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Background: Accurate classification of type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in the early 
phase is crucial for individual precision treatment. This study aimed to develop a classification model having 
fewer and easier to access clinical variables to distinguish T1DM in newly diagnosed diabetes in adults.
Methods: Clinical and laboratory data were collected from 15,206 adults with newly diagnosed diabetes 
in this cross-sectional study. This cohort represented 20 provinces and 4 municipalities in China. Types of 
diabetes were determined based on postprandial C-peptide (PCP) level and glutamic acid decarboxylase 
autoantibody (GADA) titer. We developed multivariable clinical diagnostic models using the eXtreme 
Gradient Boosting (XGBoost) algorithm. Classification variables included in the final model were based 
on their scores of importance. Model performance was evaluated by area under the receiver operating 
characteristic curve (ROC AUC), sensitivity, and specificity. The performance of models with different 
variable combinations was compared. Calibration intercept and slope were evaluated for the final model.
Results: Among the newly diagnosed diabetes cohort, 1,465 (9.63%) persons had T1DM and 13,741 
(90.37%) had T2DM. Body mass index (BMI) contributed the most to the model, followed by age of onset 
and hemoglobin A1c (HbA1c). Compared with models with other clinical variable combinations, a final 
model that integrated age of onset, BMI and HbA1c had relatively higher performance. The ROC AUC, 
sensitivity, and specificity for this model were 0.83 (95% CI, 0.80 to 0.85), 0.77, and 0.76, respectively. 
The calibration intercept and slope were 0.02 (95% CI, –0.03 to 0.06) and 0.90 (95% CI, 0.79 to 1.02), 
respectively, which suggested a good calibration performance.
Conclusions: Our classification model that integrated age of onset, BMI, and HbA1c could distinguish 
T1DM from T2DM, which provides a useful tool in assisting physicians in subtyping and precising 
treatment in diabetes.
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Introduction

Treatment of  diabetes mell i tus requires accurate 
discrimination of type 1 diabetes (T1DM) and type 2 diabetes 
(T2DM) (1). Diabetes classification systems have evolved in 
recent years. Updated classification criteria recommended in 
2019 by the World Health Organization propose subtypes 
of hybrid diabetes and unclassified diabetes in addition to 
the well-known T1DM, T2DM, gestational diabetes, and 
other types of diabetes (2). Ahlqvist et al. stratified adult-
onset diabetes into five subgroups that had different disease 
progression and risks of complications (3). Among these five 
clusters, patients in cluster 1 were denoted as having severe 
autoimmune diabetes (SAID); cluster 2 was labeled as severe 
insulin-deficient diabetes (SIDD) that required rapid insulin 
treatment. In addition to different typing strategies, key 
clues for the discrimination of T1DM from the majority 
of patients with T2DM are the presence of diabetes-
associated autoantibodies and a deficiency of β cell function 
characterized by low plasma C-peptide level.

C-peptide is a useful method for assessing β cell function. 
C-peptides more than 0.3 nmol/L could differentiate 
insulin-requiring from non-insulin-requiring diabetes (4,5). 
Our group recently showed that glutamic acid decarboxylase 
autoantibody (GADA) titer is a valid risk predictor for 
progression of beta-cell failure in adult patients with 
autoimmune diabetes (6). About 70% of the patients in high 
GADA titer (more than 173.5 U/mL) group progressed 
to beta-cell function failure during the follow-up period. 
Therefore, C-peptides less than 0.3 nmol/L and GADA 
titer higher than 173.5 U/mL could be reliable evidence for 
T1DM identification.

The measurement of GADA and C-peptide in every 
individual with diabetes can be challenging and costly, 
especially for clinics in developing or undeveloped 
countries. Thus, efforts have been made to identify T1DM 
from T2DM from clinical parameters obtained in routine 
examinations. For instance, the UK Practical Classification 
Guidelines for Diabetes proposed that age of diagnosis (35 
years as the cut off) and insulin treatment could be used 
to discriminate T1DM and T2DM (7). Fourlanos et al. 
developed a screening tool to identify autoimmune diabetes 
by integrating the clinical features of age of onset, acute 
symptoms, body mass index (BMI), and personal or family 
history of autoimmune disease (8).

