BBI concentrate (BBIC)

that has been reported to exert chemopreventive activity against

different types of cancer induced by chemical carcinogens and
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radiations [14]. These studies consider that BBI is the main

component responsible for BBIC’s chemopreventive activity,

without evaluating the contribution of other peptides contained

in the BBIC on its cancer preventive activity.

Oral administration has been recognized as a plausible and cost-

effective approach to reduce cancer morbidity and mortality by

inhibiting precancerous events before the occurrence of clinical

disease [15]. Since lunasin and BBI are peptides, it is crucial to

establish whether they, once orally ingested, survive digestion and

get absorbed, reaching the target tissues and organs in an intact

and bioactive state. Park and coworkers carried out in vitro studies

demonstrating the role of BBI in protecting lunasin from digestion

when soy protein was orally consumed [16]. However, there are

no in vivo studies examining the role of BBI in protecting lunasin

from digestion in the gastrointestinal tract of animals.

The aims of this work are to evaluate the presence and in vitro

activity of lunasin and BBI contained in BBIC and study their

bioavailability after oral administration to mice and rats. A xeno-

graft breast cancer mouse model was chosen to delineate and

evaluate in vivo the chemopreventive properties of lunasin and BBI

separately and to elucidate the carcinogenesis pathways involved

in breast cancer that are affected by these peptides.

Results

Lunasin Is a Bioactive Ingredient of BBIC
To determine the composition of BBIC, this preparation was

subjected to SDS-PAGE and Western-Blot to identify lunasin and

BBI. The results show that both peptides are present in BBIC at

concentrations of 360 and 74.4 ng/mg protein, respectively

(Figure 1A). The two represent about 44% of total protein of

the BBIC, indicating that other proteins are present and may

contribute to the properties attributed to this preparation.

Foci formation inhibitory activity of BBIC containing 1160 nM

BBI and 100 nM lunasin was analyzed. BBIC suppressed foci

formation by 80% in 7,12-dimethylbenz[a]anthracene (DMBA)-

induced NIH3T3 cells, compared to vehicle-treated cells

(Figure 1B–C). Lunasin and BBI were individually purified from

the BBIC and their activities analyzed. 100 nM of pure lunasin

isolated from BBIC reduced foci formation by 73% (Figure 1B–E),

which is identical to that observed with 100 nM synthetic lunasin

(Figure 1B–G). Pure BBI isolated from the BBIC at concentration

of 100 nM decreases foci formation by 60% (Figure 1B–D). Thus,

lunasin was more effective than BBI by 18% on an equimolar

basis, but BBI also has a chemopreventive effect of its own, most

likely due to inhibition of proteolytic processes involved in

carcinogenesis.

Soy Protease Inhibitors Protect Lunasin from In Vitro
Digestion

In order to establish the role of the different protease inhibitors

contained in soybean, such as BBI and Kunitz Trypsin Inhibitor

(KTI), synthetic lunasin was subjected to an in vitro digestion

process with pancreatin. Lunasin was incubated with this pre-

paration in the absence and presence of BBI and KTI and

evaluated by Western-Blot. The pattern shows (Figure 2) that both

protease inhibitors protect lunasin from digestion, even after being

denatured by heat treatment. Approximately 93% and 97% of

lunasin remain intact after the digestion process in the presence of

unboiled BBI and KTI, respectively. Similar percentages of

lunasin (98% and 84%) remained intact when this peptide was

incubated with pancreatin in the presence of boiled BBI and KTI,

respectively. Lunasin resists heat treatment [17], and is present in

different processed soybean products that also contain BBI [18].

All these results indicate that lunasin would be bioavailable after

ingestion of these products due to the protective role of BBI and

other soy protease inhibitors.

Lunasin Is Bioavailable When Orally Administered to Mice
and Rats

Mice and rats were used to determine whether orally ingested

lunasin survives digestion, ends up in the tissues and remains intact

and bioactive as measured by an in vivo assay. In the first set of

experiments, CD-1 mice received 3H-labelled synthetic lunasin

mixed with lunasin-enriched soy (LES) by gavage. Lunasin is

absorbed and distributed in various collected tissues, including

those that are targets for the most common cancers, such as lung,

mammary gland and prostate (Figure 3A). It is noteworthy that

lunasin is able to cross the blood-brain barrier, reaching the brain.

