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Summary: Linear regression models are widely used in mental health and related health services research. 
However, the classic linear regression analysis assumes that the data are normally distributed, an assumption 
that is not met by the data obtained in many studies. One method of dealing with this problem is to use 
semi-parametric models, which do not require that the data be normally distributed. But semi-parametric 
models are quite sensitive to outlying observations, so the generated estimates are unreliable when study 
data includes outliers. In this situation, some researchers trim the extreme values prior to conducting the 
analysis, but the ad-hoc rules used for data trimming are based on subjective criteria so different methods 
of adjustment can yield different results. Rank regression provides a more objective approach to dealing 
with non-normal data that includes outliers. This paper uses simulated and real data to illustrate this useful 
regression approach for dealing with outliers and compares it to the results generated using classical 
regression models and semi-parametric regression models.
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1. Introduction
Regression is widely used in mental health research 
and related services research to model relationships 
involving health and service utilization outcomes and 
clinical and socio-demographic factors. Regression 
models measure changes in the dependent variable in 
response to changes in a set of independent variables 
of interest. Linear regression focuses on continuous 
dependent variables, while other regression models 
such as logistic and log-linear regression consider non-
continuous dependent variables such as binary and 
count outcomes. The dependent variable is often 
called the response, while the independent variables 
are frequently referred to as the explanatory variables, 
predictors, or covariates. 

Linear regression is arguably the most popular 
regression model in practice, because of the ubiquity 

of continuous outcomes and because it is relatively 
easy to understand the modeled relationship and 
interpret the model estimates. Fitting such models is 
convenient because all major software packages (R, 
SAS, SPSS and STATA) provide both the model estimates 
and the diagnostics of the model fit. However, the wide 
popularity and routine use of the linear regression also 
creates some problems. Many researchers apply the 
model without first checking assumptions about the 
normal distribution of the data underlying the validity 
of model estimates. The classic normal-based linear 
regression imposes strong constraints on data, and 
its estimates are also quite sensitive to departures 
from assumed mathematical models. Without careful 
checking of the model assumptions, estimates 
generated by linear regression models may be difficult 
to interpret and conclusions drawn from such estimates 
may be misleading. 
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2. Different approaches to deal with non-normal study 
data in regression analyses

Classic linear regression assumes a normally distributed 
response, yi , and models the mean of this response 
variable as a function of a set of independent variables,  
xi = (xi1 , xi2 ...., xip)

T as follows:  

yi =       β + εi , εi ~ N(0, σ2), 1 ≤ i ≤ n (1)

where β = (β1, β2, ..., βp)T is the vector of parameters, n 
is the sample size, εi denotes the error term, N(µ, σ2) 
denotes a normal distribution with mean µ and variance 
σ2, and εi ~ N(0, σ2) means that εi follows a normal 
distribution with mean 0 and variance σ2. The well-
shaped bell curve of the normal distribution is often at 
odds with the distribution of data arising in real studies, 
because of its symmetric shape and extremely thin tails 
(exponential decay). Over the years, various methods 
have been developed to improve the limitations of the 
classic linear model. All the different methods can be 
grouped into 3 major categories. 

One approach is to use mathematical distributions 
that more closely resemble the data distribution in the 
study.[1] For example, by positing a t-distribution for the 
error εi , the resulting linear model can accommodate 
data distributions with thicker tails. This is possible 
because the t-distribution has an additional degree of 
freedom parameter to control the thickness of the tail. 
However, like the normal distribution, the t-distribution 
is also symmetric. To model skewed data distributions, 
a popular approach is to use the chi-square distribution. 
Although this parametric alternative broadens the scope 
of data distributions that can be accommodated, it is 
still quite limited because mathematical distributions 
always have more regular shapes than those arising in 
practice. 

A second popular alternative is to use semi-
parametric or distribution-free models.[2] Under this 
approach, no mathematical model is assumed for 
the data distribution (the non-parametric part) and 
the relationship between yi and xi is represented by 
the mean of yi after adjustment for xi (parametric 
component). The latter parametric component is implied 
by the specification of the classic linear regression in (1) 
and is given by: 

E (yi|xi ) =
T
ix β, 1 ≤ i ≤ n (2) 

where E (yi|xi ) denotes mathematical expectation. For 
those unfamiliar with mathematical expectation, the 
above expression simply means that the population-level 
average of the response yi is a linear function of xi . This 
linear relationship is also implicit in the normal-based 
linear regression in (1). Thus, the semi-parametric linear 
model in (2) only requires a linear relationship between 
the response and the set of explanatory variables, 
thereby offering valid inference for a wide class of data 
distributions. 

Although significantly improving the utility of linear 
regression, the semi-parametric model still has limited 
applications. A major problem is that like the classic 
model it continues to model the mean of the response. 
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Like the sample mean of a variable, model estimates 
from this approach can be quite biased when there 
are extremely large or small values, or outliers, in the 
response. 