Chinese patients with diabetes have somewhat different 
clinical characteristics compared with other populations. 
Most new cases of T1DM in China are adults, and Chinese 

individuals with T2DM are generally less obese than their 
Caucasian counterparts (9). However, there are no clinical 
diagnostic models of T1DM in Chinese patients with new-
onset diabetes. Thus, in this study, we used the eXtreme 
Gradient Boosting (XGBoost) algorithm to generate several 
machine learning models according to the clinical features 
of participants. The purpose of the algorithm was to identify 
an optimal diagnostic model to distinguish T1DM from 
T2DM in adults newly diagnosed with diabetes. We present 
the following article in accordance with the Strengthening 
the Reporting of Observational Studies in Epidemiology 
(STROBE) reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-7115).

Methods

Study population

We analyzed data from 18,891 participants with newly 
diagnosed diabetes from a nationwide, multi-center, cross-
sectional survey performed from April 2015 to October 
2017. Forty-six tertiary care hospitals were invited from 
20 provinces and 4 municipalities, across all 7 geographic 
regions of China (4 Northeast, 8 North, 3 Northwest, 9 
Central, 3 Southwest, 7 South, and 12 East). The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The Ethics Committees of 
the Second Xiangya hospitals, Central South University in 
China approved this study (No. 2014032), and all patients 
provided written informed consents.

The following factors were inclusion criteria: (I) diagnosis 
of diabetes that met the World Health Organization 1999 
criteria (10); (II) age 18 years and older; (III) diabetes 
duration less than 1 year; and (IV) outpatients attending 
clinics in the department of endocrinology. Individuals 
were excluded if pregnant at the time of diabetes diagnosis, 
if they had gestational diabetes mellitus, or if they had co-
existing acute diseases such as infection or acute myocardial 
infarction that could affect glucose metabolism. In addition, 
we excluded 1,844 patients who lacked data on key variables 
for diabetes classification and 1,841 patients who did not 
meet the criteria for identifying types of diabetes (shown in 
model outcome part below). We analyzed the data of the 
remaining 15,206 patients for model construction (Figure 1).

Clinical measurements and data collection

Research nurses at each of the 46 participating hospitals 
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participated in a series of training programs to standardize 
all procedures and methods of data collection. Patients 
self-reported demographic characteristics (i.e., age and 
sex), clinical features, and lifestyle risk factors (i.e., exercise 
habits, diet, smoking, and alcohol consumption). The nurses 
used standard procedures to measure patient height, weight, 
waist circumference, hip circumference, and blood pressure.

Laboratory assays

Fasting plasma glucose (FPG), total cholesterol (TC), 
triglycerides (TGs), high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol (LDL-C), 
fasting C-peptide (FCP), and plasma hemoglobin A1c 
(HbA1c) were assayed by standard methods at the study 
sites. Postprandial blood samples were tested for 2-h 
postprandial plasma glucose (PPG) and C-peptide. Serum 
samples for GADA assays were shipped on ice within  

1 day and stored at –80 ℃. The core laboratory (Central 
South University) performed serum GADA assays by a 
standardized radioligand assay as reported (11). The assay 
was assessed in the 2016 Islet Autoantibody Standardization 
Program (IASP 2016).

Model outcome: identification of T1DM and T2DM

T1DM was defined as postprandial C-peptide (PCP) less 
than 0.3 nmol/L or GADA titer no less than 173.5 U/mL. 
T2DM was defined as PCP more than 0.6 nmol/L and 
GADA titer less than 18.2 U/mL.

Statistical analysis

Continuous variables were expressed as mean [standard 
deviation (SD)] or median (interquartile range) based on 
evaluation of normal distribution; categorical variables 

Figure 1 Flow diagram of the study design. GADA, glutamic acid decarboxylase autoantibody; T1DM, type 1 diabetes; T2DM, type 2 
diabetes.
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were given as number (percent). For analysis of continuous 
variables, t-test or Mann-Whitney test were performed to 
compare differences between groups where appropriate. 
Frequency differences were compared using Chi-square 
test. P<0.05 was considered statistically significant.