At 3 hrs post-gavage, approximately 30% of the total oral dose of

lunasin is absorbed (Figure S1).

Since the 3H-radioactivity would not show the molecular size

and bioactivity of lunasin in the tissues, rats were fed dietary LES

for 4 weeks, the blood and liver were collected and lunasin was

extracted, purified, and analyzed by Western-blot. Lunasin is

present in the blood of LES-fed rats as a monomer at a

concentration of 17.5 ng/ml. However, lunasin isolated from the

liver of LES-fed rats exists as a dimer at a concentration of

3.1 mg/g of liver (Figure S2). Lunasin (1 mM) extracted from the

liver of LES-fed rats suppresses foci formation as effectively as an

Figure 1. Lunasin is the main bioactive component in BBIC. A:
Western-Blot of BBIC using antibodies specific for BBI and lunasin. (1)
Marker, (2) 6.25 mg protein, (3) 12 mg protein, (4) 25 mg protein, (5) Standard
BBI (3 mg) or standard lunasin (200 ng). B: Foci formation inhibitory activity
in DMBA-induced NIH3T3 cells. (a) Vehicle-treated cells (b) positive control
or DMBA-treated cells, (c) BBIC (100 nM lunasin +1160 nM BBI), (d) BBI
(100 nM) from BBIC, (e) Lunasin (100 nM) from BBIC, (f) Standard BBI
(100 nM), (g) Synthetic lunasin (100 nM). Bars with different lower case
letter designations are statistically significantly different from each other
(P,0.05, n = 6).
doi:10.1371/journal.pone.0008890.g001
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equimolar amount of synthetic lunasin (Figure 3B). In contrast, the

control protein band extracted from LES-unfed rats is ineffective

in suppressing foci formation.

Lunasin Reduces Tumor Incidence and Generation
To examine the in vivo effect of lunasin and BBI in breast cancer

cells, MDA-MB-231 cells were implanted subcutaneously into

nude mice after 2 months intraperitoneal (i.p.) injection of lunasin

and BBI. No significant differences in body weights were observed

among the four groups (Figure 4A), suggesting that lunasin or BBI

treatments has no side effects on the general health condition.

These results are consistent with studies carried out by Johnson

and coworkers [19] who reported no significant effects on body

weight after daily gavage of BBIC (500,2000 mg/kg/day) for six

months.

Breast cancer incidence of mice is shown in Figure 4B. At seven

weeks post-cells injection, 75% and 88% of mice in control and

BBI-groups, respectively showed tumors. In contrast, tumor

incidence was 38% and 50% in mice treated with 20 mg/kg

and 4 mg/kg lunasin, respectively. Thus, compared with the

control, the tumor incidence was 49% and 33% lower in the

lunasin-treated groups respectively. Compared with the BBI

group, the tumor incidence was 57% lower in the 20 mg/kg

and 43% lower in the 4 mg/kg lunasin treated group. Mice

treated with lunasin also showed a delay in the appearance of

tumors. Moreover, tumor generation, was reduced in the two

groups of mice treated with lunasin, being significantly lower in

mice treated with the lowest dose of lunasin, 70% and 69% lower

relative to control and BBI group respectively (P = 0.029 vs

control) (Figure 4C).

Growth rate and final size of the tumors differed among the four

groups. Significant tumors appeared in control mice after cells

injection whereas the sizes of tumors in mice treated with 20 mg/

kg and 4 mg/kg lunasin were decreased by 23% and 34%,

respectively (Figure 5A). At the end of the experiment, the weight

of tumors was also lower in mice treated with both doses of lunasin

compared to control-group (P = 0.2134, 0.1880, respectively) and

BBI-group (P = 0.0909, 0.0569, respectively) (Figure 5B).