Various approaches have been developed to 
address this important issue of outliers. A common 
approach in psychosocial research is to trim outliers 
using ad-hoc rules. For example, limiting the values of 
all observations to 3 times the interquartile range when 
estimating the mean of an outcome (i.e., a ‘trimmed’ 
mean).[3] However, these ad-hoc methods induce 
artifacts because of their dependence on the specific 
rules used, and the use of different rules can result in 
different outcomes. 

Another approach to limiting the influence of 
outliers is to employ rank tests. The Mann-Whitney-
Wilcoxon rank sum test is widely used to compare 
two groups in such situations. Within the setting 
of regression analysis, rank regression is a popular 
approach for dealing with outliers.[4,5] Like the Mann-
Whitney-Wilcoxon rank sum test, rank regression 
does not use the observed responses yi directly, but, 
rather, uses information about the ranking of these 
observations, thereby yielding estimates that are much 
less sensitive to outliers. 

3. Simulation studies to compare different approaches
The data were simulated from a study with one binary 
variable and one continuous covariate. To show 
differences across the different methods, we selected 
a large sample size (n=500) to reduce the effect of 
sampling variability on model estimates. We performed 
simulation of data and fitted the different models to 
the data generated using the R software. All simulations 
were performed with a Monte Carlo sample size 
M=1000 and a type I error α=0.05. 

We simulated yi from the following linear model: 

yi = β0 + xi 1 β1 + xi 2 β2 + εi , εi ~ N (0, σε
2 = 2

1 ), 
xi 1 ~ N (0, 0.2), xi 2 ~ Bernoulli (0.5), 1 ≤ i ≤ n.

with β0 = β1 = β2 = 1. To create non-normally distributed 
error εi , we replaced the normal distribution with a 
t-distribution, t (0, 2

1 , 3), with mean 0, variance σε
2 =2

1 , and 
degrees of freedom 3. To create outlying observations, 
we first ordered the values simulated (either from the 
normal distribution or from the t distribution) from the 
smallest to the largest denoted by: 

y(1) < y(2) < ... < y(500).

We then simulated 50 (or 10% of the sample size) values 
from a uniform U (500, 1000000), ordered them as:

u(1) < u(2) < ... < u(50) ,

and added the values u(1) from the uniform to the 50 
largest values of yi , i.e., 

y(451) < y(452) < ... < y(500) ,

to form a set of outlying observations, i.e., 
z(451) = y(451) + u(1) , z(452) = y(452) + u(2) , ... , z(500) = y(500) + u(50).

• 311 •

T
ix



To assess the robustness of the different methods, 
we replaced y(451) < y(452) < ...< y(500) in the original sample 
with the values z(451) < z(452) < ...< z(500), and fit the models 
to the resulting observations:

y(1) < y(2) < ...< y(450) < z(451)< z(452) < ...< z(500).

Table 1 shows the estimates of β1 and β2 , the 
corresponding standard errors, and type I error rates 
from fitting the three methods to data simulated 
from the normal-distributed error N(0, 1/2) based on 
1000 Monte Carlo simulations both with and without 
included outliers. (The intercept β0 is estimated by 
the rank regression and so this estimate is missing 
in the table.) In the table, values in the column titled 
‘mean’ are the averaged estimates of each parameter 
over 1000 Monte Caro replications; the ‘asymptotic 
standard error’ is the model-based standard error; the 
‘empirical standard error’ is the standard errors of the 
1000 estimates of each parameter; and the ‘type I error’ 
is the percent of times the null hypothesis – that the 
estimated parameter is equal to the true parameter – 
is rejected. For example, the empirical type I error rates 
for β1 in the data set without outliers is the percent of 
times of rejecting the null H0: β1=1. 

If a model performs well, (a) the averaged value 
of estimates of each parameter (in the ‘mean’ column) 
should be close to the true value of the respective 
parameter; (b) the magnitude of the asymptotic 
standard error should be close to that of the empirical 
standard error; and (c) the empirical type I error rate 
should be close to the nominal value 0.05. As shown in 
Table 1, in the absence of outliers, all three methods 
performed well, with the averaged estimates all nearly 
identical to the true value 1, the asymptotic standard 
errors all close to their empirical counterparts, and the 
type I error rate all close to the nominal level α=0.05. 
Further, all three methods yielded near identical 

standard errors, indicating that there is practically no 
loss of power by using the two robust alternatives 
instead of the classic linear model for the simulated 
normal data. 

However, results are very different in the presence 
of outliers. As shown in the Table 1, both the classic 
and semi-parametric models yielded extremely large 
estimates that are un-interpretable, impossibly large 
standard errors, and type I errors close to 1. In contrast, 
the rank regression model for both β1 and β2 generated 
estimates close to the true value 1, reasonable 
asymptotic and empirical standard errors that were 
equal to each other, and type I errors that, though 
elevated, were close to the nominal 0.05 level.  

