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Abstract

Recent evidence has raised in discussion the possibility that cannabidiol can act as a nega-

tive allosteric modulator of the cannabinoid type 1 receptor. Here we have used computa-

tional methods to study the modulation exerted by cannabidiol on the effects of delta-9-

tetrahydrocannabinol in the cannabinoid receptor type 1 and the possibility of direct receptor

blockade. We propose a putative allosteric binding site that is located in the N-terminal

region of receptor, partially overlapping the orthosteric binding site. Molecular dynamics

simulations reveled a coordinated movement involving the outward rotation of helixes 1 and

2 and subsequent expansion of the orthosteric binding site upon cannabidiol binding.

Finally, changes in the cytoplasmic region and high helix 8 mobility were related to impaired

receptor internalization. Together, these results offer a possible explanation to how cannabi-

diol can directly modulate effects of delta-9-tetrahydrocannabinol on the cannabinoid recep-

tor type 1.

Introduction

Up to date two cannabinoid receptors are known, namely the cannabinoid receptor type 1

(CB1R) and the cannabinoid receptor type 2 (CB2R) [1,2]. Both belong to class A G-protein

coupled receptors (GPCRs) and are coupled mainly to the Gαi/0 subunit [3]. The CB1R is abun-

dant in the central nervous system (CNS) where it participates in the regulation of a variety of

physiological and pathological conditions, including brain development, learning and mem-

ory, motor behavior, regulation of appetite, body temperature, pain perception, inflammation

and it is also involved in various psychiatric, neurological, and neurodevelopmental disorders

[4–6]

Agonists and antagonists of the CB1R have been explored as therapeutic agents for pain

management and obesity, however, receptor activation has been linked to episodes of psycho-

sis and panic while its inhibition can precipitate depressive symptoms and anxiety disorders
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[7]. Therefore, despite its wide therapeutic potential ligands targeting the orthosteric site of

CB1R have failed due to CNS-related adverse effects [5,8].

Recently, three different crystal structures of the CB1R have been solved [9–11]. Hua et al,
first reported the crystal structure of human CB1R in complex with the antagonist AM6538

(pdb ID: 5tgz) followed by the structure of the agonist AM11542-bound CB1R (pdb ID: 5xra).

Another crystal structure of the human CB1R bound to the antagonist taranabant (pdb ID:

5u09) was presented by Shao et al. As described by Hua et al, important conformational

changes are observed when comparing the agonist and antagonist-bound CB1R. Relative to

the antagonist-bound state, the extracellular part of helixes 1 and 2 moves inwards by 6.6 Å
and 6.8 Å respectively, while in the cytoplasmic region helix 4 moves outwards by about 8 Å.

Altogether these movement lead to a 53% reduction in the volume of the ligand-binding

pocket and an increase in the surface area of the G-protein-binding region. Additionally, the

aromatic interaction between F200 and W356 was described as a ‘twin-toggle switch’ impor-

tant for receptor activation. Aromatic stacking between F200 and W356 contributes to stabili-

zation of the receptor in the inactive state but in the agonist-bound state, rotation of

transmembrane helixes (TMH) 3 and 5 disrupts this interaction [9,10]. Together these struc-

tures provide molecular insight into the CB1R and can contribute to a better understanding of

underlying mechanisms and interactions of the receptor with cannabinoid system orthosteric

and allosteric ligands.

Several allosteric ligands have been identified for GPCRs. The first evidence of an allosteric

binding site at the CB1R that could recognize small molecules or allosteric modulators was

reported in 2005 [12–14]. Then onwards, an increasing number of CB1R modulators possess-

ing pharmacological profiles different from classical agonists and antagonists has been

reported [15–22] (Fig 1). Allosteric sites are less conserved than orthosteric sites and show spa-

tiotemporal specificity therefore offer the possibility of attaining safer profiles, receptor sub-

type selectivity and fine-tuning of receptor function [5,23]. Given the characteristic

psychoactive effects of CB1R direct agonism, allosteric modulation represents a promising

alternative that opens new therapeutic possibilities.