Palpable and non-palpable mammary tumors were collected

and subjected to histological analysis and immunostaining. After

H&E staining (Figure 6A), tumor sections of lunasin-treated

groups showed tumor destruction areas replaced by apoptotic and

necrotic cells that were not apparent in the control and BBI-

treated groups. To establish greater specificity for the antiprolif-

erative response, tumor sections were analyzed by immunohisto-

chemistry for Ki-67 expression, an indicator of cell proliferation

[20]. Lunasin treatment at 20 mg/kg and 4 mg/kg reduced Ki-67

expression by 34% (P = 0.0062) and 30% (P = 0.0158), respective-

ly, compared with the control group (Figure 6B). However, there

was no significant difference between the Ki-67 expression of

control and BBI-groups. In situ TUNEL assay was performed to

evaluate the apoptotic effect of lunasin and BBI treatments

(Figure 6C). TUNEL-positive apoptotic cells were found in tumors

from animals treated with both doses of lunasin, revealing a

significantly increased apoptosis in these treatment groups

compared to the control group (P = 0.0088, 0.0141, respectively).

Few TUNEL-positive cells were found in tumors from animals in

the BBI-group. These suggest that tumors from mice treated with

lunasin have significantly lower rate of proliferation and higher

apoptosis index compared to control and BBI groups.

Discussion

The high prevalence of breast cancer has provided a strong

rationale for identifying new compounds for use as preventive

and/or therapeutic agents. Epidemiological studies, animal ex-

periments and human trials have shown evidence that people

consuming a soy-rich diet have lower incidence and mortality

from breast cancer, leading to investigations on different

compounds from soy that provide protection against breast

cancer [21,22]. Daily intake of these anticancer compounds could

be compared to a preventive, non-toxic version of chemotherapy

that is harmless to the physiology of normal tissue and stops

microtumours [23,24]. To evaluate the potential risks and

benefits of phytochemicals to human health, understanding of

the physiological behavior of these compounds following oral

ingestion as well as of their absorption, distribution, metabolism,

and excretion is needed [15].

The soybean BBIC is largely a preparation containing the

protease inhibitor BBI that has been used to demonstrate the

chemopreventive properties of this peptide avoiding the high cost

of its purification. Several studies have reported the chemopre-

ventive role of the BBIC against different types of cancer induced

by chemical carcinogens and radiations [14,25]. These studies

have assumed that BBI is the main bioactive compound

responsible for BBIC’s chemopreventive activity, without evaluat-

ing the contribution of other minor peptides. Our results show that

BBIC contains both lunasin and BBI representing 44% of total

protein. The in vitro foci formation inhibitory activity assay shows

that lunasin exerts 18% higher activity in DMBA-induced

NIH3T3 cells than BBI on an equimolar basis. However, it

is clear that the protease inhibitory activities of BBI and KTI

Figure 2. Soy-derived BBI and KTI protect synthetic lunasin
from in vitro digestion. The upper, lighter bands are Coomassie Blue
protein stains and the lower, darker bands are Western blots. (M)
Markers, (1) Lunasin (600 ng) + pancreatin (600 ng) incubated for 0 h at
37uC, (2) Lunasin (600 ng) + pancreatin (600 ng) incubated for 1 h at
37uC, (3) Lunasin (600 ng) + BBI (18,000 ng, unboiled) + pancreatin
(600 ng) incubated for 1 h at 37uC, (4). Lunasin (600 ng) + KTI
(18,000 ng, unboiled) + pancreatin (600 ng) incubated for 1 h at
37uC, (5) Lunasin (600 ng) + BBI (18,000 ng, boiled) + pancreatin
(600 ng) incubated for 1 h at 37uC, (6) Lunasin (600 ng)+KTI (18,000 ng,
boiled) + pancreatin (600 ng) incubated for 1 h at 37uC, (7) BBI
(unboiled), (8) KTI (unboiled).
doi:10.1371/journal.pone.0008890.g002
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are essential in protecting lunasin from in vitro digestion with

pancreatin. In vivo experiments, carried out with mice and rats fed

LES, have demonstrated that lunasin, orally ingested, resists

digestion, gets absorbed and reaches the target tissues and organs

in an intact and bioactive state. Recently, it has been

demonstrated that lunasin is bioavailable in humans fed soy

protein products, an important requirement for its anticancer

potential [26]. Thus, the protective roles of BBI and KTI and

perhaps other naturally occurring protease play a major role in

making lunasin available in soy protein to exert its chemopreven-

tive properties. Bioavailability after oral administration of a

chemopreventive agent is crucial to understanding the various in

vivo mechanisms responsible for its cancer preventive activity [27].