Model development using XGBoost
XGBoost is a machine learning method for classification 
problems (12). XGBoost produces classification models 
in the form of ensembles of weak classification models, 
typically decision trees. XGBoost can provide lower bias 
and better optimize an objective function, compared with 
traditional linear methods, e.g., logistic regression. We used 
XGBoost to build a multivariable clinical diagnostic model 
to identify T1DM and T2DM.

Importance score of variables
For each variable, XGBoost provides an importance score 
that represents the variable’s contribution to predict the 
class label in the model. The larger the feature score of a 
variable, the more important is the variable to the model. In 
our study, we chose the method “gain”, which is the average 
gain of the splits that use the variable, to compute the 
importance score of each variable.

First, we used all candidate variables to build the 
initial XGBoost model to assist in distinguishing T1DM 
and T2DM. Then, we obtained the importance score of 
each variable and ranked the variables according to those 
scores. We selected the most important variables from the 
candidate variables to build the final model intended for 
actual clinical practice.

 
Missing values
XGBoost can automatically accommodate missing values, 
i.e., by using a default direction for the missing values 
in each tree node (12). If a missing value appears in the 
validation dataset, it will be handled automatically by 
following the default direction that is decided in the training 
phase.

Explanation of classification results
To interpret the model output, we used the SHapley 
Additive exPlanations (SHAP) method to explain the 
XGBoost classification results (13). By using the SHAP 
method, we transformed the XGBoost model to the 
accumulative effects of all variable attributions on the output 
probability of diabetes type for each patient. In this manner, 
the impact of the variables on the outcome from the SHAP 

transformation can be interpreted easily. A SHAP value of a 
variable represents its impact on the model output.

Evaluation and comparisons of model performance
We split the dataset randomly into a training set (80%) and 
a testing set (20%). The training set was used to develop 
models. For validation, we used the testing set to assess the 
performance of the models. We computed area under the 
receiver operating characteristic curve (ROC AUC) of each 
model. We also computed model performance at different 
cut-offs for different models. The model performance 
metrics were sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and Youden’s 
index. We developed models with different combinations 
of variables and selected the final model by comparing 
the performance of these models. We also performed a 
5-fold cross validation to further assess the validity of these 
models. Basically, we conducted the model development 
using 4 folds and the model validation using the left fold. 
Each fold was included in the training set 4 times and in the 
testing set 1 time.

In order to evaluate the agreement of observed outcomes 
and predictions of the final model, we discretized the 
prediction space into 10 bins and draw a calibration curve 
by plotting T1DM diagnostic predictions on the X-axis and 
observed frequency of T1DM on the Y-axis and presented 
the intercept and slope for this curve. An optimal calibration 
was represented with an intercept of 0 and a slope of 1.

Results

Characteristics of the study participants

Among the 15,206 patients with data for all key variables, 
1,465 (9.63%) patients had T1DM and 13,741 (90.37%) 
had T2DM. The average age of disease onset was 43.7±15.1 
and 51.0±12.8 years in the T1DM and T2DM group, 
respectively. As expected, patients with T1DM were 
significantly leaner, and they had lower blood pressure and 
better lipid metabolic parameters but higher serum FPG 
and HbA1c concentrations. Lifestyle factors liking drinking, 
diet treatment and physical activity were more frequent in 
patients with T2DM than in those with T1DM (Table 1).

Classification model construction for identifying T1DM 
and T2DM

An XGBoost classification model was used to identify 
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T1DM and T2DM. We used 13 clinical features to 
distinguish patients. The features were ordered by the 
importance scores of each value in this model (Figure 2). 
BMI contributed the most to the model, followed by age 
of onset, HbA1c, waist dimension, TG concentration, and 
FPG.