Delta-9-tetrahydrocannabinol (THC) constitutes the main psychoactive component of the

Cannabis plant but there is evidence that the observed therapeutic properties are not solely

dependent upon the presence of THC but result from the interplay of plant cannabinoids or

phytocannabinoids which participate mitigating side effects or improving the therapeutic

activity [24–29]. Studies with different phytocannabinoids, particularly cannabidiol (CBD)

(Fig 2) have reported a possible antagonic effect of this compounds over THC in the CB1R

Fig 1. Examples of reported allosteric modulators of the CB1R.

https://doi.org/10.1371/journal.pone.0220025.g001
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[30,31]. These results have raised in discussion the possibility that CBD could act as a negative

allosteric modulator of the CB1R. Some authors suggest this phytocannabinoid can allosteri-

cally bind to the CB1R and thereafter modulate agonist activity [31], while others support an

indirect antagonism of THC effects via mechanisms not mediated by CB1R [30].

The present work aims to further explore the modulation excreted by CBD upon THC

effects in the CB1R and its possible allosteric nature. In order to do so, we have used a compu-

tational approach and the recently solved crystal structures to explore the possibility that CBD

acts directly on the CB1R. Here we show evidence that a putative CBD binding site is located

in the N-terminal region of CB1R, partially overlapping the orthosteric binding site. We iden-

tify receptor residues that participate in CBD binding in the presence of the agonist THC, and

finally, we relate CBD binding to particular conformational changes that can impair G-protein

activation. Together, these results offer a possible explanation to how CBD can directly modu-

late effects of THC on the CB1R and contribute to a better understanding of the endocannabi-

noid system (ECS).

Methods

Ligand preparation

All ligands were modelled using the Spartan’14 Software (Wavefunction, Inc. Irvine, CA).

Geometry optimization calculations at the Hartree-Fock level of theory using the 6-31G� basis

set was carried out using software package.

Protein preparation

Previously reported CB1R crystal structures bound to agonist [10] (PDB: 5XRA) and antago-

nist [9] (PDB: 5TGZ) were retrieved from protein data bank. Both crystal structures were

solved at 2,8 Å resolution and the CB1R sequence was modified to facilitate crystallization; fla-

vodoxin was inserted as a stabilizing fusion partner within the receptor’s third intracellular

loop (ICL3), the receptor was truncated on both the N and C-terminal, and four mutations

(T2103.46A, E2735.37K, T2835.47V, and R3406.32E) were introduced to improve expression and

thermostability. In order to prepare the protein structures, all co-crystallized heteroatoms,

water molecules and flavodoxin protein were eliminated, missing residues and missing atoms

were added and point mutations were converted back to the wild-type receptor sequence

using UCSF Chimera package [32].

Receptor modeling

Missing segments in the CB1R crystal structures were modeled using the loop modeling proto-

col in the Software Modeller 9v12 [33]. The N-terminal membrane proximal region (MPR)
was modeled from residue 89 to 103 or 98, and the ICL3 from residue 306 to 336 or 331 in the

Fig 2. Phytocannabinoids THC and CBD.

https://doi.org/10.1371/journal.pone.0220025.g002
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crystal structures bound to agonist and antagonists respectively using the loop.py script. The

disulfide bond between C98-C107 in the MPR was also modeled model_disulfide.py script. The

human CB1R sequence was retrieved from the UniProt Knowledgebase database (UniProtKB)

entry P21554. 100 runs were carried out using the standard parameters and the best model was

selected based on the internal scoring function implemented in the software. The selected

model was externally assessed using the free available programs ProSA [34], ANOLEA [35]

and Procheck [36]

Identification of binding cavities

Each CB1R generated model was mapped for potential ligand binding pockets using the web

servers Computed Atlas of Surface Topography of proteins (CASTp) [37] and DoGSiteScore

[38]. Out of the identified pockets only those with a volume equal or greater than CBD vdW

volume (327,42 Å3) were considered. One of the identified sites was selected for further molec-

ular docking studies.