In order to delineate the individual in vivo preventive properties

against breast cancer of lunasin and BBI, each peptide was

injected separately into nude mice before and after injection of

MDA-MB-231 cells. In our study, one dose of BBI and two doses

of lunasin were assessed. The low dose (4 mg/kg body weight) of

lunasin corresponds to the daily intake of soy protein considered

by FDA to reduce cardiovascular disease, and also in accordance

to the results of our present study showing that 30% of ingested

lunasin reaches the target tissues. The use of the higher dose

(20 mg/kg body weight) is based on the finding that i.p.

administration of BBI at this dose significantly suppresses effect

on 3-methylcholanthrene-induced lung tumors in A/J mice [28].

Both doses of these peptides appear to be well tolerated by the

mice as evidenced by lack of change in body weight during the

15-week treatment period. Mice treated with lunasin show

reduction in breast tumor incidence and delay in the appearance

of tumors. Tumor generation is also significantly inhibited at the

lower dose of lunasin. Moreover, the volume and weight of tumors

generated in lunasin-treated groups are lower compared with

control and BBI-groups. No effects on breast tumor development

are observed when BBI was used in MDA-MB-231 xenograft

mice.

In order to better understand the specific mechanisms by

which lunasin exerts its effects on MDA-MB-231 breast tumors,

biomarkers of cell proliferation and apoptosis which are good

indicators of tumor size in xenograft model were evaluated

[29,30]. Histological staining of sections obtained from lunasin-

treated tumors shows that tumor destruction areas are replaced by

apoptotic and necrotic cells. Lunasin treatment also results in a

significant reduction of cell proliferation and induction of

apoptosis in the MDA-MB-231 tumors. These effects are not

observed in tumors from BBI-treated mice.

Chemopreventive properties of lunasin have been demonstrated

in vivo in previous studies. In the first animal model, lunasin applied

topically at 250 mg/week suppresses skin papilloma formation in

SENCAR mice treated with DMBA and tetradecanoylphorbol-13-

acetate by 70% compared with the control. Tumor multiplicity is

also reduced and the appearance is delayed by 2 weeks in mice

treated with lunasin relative to the control [10]. This is consistent

with another observation that lunasin slows down epidermal cell

proliferation in mouse skin in the absence and presence of DMBA

Figure 3. Lunasin is absorbed through gastrointestinal barrier and reach the target tissues and organs in an intact and bioactive
state. A: Distribution of 3H-lunasin activity in various tissues and gastrointestinal contents of mice after ( ) 3 h, ( ) 6 h, ( ) 9 h, ( ) 12 h and ( )
24 h of oral administration of LES. Error bars shown for 3 h-results. B: Foci formation inhibitory activity in DMBA-induced NIH3T3 cells. (a) Vehicle-
treated cells, (b) DMBA-treated cells, (c) synthetic lunasin, (d) lunasin extracted from liver of rats fed control diet, (e) lunasin extracted from liver of rats
fed LES diet. Bars with different lower case letter designations are statistically significantly different from each other (P,0.05, n = 6).
doi:10.1371/journal.pone.0008890.g003

BBIC’s Role in Cancer

PLoS ONE | www.plosone.org 4 January 2010 | Volume 5 | Issue 1 | e8890



using a 2H2O labeling method to measure cell proliferation in vivo

[31]. All these support our findings that lunasin acts as a cancer

preventive agent in vivo.