We used SHAP values, which referred to the impact of 
one variable on model output, to explain the classification 
results. Figure 3 presented how the contribution of an 
individual variable on the model output was affected by 

its value. The y position of the dot was the impact of each 
variable on the diagnosis of T1DM, which can be also 
interpreted as an increase (above 0) or decrease (below 0) 
of probability of being diagnosed as T1DM. From Figure 
3A, the SHAP value decreased as the age of onset grew 
and the age of onset was about 40 years when SHAP value 
was 0, which indicated that an age of onset less than 40 
increased the probability of having T1DM (Figure 3A). 
Other risk factors that increased the probability of being 
diagnosed with T1DM included a BMI lower than 23 kg/m2  

Table 1 Characteristics of patients diagnosed with T1DM and T2DM

Variables
T1DM T2DM

P value
N Value N Value

Age of onset (years) 1,465 43.7±15.1 13,741 51.0±12.8 <0.001

Sex 0.227

Female (n, %) 567 38.7% 5,542 40.3%

Male (n, %) 898 61.30% 8,199 59.67%

BMI (kg/m2) 1,416 21.5±3.5 13,385 25.1±3.5 <0.001

FPG (mmol/L) 1,419 9.33 (6.60, 13.43) 13,603 7.87 (6.52, 10.31) <0.001

PPG (mmol/L) 1,397 17.0±7.1 13,462 15.1±5.5 <0.001

HbA1c (%) 1,417 11.6 (9.0, 13.6) 13,491 8.6 (6.9, 10.9) <0.001

SBP (mmHg) 1,415 120.5±15.6 13,139 128.2±16.2 <0.001

DBP (mmHg) 1,417 76.2±10.4 13,139 80.4±10.5 <0.001

Waist (cm) 1,320 80.6±10.3 12,478 89.1±10.5 <0.001

TG (mmol/L) 1,419 1.2 (0.8, 1.8) 13,262 1.77 (1.22, 2.75) <0.001

TC (mmol/L) 1,422 4.6±1.4 13,366 4.8±1.3 <0.001

LDL-C (mmol/L) 1,421 2.7±1.0 13,327 2.9±1.0 <0.001

HDL-C (mmol/L) 1,413 1.2 (1.0, 1.5) 13,205 1.11 (0.94, 1.32) <0.001

FCP (nmol/L) 1,456 0.14 (0.06, 0.24) 13,576 0.62 (0.43, 0.85) <0.001

PCP (nmol/L) 1,465 0.22 (0.12, 0.34) 13,741 1.60 (1.09, 2.40) <0.001

Current smoking (n, %) 448 31.0% 4,084 30.1% 0.485

Current drinking (n, %) 212 14.8% 2,447 18.1% 0.002

Diet treatment (n, %) 687 53.5% 6,240 62.3% <0.001

Physical activity (n, %) 568 44.2% 5,357 53.5% <0.001

% reported for all categorical variables. Data are presented as mean ± SD or median with upper and lower quartiles based on evaluation 
of normal distribution. Differences between T1DM and T2DM were compared using t-test or Mann-Whitney test for continuous variables 
where appropriate and chi-square test for categorical variables. T1DM, type 1 diabetes; T2DM, type 2 diabetes; BMI, body mass index; 
FPG, fasting plasma glucose; PPG, postprandial plasma glucose; HbA1c, hemoglobin A1c; SBP, systolic blood pressure; DBP, diastolic 
blood pressure; TG, triglyceride; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein 
cholesterol; FCP, fasting C-peptide; PCP, postprandial C-peptide.
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Figure 2 Feature importance scores of clinical variables. BMI, body mass index; HbA1c, hemoglobin A1c; TG, triglyceride; FPG, fasting 
plasma glucose; PPG, postprandial plasma glucose; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high-density 
lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol.

Figure 3 Impact of (A) age at onset, (B) BMI, (C) HbA1c, (D) waist, (E) TG, (F) TC, (G) LDL-C, (H) HDL-C on SHAP value for test 
dataset only. SHAP value represents the impact of each variable on the model output (diagnosis of T1DM in this model). SHAP, Shapley 
Additive exPlanations; BMI, body mass index; HbA1c, hemoglobin A1c; TG, triglyceride; TC, total cholesterol; LDL-C, low-density 
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; T1DM, type 1 diabetes.
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(Figure 3B), HbA1c higher than 7% (Figure 3C), and waist 
circumference lower than 85 cm (Figure 3D). Among four 
lipid parameters, only TG influenced the probability of 
being identified as T1DM. Patients with TG less than 
about 1.8 mmol/L (Figure 3E) had a higher probability of 
being identified as T1DM, although there was no obvious 
association between the level of TC, LDL-C, and HDL-C 
(Figure 3F,G,H) and the probability for identifying as 
T1DM.