Molecular docking

Docking studies were performed using AutoDock v4.2 [39] software suite with AutodockTools

ADT 1.5.6 [39,40] following the standard docking procedure for rigid proteins. Grid maps

were calculated using the autogrid option with a grid volume of 100x100x80 points with grid

spacing of 0.375 Å and centered in the previously selected binding cavity. Docking simulations

were performed with a Lamarckian genetic algorithm (LGA) and binding energies were

estimated according to the internal scoring function implemented by the program. 250 inde-

pendent runs per ligand were carried out with an initial population of 300 individuals, a maxi-

mum number of 250.000 energy evaluations, a maximum number of 27.000 generations, a

mutation rate of 0.02, and a cross-over rate of 0.80. Cluster analysis of the docking conforma-

tions was conducted using a root-mean-square-deviation (RMSD) tolerance of 2.0Å. From the

resulting complexes, those with the lowest free-energy binding positions were selected and fur-

ther analyzed using the Visual Molecular Dynamic (VMD) visualization program [41]. Valida-

tion of the docking protocol was preformed using the co-crystallized ligands: the agonist

AM11542 in the active conformation and the antagonist AM6538 in the inactive conformation

of the receptor.

System setup

Two systems were set up for MD simulations using the selected protein-ligand complexes as

starting coordinates. Topology and parameter files were generated using the web server Swis-

sParam [42]. The orientation of the receptor structures with respect to the membrane were

obtained from the Orientations of Proteins and Membranes (OPM) database [43]. The pro-

tein–ligand complexes were inserted in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

(POPC) lipid bilayer with the VMD Membrane Builder plugin and solvated in a TIP3 water

box with Na+ and Cl- ions to maintain a concentration of 0.15 M. The final system size was

approximately 152 Å × 153 Å × 120 Å in the active and inactive conformations.

Molecular dynamics simulations

MD simulations were carried out in NAMD 2.9 [44] software. A 1 fs integration time step was

used. Periodic boundary conditions were applied and long-range electrostatics were computed

using the particle mesh Ewald algorithm [45]. For non-bonded interactions a 12 Å cutoff and a

10 Å switching distance for smoothing functions were used. Each system was energy-

Allosteric modulation of cannabidiol in the cannabinoid type 1 receptor
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minimized for 10000 conjugate gradient steps. The pressure was maintained at 1 atm using the

Langevin piston method and temperature was maintained at 310 K by Langevin dynamics

with a damping coefficient of 5 ps−1. The simulations were carried out under the NPT ensem-

ble with no fixed atoms. The total production time for the inactive and active receptor confor-

mations was of 25 ns and 50 ns respectively. All trajectories were analyzed using the VMD

visualization program [41].

Results and discussion

Various previous studies have shown that CBD is able to modulate THC effects in the CB1R

[30]. However, its underlying mechanism remains unclear and although a possible allosteric

nature has been proposed, there is no evidence of a direct interaction between CBD and the

receptor. In this work, the possibility that CBD acts directly on CB1R was studied using a

computational approach and the recently solved crystal structures. We first modeled the miss-

ing membrane proximal region (MPR) in the N-terminal of the available CB1R crystal struc-

tures. A putative allosteric binding site was then identified, and molecular docking studies

were carried out. Finally, molecular dynamics simulations were used to analyze specific move-

ments that could be related to structural changes described in the receptor inactivation

process.

Molecular modeling of the CB1R structure

The two human CB1R crystal structures bound to agonist AM11542 (pdb ID: 5XRA) and to

antagonist AM6538 (pdb ID: 5TGZ) were selected as they were crystalized under the same

conditions and provided two different conformational states, active and inactive, in which

CBD might show affinity. However, both crystallized structures lack the complete N-terminal

and third intracellular loop (ICL3) regions and contain a series of stabilizing mutations. For

this reason, two new models of the active and inactive receptor state were constructed based

on the available crystal structures.

Previous reports have shown that most of the N-terminal tail can be deleted without affect-

ing ligand binding. However, the highly conserved MPR–spanning residues 90 to 110– has

shown to be essential for the receptors ability to bind ligand [46–48]. Furthermore, two con-

served cysteine residues in the MPR (C98 and C107) form a disulfide bond that has been

linked to allosteric modulation in CB1R. The effects of the CB1R allosteric ligands Org 27569

and PSNCBAM-1 was shown to be altered by the C98-C107 disulfide [46] and the allosteric

activity of CBD depended upon the presence of polar residues at positions 98 and 107 [31].