Kennedy has demonstrated that BBI has significant cancer

chemopreventive activity in both in vitro and in vivo bioassay

systems [25]. Although BBI has a broad spectrum of cancer-

protective activities, its effects on breast cancer remains limited.

BBI has been previously analyzed for its bioactivity against other

types of cancer, such as oral mucosa, colon, and lung cancer

[28,32,33]. However, no in vivo studies reporting the effect of BBI

as breast cancer preventive peptide have been published.

Nevertheless, there are some in vitro studies showing that BBI

decreased estrogen dependent human breast cancer cell growth

[34–36]. Wan and coworkers [37] demonstrated the growth

inhibitory properties of BBI in human prostate cancer xenografts

in nude mice. Our results using the xenograft model where lunasin

and BBI were evaluated separately show that BBI exhibits very

little chemopreventive effect against breast cancer. More studies

are needed to determine if tumor cell type and its specific

carcinogenesis pathways may be determinants of the cancer

chemopreventive properties of BBI.

In summary, our findings show that lunasin and BBI are the two

main bioactive ingredients of BBIC. In foci formation assay,

lunasin is about 18% more effective than BBI. However, the in vivo

xenograft model shows that while lunasin exhibit substantial

chemopreventive and therapeutic effects, BBI shows very little. We

propose that to explain the observed chemopreventive properties

of soy and other seeds containing lunasin, naturally occurring

protease inhibitors such as BBI and KTI, mainly protect lunasin

from digestion, making it bioavailable. This theme of comple-

mentarity of naturally occurring molecules in bringing about

health benefits to humans is likely quite common in nature and

speaks for eating whole foods rather than isolated components.

Materials and Methods

Purification of Lunasin and BBI from BBIC
To prepare the BBIC, 50 g finely-ground soybeans were

extracted with 1250 ml of hexane at 4uC for 24 hrs and then re-

extracted with 1250 ml of 60% ethanol at 55,60uC for 1 h. After

extraction, pH of the solution was adjusted to 5.3, and the BBIC

was precipitated with 2500 ml of acetone for 15 min. The

precipitate was dissolved in 100 ml of distilled water, dialyzed at

4uC for 24 hrs, and freeze-dried.

Separation of lunasin and BBI from the BBIC was carried out

by ion exchange chromatography. The column (AG MP-1M,

Figure 4. Lunasin reduces breast tumor development in MDA-MB-231 tumor xenografts in athymic nude mice. A: Body weight of mice
treated with (¤) PBS (control), (%) 20 mg BBI/kg body weight, (m) 20 mg lunasin/kg body weight, and (6) 4 mg lunasin/kg body weight, and
injected with 16107 MDA-MB-231 cells in the flank of 15-week-old nude mice. No significant differences were observed among four groups. B: Tumor
incidence in mice treated with PBS, BBI and two doses of lunasin. Lunasin reduced number of mice that showed tumors and delayed the appearance
of these breast tumors. C: Tumor generation in mice treated with PBS, BBI and two doses of lunasin. Low dose of lunasin (4 mg/kg body weight)
significantly reduced tumor generation compared to control group (*P = 0.029). Data are shown: mean 6 SEM (n = 8).
doi:10.1371/journal.pone.0008890.g004
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5.0650 cm, Bio-Rad Laboratories, Hercules, CA, USA) was

equilibrated with 0.1 M sodium phosphate buffer saline (PBS,

pH 7.0). Five hundred mg of BBIC dissolved in 0.1 M PBS were

applied into the column and chromatographic separations were

carried out with various concentration of NaCl in PBS at 4uC at a

flow rate of 30 ml/h. The different collected fractions were

subjected to Western-Blot for detection of lunasin and BBI as

described previously [8]. Briefly, SDS-PAGE was carried out using

16.5% tris-tricine gels (Bio-Rad). The proteins were transblotted

onto nitrocellulose membrane and blocked in 5% nonfat dry

milk dissolved in Tris-buffered saline 1% Tween 20 (TBS-1T).

The membrane was washed with TBS-1T and incubated with

lunasin polyclonal antibody (Zymed, Inc., South San Francisco,

CA, USA), or monoclonal BBI antibody, kindly provided by Dr.