Classification model evaluation for identifying T1DM and 
T2DM

To make the model concise and practical, we attempted to 
limit the number of input variables without significantly 
losing model performance. Because BMI and age of onset 
were easy to acquire and they ranked high by feature 
importance score, we included them in the final model. 
We set the input variables as the combination of BMI, age 
of onset, and one other variable, and built the candidate 
models accordingly. We also built models with all 13 
variables and a model with only BMI and age of onset. 
We presented the corresponding cut-off, specificity, and 
sensitivity, when the Youden’s index was the highest. Then, 
we compared the ROC AUC, sensitivity, specificity, PPV, 
NPV, and Youden’s index for all the models. Finally, to 
further assess the validity of these models, a 5-fold cross 
validation was performed and the average ROC AUC, 
sensitivity, specificity, PPV, and NPV for each model were 
evaluated.

We ranked the model performance results according to 
their ROC AUC. The ROC AUC of the model with all 13 
features was 0.86 (95% CI, 0.83 to 0.88) and the sensitivity 
and specificity of this model were both 0.78 (Table 2). The 
ROC AUC of the model that used only BMI and age of 
onset was 0.80 (95% CI, 0.77 to 0.83) and the sensitivity, 
specificity, PPV, and NPV were 0.61, 0.86, 0.32, and 0.95.

When we used only three variables to build models, 
the highest ROC AUC model was a combination of BMI, 
age of onset, and HbA1c. The ROC AUC, sensitivity, 
specificity, PPV, and NPV of this model were 0.83 (95% CI, 
0.80 to 0.85), 0.77, 0.76, 0.25, and 0.97, respectively. This 
model was followed by a model composed of BMI, age at 
onset, and FPG, a model composed with BMI, age at onset, 
and TG, and a model with BMI, age of onset, and PPG; the 
ROC AUCs for all these models were from 0.81 (95% CI, 
0.78 to 0.84) to 0.82 (95% CI, 0.78 to 0.84) (Table 2). All 
these models had similar discriminatory performances when 

cross validation was performed (Table S1).

Calibration of the final diagnostic model

We chose the model composed of age of onset, BMI, 
and HbA1c as the final model since it had the highest 
discriminatory performance among all models with less 
variables in Table 2.

Calibration evaluation was assessed for the final model in 
the testing dataset. A calibration curve for the final model 
was plotted and the intercept and slope for this curve were 
0.02 (95% CI, –0.03 to 0.06) and 0.90 (95% CI, 0.79 to 
1.02), respectively, suggesting that this model did well at 
identifying T1DM cases (Figure 4).

Online classification tool

Based on the final model composed of age of onset, BMI, 
and HbA1c, we designed an online classification tool that 
can compute the probability of T1DM or T2DM based on 
the input values (available at http://cdss.pingan.com:8082/
diabetes/index.html).

Discussion

We established a diagnostic model of high performance to 
identify patients with newly diagnosed diabetes as likely to 
have T1DM.

The model was composed of age of onset, BMI, 
and HbA1c parameters, all easily accessed data. These 
parameters are associated with beta cell function and 
disease progression in T1DM. Early age at diagnosis of 
T1DM was associated with more rapid decline in beta-cell 
function (14,15). The association between BMI and T1DM 
progression is conflicting. Some studies showed that patients 
with higher BMI had better beta cell function at diagnosis 

and after follow-up (16-18). However, other studies showed 
that BMI might be a risk factor for developing T1DM and 
for accelerating T1DM progression (19-21). Better HbA1c 
levels were associated with higher C-peptide concentrations 
at diagnosis and could predict residual beta cell function 
and long-term diabetes control after follow-up (22-24).