Likewise, the ICL3 of the CB1R is known to be involved in G protein coupling and activation

[49–51].

As expected the overall 3D structures were very similar with changes primarily due to the

modelled regions (Figures A and B in S1 File). In agreement with the crystalized structures,

in the agonist-bound conformation the N-terminal region lies over the orthosteric binding site

extending into the extracellular side (Figure A in S1 File) while in the antagonist-bound struc-

ture it creates a v-shaped turn that projects into the ligand binding site (Figure B in S1 File).

Visual inspection reveals that in both structures the conformation of the N-terminal is con-

strained by the intraloop disulfide bond between C98 and C107. The v-shaped turn in the

MPR is locked by this disulfide bond and seems to act as a lid above the orthosteric pocket that

can open up in the active state or close back in the inactive state of the receptor and thereby

modulate the access into the orthosteric site (Fig 3A).

Furthermore, all modelled regions (Figures A and B in S1 File) introduce mainly polar or

charged amino acids which concentrate electronegative density in the extra and intracellular

Allosteric modulation of cannabidiol in the cannabinoid type 1 receptor
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surfaces of the receptor. The rearrangement of the N-terminal residues in the inactive confor-

mation exposes a larger electronegative surface in the membrane access channel which could

in turn hinder further entry of lipidic molecules into the ligand binding site.

On the other hand, the modelled intracellular segment shows that the ICL3 coils inwards

towards the C-terminal tail in the active conformation and turns away in the inactive conforma-

tion. This change is in agreement with the agonists-induced reduction in the distance between

the ICL3 and the C-terminal that has been described in receptor activation [52] (Fig 3B).

Identification of receptor binding sites

In order to identify possible allosteric binding sites in the CB1R generated models, the web

servers Computed Atlas of Surface Topography of proteins (CASTp) and DoGSiteScorer were

used. Two pockets were identified in the active and inactive receptor conformation and a third

cavity was observed only in the active state receptor (Fig 4). Table A in S1 File shows the vol-

ume of the identified binding sites as calculated by the webserver DoGSiteScorer.

Site 1 (S1). S1 was identified in both receptor conformations and corresponds to the

orthosteric binding site. Reported co-crystallized orthosteric ligands occupy this cavity and in

agreement with the crystallized CB1R structures, the volume of the ligand-binding pocket is

approximately 50% larger in the inactive conformation than in the active conformation

[9,10,53]

Site 2 (S2). A second possible site was found between in the intracellular side of the recep-

tor between TMH5, TMH6 and the ICL3. This region has been associated to coupling of G-

protein during receptor activation and the structure of the ICL3 bound to Gαi protein has been

determined [54–56]. The volume of S2 is larger in the active receptor conformation consistent

with an increased surface area in the G-protein binding region during receptor activation.

Site 3 (S3). A third binding pocket was found only in the active conformation of the

receptor located in the transmembrane region between TMH3 and TMH7 and including part

Fig 3. Differences observed in the CB1R models bound to agonist and to antagonist. (A) Difference in the N-terminal region, the C98-C107 disulfide bond is shown

in yellow licorice representation. (B) Different distance between the ICL3 and the C-terminal. CB1R model bound to agonist is shown in cyan and to antagonist in blue.

https://doi.org/10.1371/journal.pone.0220025.g003
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of the N-terminal region. This pocket sits above with the orthosteric site and has been previ-

ously reported as a putative allosteric pocket for other GPCRs [57]. The allosteric modulator

ORG27569 was proposed to bind near this region where it could sterically block key electro-

static interactions involved in receptor activation [5,58].

From the three main pockets identified S1 corresponds to the orthosteric binding site and

S2 can be related to the G-protein binding site. Therefore, only S3 was considered as a possible

allosteric site for CBD and was selected for further docking studies. Furthermore, its location

near the MPR can be linked to the reported effect of cysteine or polar residues in CBD alloste-

ric modulation [59]. Although this relation was observed through functional assays and indi-

rect mutagenesis studies, there is no clear evidence of a CBD allosteric binding site in this

region nor of interactions between CBD and the disulfide bond.