David Brandon (USDA, WRRL, Albany, CA, USA). After

washing, the membrane was incubated for 1 h with horseradish

peroxidase conjugated secondary antibodies (Santa Cruz Biotech-

nology, Santa Cruz, CA, USA). The membrane was detected

using the detection agent (Amersham Biosciences, Piscataway, NJ,

USA) and immediately developed using 667 Polaroid films.

The intensities of the bands were quantified using the software

Un-SCAN-IT gel version 5.1 (Silk Scientific, Inc. Orem, UT, USA).

Lunasin and BBI contents were calculated by comparing the band

intensities with those of known standards lunasin and BBI run

under the same conditions.

Foci Formation Assay
The foci formation assay was performed according to Reznik-

off et al [38]. NIH3T3 cells were obtained from American

Type Culture Collection (ATCC) and cultured in RPMI 1640

medium supplemented with 10% fetal bovine serum (FBS)

(Invitrogen, Carlsbad, CA, USA). Cells were plated at a density

of 500 cells/well in 12-well plates, incubated overnight at 37uC
and treated with lunasin or BBI for 4 hrs. Then, cells were

treated with 1.5 mg/ml DMBA for 20 hrs. After washing with

PBS, fresh medium was added. Peptides were added and medium

Figure 5. Effects of BBI and lunasin on the growth of MDA-MB-231 tumors in athymic nude mice. A: Tumor volume (mm3) of breast
tumors induced by the administration of (¤) PBS (control), (%) 20 mg BBI/kg body weight, (m) 20 mg lunasin/kg body weight and (6) 4 mg/kg of
lunasin. B: Breast tumors weight induced by PBS (control), 20 mg BBI/kg body weight, 20 mg lunasin/kg body weight (P = 0.2134 vs control group
and 0.0909 vs BBI group) and 4 mg lunasin/kg body weight (P = 0.1880 vs control group and 0.0569 vs BBI-group). Data are shown mean 6 SEM
(n = 8).
doi:10.1371/journal.pone.0008890.g005
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was changed every week for 6 weeks. At the end of experiment,

cells were washed with 0.9% NaCl, fixed with methanol, stained

with Giemsa, and scored for transformed foci. The negative

control was a set of cells receiving no DMBA, while the positive

control consisted of cells induced by DMBA but without

treatment.

In Vitro and In Vivo Bioavailability Studies
In vitro digestion of lunasin was carried out following the

method published in the United States Pharmacopeia [39].

Synthetic lunasin (American Peptide Company, Inc. Sunnyvale,

CA, USA) (5 mg) was incubated with the protease inhibitors

BBI or KTI (Sigma, St. Louis, MO, USA) for 30 min at 25uC.

Pancreatin from porcine pancreas (Sigma) was added (enzyme:-

protein ratio of 1:10) and solution was incubated at 37uC
for 1 h. Tris-tricine sample buffer was added at the end of

the reaction and immediately stopped by placing the tubes

in a boiling water bath for 5 min. The digests were analyzed by

SDS-PAGE and Western-Blot following the protocol previously

described.

Bioavailability studies in mice were done at North View Pacific

Laboratories (Hercules, CA, USA), according with the Animal

Care and Use Committee (ACUC) human guidelines. CD-1 mice

(3-5 weeks old) were purchased from Jackson Laboratories (Bar

Harbor, ME, USA) and conditioned on AIN76A diet for one

week. Forty mice (20 male and 20 female) were fasted for 8 hrs

before oral administration by gavage. Mice were separated into

two groups, a control group receiving 240 mg of LES formulation

and a treatment group receiving 240 mg of LES formulation plus

8 mCi of 3H-lunasin (SibTech, Inc. Brookfield, CT, USA) in

0.1 mL of 10% sucrose solution. Four mice of each group were

sacrificed at 3, 6, 9, 12 and 24 hrs after oral administration.