Our study has multiple strengths. Previous studies 

on distinguishing T1DM from T2DM did not focus on 
patients with new-onset diabetes, whereas the participants 
in our study had short disease durations of less than  
1 year (25-28). Patients with T1DM can obtain timely 
insulin treatment if they are diagnosed early and correctly. 

https://cdn.amegroups.cn/static/public/ATM-20-7115-supplementary.pdf
http://cdss.pingan.com:8082/diabetes/index.html
http://cdss.pingan.com:8082/diabetes/index.html
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Additionally, diagnosis criteria in our study were based on 
C-peptide and GADA concentrations. GADA present at 
early preclinical stages of T1DM and the titer of GADA are 
important for treatment decision and disease progression 
in patients with latent autoimmune diabetes in adults 
(LADA) (29-33). Patients with LADA are defined by adult 
age of onset, insulin independence for at least 6 months 
after diagnosis, and positivity for islet autoantibodies. They 
present a similar clinical characteristic to T2DM at the 
onset of disease and require insulin treatment in the early 

phase. In our study, GADA-positive patients with relatively 
good beta cell function were also included as T1DM; thus, 
our algorithm could also identify individuals with LADA.

Our study had limitations. We did not include patients 
with gestational diabetes mellitus or maturity-onset 
diabetes of the young. Patients with gestational diabetes 
are relatively easy to identify, and often they are diagnosed 
in an obstetrical department instead of an endocrinology 
department. Patients with maturity-onset diabetes usually 
do not have beta cell failure or GADA positivity; thus, there 
is a low possibility for misdiagnosis of these individuals as 
having T1DM. The possibility of being diagnosed with 
T1DM could be overestimated due to the suppression of 
beta cell function when beta cells are chronically exposed 
to hyperglycemia, an overlap C-peptides concentration 
with some subjects with T2DM (34). However, our goal is 
to decrease the misdiagnosis rate of T1DM by identifying 
cases who are likely to be diagnosed with T1DM and treat 
them with insulin timely. By providing beta cell repose in 
the early phase of the disease, insulin treatment may be 
beneficial for patients misdiagnosed with T1DM.

In conclusion, we show that a diagnostic model that 
integrates age of onset, BMI, and HbA1c could distinguish 
T1DM from T2DM among adult patients with newly 

Figure 4 Calibration curve of the model composed of BMI, age 
of onset and HbA1c. BMI, body mass index; HbA1c, hemoglobin 
A1c.

Table 2 Performance of models with different combinations of variables

Features ROC AUC (95% CI) Cut-off (%) Youden’s index Sensitivity Specificity PPV NPV

All 13 features 0.86 (0.83, 0.88) 7 0.56 0.78 0.78 0.27 0.97

BMI + age of onset + HbA1c 0.83 (0.80, 0.85) 8 0.52 0.77 0.76 0.25 0.97

BMI + age of onset + FPG 0.82 (0.78, 0.84) 9 0.49 0.71 0.77 0.25 0.96

BMI + age of onset + TG 0.81 (0.78, 0.84) 8 0.48 0.73 0.75 0.23 0.96

BMI + age of onset + PPG 0.81 (0.78, 0.84) 10 0.49 0.69 0.80 0.27 0.96

BMI + age of onset + men 0.80 (0.77, 0.83) 14 0.48 0.60 0.88 0.34 0.95

BMI + age of onset + TC 0.80 (0.77, 0.83) 10 0.48 0.67 0.81 0.27 0.96

BMI + age of onset + HDL-C 0.80 (0.77, 0.83) 12 0.46 0.61 0.85 0.30 0.95

BMI + age of onset + DBP 0.80 (0.77, 0.83) 13 0.46 0.61 0.86 0.31 0.95

BMI + age of onset + LDL-C 0.80 (0.77, 0.83) 14 0.47 0.60 0.87 0.33 0.95

BMI + age of onset + SBP 0.80 (0.77, 0.83) 9 0.47 0.69 0.77 0.24 0.96

BMI + age of onset 0.80 (0.77, 0.83) 13 0.47 0.61 0.86 0.32 0.95

BMI + age of onset + waist 0.79 (0.76, 0.82) 10 0.46 0.67 0.79 0.25 0.96

ROC AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; BMI, 
body mass index; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose; TG, triglyceride; PPG, postprandial plasma glucose; TC, total 
cholesterol; HDL-C, high-density lipoprotein cholesterol; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein cholesterol; SBP, 
systolic blood pressure.
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diagnosed diabetes, which provide a useful tool in assisting 
physicians in subtyping and precising treatment in diabetes.
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