Molecular docking studies

In order to analyze possible binding modes and interactions of CBD in the selected pocket

molecular docking studies were carried out. Although S3 was not identified in the inactive

Fig 4. Binding sites identified in the CB1R. (A) Conformation of the CB1R bound to agonist. (B) Conformation of the CB1R bound to antagonist. Orthosteric site

S1 (green) and potential allosteric binding sites S2 (magenta) and S3 (orange).

https://doi.org/10.1371/journal.pone.0220025.g004
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conformation, docking of CBD was also carried out for comparison. Because the co-crystal-

lized ligands (AM11542 and AM6538) in both receptor conformations were analogues of

either the partial agonist THC or the inverse antagonist rimonabant, docking of these ligands

in the corresponding receptor conformation was first carried out. The resulting docking poses

were in good agreement with the binding modes described for co-crystallized ligands with

slight variation due to the modified motifs. The obtained protein-orthosteric ligand complexes

were then used to perform docking of CBD. Table B in S1 File shows the lowest docking bind-

ing energy obtained for CBD in the CB1R in presence of the orthosteric ligands.

Results show that in both receptor conformations the lowest-energy complexes CBD binds

to the extracellular portion, between the ECL1 and ECL3, near the MPR, a conserved region

necessary for ligand binding [48,60] Nearby residues (< 6Å) include C107 and C98 forming

the disulfide bind that has been linked to CBD and other allosteric modulators activity in the

CB1R [31,60].

In the agonist bound conformation, CBD binds in a solvent exposed cavity in the extracel-

lular side near the N-terminal region and above the orthosteric site. Here CBD adopts a verti-

cal disposition with the alkyl chain extending towards the transmembrane region. Nearby

residues (<5 Å) are mostly non-polar but two aspartate residues, D104 and D266, lie close to

CBD 1’,3’-hydroxyl groups and can establish ion-dipole interactions. The aromatic ring can

form pi-stacking interactions with F108 and the alkyl chain interacts through van der Waals

interactions with I91, A204 and F205. CBD 3’-hydroxil group and the C98-C107 disulfide

bond is located 3,9 Å away from the C98-C107 disulfide bond and can form a dipole interac-

tion. This dipolar interaction is in line with results reported by Lapraire et al., where mutation

of cysteine residues to alanine abolished CBD modulating effects but replacement with serine

restored the wild-type response. Fig 5 summarizes the binding mode and interactions

observed for CBD in the active and inactive receptor conformation.

On the other hand, in the antagonist-bound conformation folding of the N-terminal tail

allows CBD to enter deeper into the receptor partially overlapping with the orthosteric site.

The alkyl chain of CBD is turned towards residues F102, I105, I267 and F268 establishing

hydrophobic contacts. Similar to the active conformation, CBD hydroxyl groups can form

interactions with D104 and E106, but the disulfide bond is farther away (>6Å) making the

probability and intensity of an interaction with these residues less likely.

If CBD can act as an allosteric modulator of THC effects, then its binding to the CB1R

would be expected to occur in presence of an orthosteric ligand. The identification of the cavity

S3 only in the active receptor structure suggests that allosteric ligand binding occurs or is

favored in the active conformation stabilized by an orthosteric agonist. This is further sup-

ported by docking results that suggest CBD can interact with the C98-C107 disulfide bond in

the active but not in the inactive conformation of the CB1R.

Molecular dynamics (MD) simulation

To study the dynamic behavior of the obtained protein-ligand complexes MD simulations

were carried out.

MD in the inactive conformation of the CB1R. The identified binding sites suggest CBD

can bind in the active conformation of the CB1R, however, docking studies predict a lower

binding energy in the inactive receptor conformation. For this reason, a short 25 ns simulation

was run on the CBD-rimonabant-CB1R complex. The specific goals of this simulation were to:

(1) observe if the interactions between the receptor, the orthosteric antagonist and CBD, as

proposed by the docking studies persisted throughout the simulation and; (2) observe changes

in the orthosteric binding site S1 and the possible formation of an allosteric site S3.