The tissue samples were collected and prepared for scintillation

counting by solubilizing in TS-2 tissue solubilizer (Research

Products International Corp., Chicago, IL, USA) and addition of

15% benzoyl peroxide. Each sample was read in 5 ml of

HionicFluor cocktail mix using a 1600TR liquid scintillation

counter (Packard Inst. Meriden CT, USA).

Sprague-Dawley Rats (Female, 5-weeks old) were purchased

from Central Laboratory Animal Inc. (Korea), and experiments

Figure 6. Histological features of MDA-MB-231 tumors treated with PBS (control), BBI and lunasin in athymic nude mice (4006
magnification). A: Tumors were collected at 7 week after breast cancer cells injection, and processed for H&E staining. Representative pictures are
shown for H&E-stained sections (upper column), immunohistochemical staining for Ki-67 (middle column) and in situ TUNEL apoptotic indices
(bottom column). B: Percentage of Ki-67 expression in tumors of mice. Ki-67 labeling revealed significantly lower levels of proliferating cells in lunasin
groups versus control group (*P = 0.0062 in high lunasin group; *P = 0.0158 in low lunasin group). C: Percentage of apoptotic cells in tumors of mice
measured with the TUNEL assay. Staining revealed significantly higher levels of apoptotic tumor cells in lunasin groups versus control group.
(*P = 0.0088 in high lunasin group; 0.0141 in low lunasin group). Data are shown mean 6 SEM.
doi:10.1371/journal.pone.0008890.g006
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were done according with guidelines of the Animal Center at

Andong National University (Andong, Korea). Five rats were fed

ad libitum with LES and potato starch (0.25% of the diet) for 4

weeks, and then sacrificed. Livers and serum were collected and

freeze-dried immediately. One gram of the freeze-dried tissues was

extracted with 0.1 M PBS (pH 7.0) (buffer:tissue ratio (v/w) = 1:3)

at 4uC for 24 hrs, and then centrifuged at 15000 rpm for 1 h. The

supernatant protein was further purified by ion exchange

chromatography on Biogel resin AG 1-X4 (BioRad), as described

by Jeong et al. [40]. Lunasin was further purified by injecting 20 ml

of filtrate into the HPLC system equipped with a C18 column

(Proteo 90A, Phenomenex Co., Torrance, CA, USA) equilibrated

at ambient temperature and an UV detector (295 nm) stabilized

with the mobile phase (acetonitrile:water = 4:6), at a flow rate of

2.5 ml/min for 15 min. Lunasin was identified by comparison

with the retention time of standard synthetic lunasin peak. The

lunasin fraction was collected, freeze dried and analyzed by SDS-

PAGE and Western-Blot as described above.

Breast Cancer Prevention in a Xenograft Mouse Model
Human MDA-MB-231 breast cancer cells were obtained from

ATCC and grown in Leibovitz’s L-15 Medium supplemented with

10% FBS, 100 unit/ml penicillin, and 100 mg/ml streptomycin

(Invitrogen), in a humidified atmosphere at 37uC.

Mice protocol was approved by ACUC (University of

California, Berkeley, CA, USA). Thirty-two six weeks-old athymic

NCr-nu/nu mice (National Cancer Institute, Frederick, MD,

USA) were acclimatized for 1 week and randomly divided into

four groups (n = 8): control group (receiving PBS), BBI-group

(receiving BBI at 20 mg/kg body weight), and two lunasin-groups

(receiving synthetic lunasin [Chengdu KaiJie Bio-Pharmaceutical

Co., Chengdu, P.R. China] at 20 mg/kg body weight and

4 mg/kg body weight). After two months of i.p. treatment three

times a week, mice were injected subcutaneously in the right flank

with 16107 MDA-MB-231 cells suspended in 0.1 ml of Matrigel

Basement Membrane Matrix (Becton Dickinson, Bedford, MA,

USA). Tumor growth was monitored by palpation, and the onset

when tumors were detectable was noted. Tumor size was

measured with calipers, and tumor volume was calculated

assuming the shape as ellipsoid. Tumor incidence in percentage

was calculated as the number of tumor-bearing mice divided by

the total number of mice in each group, whereas tumor generation

was calculated as the total number of tumors divided by total

number of mice in each group [10]. The volume of the tumor was

determined using the following formula: tumor volume = length 6
width2 60.523 [41].

Histological Analysis
At the end of the experiment, animals were sacrificed, and

tumors were dissected and weighed. Individual tumors were split

for fixation in the Shando Glyo-FixxTM (Thermo Scientific,

Pittsburgh, PA, USA) for histological examination. The paraffin-

embedded sections were stained with hematoxylin and eosin

(H&E).

Immunohistochemical Staining for Ki-67 Labeling Index
Sections were evaluated for tumor cell cytology, growth pattern,

necrosis and apoptosis. The 5 mm sections were deparaffinized and

rehydrated and antigens were retrieved using citrate buffer (pH 6.0)

before endogenous peroxidase activity was blocked. Proliferation

was shown using an antibody against Ki-67 (MIB-1; DakoCytoma-

tion, Glostrup, Denmark, dilution 1:75). Antigen expression was

expressed using streptavidin conjugated to horseradish peroxidase

and visualized by diaminobenzidine chromogen reagent (DakoCy-

tomation). All immunohistochemistry slides were examined by

light microscopy (Axiophot 381, Zeiss, Germany). Ki-67 labeling

index was calculated as percentage of positive cells over total

number of cells counted in microscope at 4006magnification [30].

In Situ TUNEL Assay for Apoptosis
In situ terminal deoxynucleotidyl transferase-mediated dUTP

nick end labeling (TUNEL) assay was performed using ApopTag

Detection Kit (Millipore, USA & Canada) and ran based on the

manufacturer’s protocol. Briefly, deparaffinized and rehydrated

sections were pretreated with 20 mg/mL proteinase K for 15 min

and incubated with terminal transferase and digoxigenin dUTP at

37uC for 1 h. After washing, sections were incubated with

antidigoxigenin rhodamine (Millipore) and DAPI (Invitrogen),

and slides were visualized by fluorescent microscopy (Axiophot

381). The apoptotic cells were calculated as percentage of positive

cells over total number of cells counted in microscope at 4006
magnification.

Statistical Analysis
All data were analyzed from three independent experiments.

Results were expressed as the mean 6 standard deviation. The

Duncan test and one-way analysis of variance (ANOVA) were

used for multiple comparisons (SPSS software, version 12.0) of

data obtained by in vitro experiments. Comparison of results

obtained from animal experiments was performed using Student’s

t-test. A P-value less than 0.05 was considered statistically

significant.

Supporting Information

Figure S1 Recovery of 3H-lunasin dose (expressed in percent-

age) in (-m-) total, (-N-) tissues, and (-o-) gastrointestinal contents

of mice at 3, 6, 9, 12, and 24 hours post-gavage of lunasin-

enriched soy (LES). CD-1 mice received 240 mg of LES

formulation plus 8 mCi of 3H-lunasin (SibTech) in 0.1 ml of

10% sucrose solution. Before gavage, the mice were fasted for

8 hours and then sacrificed at 3, 6, 9, 12, and 24 hrs after oral

administration.

Found at: doi:10.1371/journal.pone.0008890.s001 (0.39 MB TIF)

Figure S2 Lunasin was extracted from blood and liver of rats fed

control and lunasin-enriched soy (LES) diets for four weeks. Upper

panels of the figure (A and C) correspond to gels stained with

Coomassie Blue of blood and liver, respectively. Lower panels (B

and D) correspond to Western blot analysis of blood and liver,

respectively. 1: MW marker; 2: Blood and 29 liver from rats fed

control diet; 3: Blood and 39 liver from rats fed control diet and

purified by anion exchange-HPLC; 4: Blood and 49 liver from

LES-fed rats; 5: Blood and 59 liver from LES-fed rats and purified

by anion exchange-HPLC; L: Synthetic lunasin 165 nM. Lunasin

contained in the blood of LES-fed rat was only detectable after

purification process.

Found at: doi:10.1371/journal.pone.0008890.s002 (2.09 MB TIF)
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