Allosteric modulation of cannabidiol in the cannabinoid type 1 receptor
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Analysis of the orthosteric ligand rimonabant shows that its position is preserved through-

out the simulation time showing a similar initial and final conformation (RMSD 0,675 Å).

Likewise, the interactions proposed by docking studies persist in the simulation and corre-

spond well to those described in the antagonist-bound crystal structure of the receptor (see

Figure C in S1 File). These are mainly hydrophobic interactions between the orthosteric

ligand and residues from the ECL2, N-terminal and all TMs except TM4 [9].

Regarding the allosteric ligand, position and interactions are not retained in the simulation.

Initial docking conformation shows CBD bound in the N-terminal region with its alkyl chain

folded over the orthosteric site, however, throughout the simulation the alkyl chain is seen to

extend and turn as CBD moves ~2,5Å towards the extracellular side. This movement can be

explained by a solvation; simulation reveals that water molecules enter through the extracellu-

lar side and solvate CBD reorganizing the hydration shell in the ligands surface. At the same

Fig 5. Docking conformations of CBD in the CB1R. (A) Superposition of the active (cyan) and inactive (blue) receptor

conformation and vdW representation of CBD in orange and green respectively. The orthosteric ligands THC and

rimonabant are shown in yellow sticks. (B) CBD (orange sticks) bound to the active receptor conformation. (C) CBD

(green sticks) bound to the inactive receptor conformation. Nearby residues (<5 Å) are shown, polar interactions are

indicated with dotted lines, aromatic interactions are indicated by pink surfaces and distances are expressed in Å.

https://doi.org/10.1371/journal.pone.0220025.g005
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time, movement of water molecules from the bulk solvent into CBD binding site guide the

rearrangement of its hydrophobic alkyl chain as it turns towards TMs 5 and 6 (Fig 6).

Therefore, the interactions between CBD and the receptor proposed in the static model are

replaced by interactions with the solvent. Specifically, two hydrogen bonds between CBD and

residues D104 and E10 are replaced for hydrogen bonds with water molecules. On the other

hand, analysis of the binding sites shows that the orthosteric pocket S1 undergoes minimal

changes and retains its total volume (see Table A in S1 File) and S3 is not formed during the

simulation time.

These results suggest antagonist binding stabilized the CB1R in a rather rigid conformation

in which binding of CBD seems to be unstable throughout time. Rearrangement of water mol-

ecules that solvate the allosteric ligand seems to represent an entropic cost associated to CBD

binding that is not compensated by the interactions formed with the receptor. At the same

time folding of the N-terminal tail over the orthosteric site prevents the formation of a pocket

that can bind CBD in this region and blocks the access into the receptor. These findings are in

line with the observed modulation effects of CBD over the agonist THC and further support

that CBD allosteric binding occurs only in the active conformation and in presence of an

orthosteric agonist.

MD in the active conformation of the CB1R. To analyze CBD binding in the active receptor

conformation a second simulation of 25 ns was run on the CBD-CB1R-THC complex. The spe-

cific goals of this simulation were to: (1) observe if the interactions between the receptor, the

orthosteric agonist and CBD as proposed by the docking studies persist throughout the dynamic

simulation; (2) observe changes in the orthosteric S1 and allosteric S3 binding sites and; (3)

observe the interaction between residues F200 and W356 that form the ‘twin-toggle switch’.

More movement and changes were observed in the active conformation, so the simulation

time was extended to 50 ns. In general terms, results show a coordinated motion that generates

the opening of the cytoplasmic and extracellular sides and allows accommodation of the

ligands in the binding site. Analysis of the ligands reveals a coordinated movement between

CBD and THC that involves; solvation of the exposed terpenic ring of CBD by water molecules

and folding of the MPR over site S3, which together promote partial entry of CBD into the

orthosteric binding site and the accommodation of THC which adopts an L-shape conforma-

tion (Fig 7).

Fig 6. Solvent rearrangement around CBD in the antagonist bound CB1R. CBD (cyan) and water molecules within

�3 Å in the inactive conformation of the CB1R at 0 and 25 ns of simulation.

https://doi.org/10.1371/journal.pone.0220025.g006
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The N-terminal loop formed by the C98-C107 disulfide bond closes over CBD as it enters

deeper into the binding site and in solvated. In this disposition CBD interacts mainly with the

ECL2 and the N-terminal region and forms hydrogen bond with I267 and water molecules.

An interaction network between the disulfide bond, CBD and water molecules that guides

CBD entry into the binding site could explain the importance of polar residues in positions 98

and 107 for the modulating effects described by Laprairie et al.
THC maintains mainly hydrophobic and aromatic interactions; the tricyclic core forms

aromatic interactions with P177, P189 and P268 while the pentyl side chain extends towards

TM 3, 5 and 7. The L or C-shape conformation adopted during the simulation is consistent the

conformation predicted for the endogenous ligands 2-Arachidonoylglycerol (2-AG) and

Anandamide (AEA) [9].

The RMSD values for each helix showed that TM 1, 2, 6 and 7 were more dynamic (see

Figure D in S1 File). Helixes 1 and 2 rotate outwards in the extracellular side while in the

intracellular side helixes 6 and 7 move outwards. Rotation of TMs 1 and 2 and consequent

opening in both sides of the receptor allows the expansion of the orthosteric binding site and

the subsequent ligand accommodation. Fig 8 summarizes the coordinated movement

observed during the simulation.

Analysis of the binding pockets in the active conformation state shows that S1 and S3

expand and combine into one larger pocket where CBD and THC can be found (Fig 9). The

contribution of multiple binding sites in the allosteric mechanism of the cannabinoid PAM

ZCZ011 has been described by Saleh et al. [61] and overlapping of different binding sites has

also been proposed as a possible mechanism of receptor modulation.

The aromatic interaction between F200 and W356 contributes to stabilization of the recep-

tor in the inactive state but is disrupted in the active conformation [10]. This interaction has

been described as a twin-toggle switch essential for receptor activation, for this reason, move-

ment of these residues was also analyzed in the simulation. Fig 10 shows the distance between

TM 3 and 6, the aromatic centroids of F200 and W356 as well as the dihedral angle formed by

the two ring planes throughout the simulation time.

Analysis of close by residues shows a network of polar threonine (T197, T391) and serine

(S199, S203, S390) residues that seem to induce the reorientation of aromatic residues while

the outward rotation of helix 5 allows TMs 3 and 6 to move closer together. In this way, at the

end of the simulation the aromatic rings of F200 and W356 are separated by <5 Å forming a

Fig 7. Solvent rearrangement around CBD in the agonist bound CB1R. CBD (orange), THC (yellow) and water molecules within�3 Å in

the active conformation of the CB1R at 0, 25 and 50 ns of simulation.

https://doi.org/10.1371/journal.pone.0220025.g007
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Fig 8. Coordinated movement observed in the active conformation of the CB1R during 50 ns of simulation. (A) Major

movement in the extracellular and (B) intracellular side. CBD (orange), THC (yellow) and water molecules within�3 Å of CBD

are shown.

https://doi.org/10.1371/journal.pone.0220025.g008

Fig 9. Changes in the binding sites S1and S3 in the active conformation of the CB1R after 50 ns of simulation. Orthosteric

site S1 (green), allosteric site S3 (orange) and combined pocket (purple).

https://doi.org/10.1371/journal.pone.0220025.g009
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perpendicular angle which makes an aromatic edge-to-face interaction likely. Therefore, in

agreement with the role of a twin-toggle switch and the NAM effect observed for CBD, our

results suggest that binding of CBD in the active conformation of the CB1R promotes the for-

mation of this aromatic interaction and could in this way prompt a transition towards and

inactive receptor state.

Another dynamic site is observed in helix 8 of the receptor (residues 403–413), an amphi-

pathic helical domain within the C-terminal that has been identified as a conserved structural

motif in class A GPCRs [62,63]. During the simulation helix 8 is seen to rotate orienting its

hydrophobic face towards TM 1 (Fig 11). The movement of a leucine residue in this region is

noteworthy. L4047.60 forms part of the highly conserved NPXXY(X)5,6 GPCR motif and has

been described as essential for selective coupling to G-protein subtypes in the CB1R [64]. MD

results show that at the beginning of the simulation L404 points towards the cytoplasmic

Fig 10. Twin-toggle switch interaction. (A) Interaction between F200 and W356 in the active conformation of the

CB1R bound to THC and CBD. (B) Distance between aromatic centroids (cyan) and Cα (red) of residues F200 and

W356. (C) Dihedral angle between F200 and W356 ring planes throughout 50 ns of simulation.

https://doi.org/10.1371/journal.pone.0220025.g010

Fig 11. Movement of helix 8 in the active conformation of the CB1R throughout 50 ns of simulation. Residue type

is indicated in color code: acidic residues (red), basic residues (blue), polar residues (green) and non-polar residues

(white). L404 is shown in vdW representation (purple).

https://doi.org/10.1371/journal.pone.0220025.g011
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region but at the end of the simulation, rotation of helix 8 buries this residue against TM 1

(Fig 11). Site-directed mutagenesis studies have shown that L404 regulates receptor internali-

zation rate and is important to achieve maximal receptor activation in response to bicyclic can-

nabinoid agonists and inverse antagonists [64].

Changes in the orientation of helix 8 together with reduced exposure of residue L404 in the

cytoplasmic region could explain the NAM effect of CBD observed by Laprairie et al. Although β-

arrestin binding site and phosphorylation sites described for the cannabinoid receptor involve the

distal C-terminus (a region not included in our receptor structures) flexibility seen in the immedi-

ately adjacent helix 8 could modulate exposure of phosphorylation sites and in this way alter β-

arrestin recruitment and receptor internalization process. Consistent with this notion, high mobil-

ity in helix 8 is required in the low-affinity arrestin binding state of the rhodopsin receptor [65].

The dynamic behavior of helix 8 highlight the importance of having a complete CB1R struc-

ture that includes the distal C-terminal region. Although the receptor models used in this

work lack the complete C-terminus they contribute relevant information that can help to

guide future studies.

Conclusion

In this work, allosteric modulation of CBD in the CB1R was studied based on the possibility of

its direct receptor blockade and its effect on the conformational changes associated to the acti-

vation and inactivation of the receptor. The mechanism by which CBD exerts its cannabinoid

effects remains in discussion and although different mechanisms, including allosteric modula-

tion have been proposed, to date there is no evidence of the direct binding of CBD in an allo-

steric site of the CB1R.

In summary, results obtained in this work show that CBD is able to bind in an allosteric site

of the CB1R and thereby promote conformational changes that can be associated to the transi-

tion towards an inactive or impaired signaling receptor state. An allosteric site was identified

in the active receptor conformation that was able to bind CBD in a ligand-specific manner.

We suggest dipolar interactions are essential for N-terminal movement and CBD stabilization

in the binding site. MD simulations showed coordinated motions that promoted opening of

the receptor extra and intracellular ends with a subsequent expansion of the binding pocket

similar to an inactive state.

The role of the extracellular and intracellular regions suggests that incorporation of both

segments is important for the study of allosteric mechanisms. Likewise, further studies in the

distal C-terminal that can confirm the relation between mobility in helix 8 and receptor inter-

nalization will be useful to better understand the mechanism of CBD modulation in the CB1R.

Other authors have suggested that CBD can antagonize the effects of THC through its interac-

tion with other molecular targets, such as, the transient receptor potential vanilloid 1

(TRPV1), adenosine receptor (A2A) and serotonin receptors (5-HT1A). Proposed mechanisms

have been extensively reviewed elsewhere [29].

Our studies allow us to rationalize the binding of CBD and offer a possible explanation to

the effects of negative modulation observed in functional assays. Nevertheless, they do not

exclude the possibility of an indirect modulation mediated by other molecular targets that, in

conjunction with allosteric binding, contribute to the overall effects observed in vivo.
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