Table 2 shows the results of a similar simulation 
when the data were simulated from t-distributed error, , 
instead of from normal-distributed error. In the absence 
of outliers the mean estimate and type 1 error of the 
two parameters were acceptable for all three models; 
however, the empirical standard error was much larger 
than the asymptotic standard error for the classical 
and semi-parametric models while these two types of 
standard error were similar in magnitude in the rank 
regression model. In the presence of outliers, as was 
the case in the normal-error simulation, the estimates 
generated by the classic and semi-parametric models 
were un-interpretable while those generated by the 
rank regression model were acceptable. Thus, for data 
with t-distribution error the rank regression model 
preforms better than the classic linear and the semi-
parametric models both in the absence and in the 
presence of outliers.

4. A real-life example
To illustrate the three approaches to dealing with 
outliers, we use results from a recent randomized 

Table 1. Estimates (mean), asymptotic and empirical standard errors, and empirical type I error 
rates from fitting the classic linear, semi-parametric, and rank regression models to data 
simulated from normal-distributed errors

Models

β1 β2

mean
standard error type I

error mean
standard error type I

errorasymptotic empirical asymptotic empirical

Absence of outliers

 classic linear 1.00 0.16 0.16 0.06 1.00 0.06 0.06 0.04
 semi-parametric 1.00 0.16 0.16 0.07 1.00 0.06 0.06 0.04
 rank regression 1.00 0.16 0.17 0.05 1.00 0.07 0.06 0.04

Presence of outliers

 classic linear >105 >104 >104 0.90 >105 >104 >104 1
 semi-parametric >105 >104 >104 0.90 >105 >104 >104 1
 rank regression 1.11 0.18 0.18 0.09 1.06 0.07 0.07 0.11
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controlled study[6] to evaluate the efficacy of a sexual 
risk-reduction intervention program targeting teenage 
girls in low-income urban settings who are at elevated 
risk for HIV, sexually transmitted infections, and 
unintended pregnancies. The study recruited sexually-
active urban adolescent girls aged 15 to 19 and 
randomized them to a sexual risk reduction intervention 
or to a structurally-equivalent health promotion 
control group. Assessments and behavioral data were 
collected at baseline, 3, 6 and 12 months post-baseline. 
The primary interest of the study was to compare the 
frequency of unprotected vaginal sex between the two 
treatment conditions. A difficult problem with the study 
data was the extremely large values reported by some 
subjects for their sexual activities. For example, five 
subjects reported over 100 episodes of unprotected 
vaginal sex over the past 3 months at the 6 month 
follow-up. If linear regression is applied directly to 
this outcome, estimates will be severely biased and 
become un-interpretable. Alternative models need to 
be considered when analyzing the data. 

The linear regression for the different methods is 
specified as follows: 

yi  = β0 + xi 1 β1 + εi , 1 ≤ i ≤ n, (3) 
where yi is the number of episodes of unprotected 
vaginal sex, xi1 is the binary indicator for the treatment 
condition (1 for the intervention and 0 for the control 
group), and εi is the model error. The model error εi  
follows the normal distribution for the classic linear 
regression, while the distribution is unspecified for the 
semi-parametric and rank regression methods. 

To highlight the differences in the models we 
removed zero observations (i.e., individuals who 
reported no episodes of unprotected sex in the prior 
three months) and fit all three models (classic linear, 

semi-parametric, and rank regression) to the remaining 
data. In addition, we also recomputed the estimates for 
the classic linear model and the semi-parametric model 
after trimming the observed responses to decrease 
the influence of outliers. We trimmed the observed 
responses of number of episodes of unprotected vaginal 
sex in the prior three months at 3 times the interquartile 
range; the 25%, 50% and 75% quartiles were 2, 4, and 
10 episodes, respectively, so the interquartile range 
was 8 (10 - 2) and any observations below -20 (4 - 3*8) 
or above +28 (4 + 3*8) were considered outliers. There 
were no observations below -20 so no lower-level 
trimming was necessary, but all observations above 28 
were trimmed to 28. 

Table 3 shows the resulting estimates of β1 for the 
treatment condition in the linear model (3) and the 
corresponding asymptotic standard errors and p-values 
using the different models. As was the case in the 
simulation study with outliers, the huge values for the 
estimates and standard errors using the classic linear 
and semi-parametric models clearly show that the 
estimates are profoundly affected by the outliers and, 
thus, are un-interpretable. In comparison, the classic 
and semi-parametric methods yielded more reasonable 
estimates when applied to the trimmed observations. 
However, results using the trimmed data were still quite 
different from those generated from the rank regression 
model; the estimates from the two models that used 
trimmed data were more than 50% higher than that 
using the rank regression method and the standard 
errors were more than double that from the rank 
regression analysis. Results from the simulation study 
suggest that rank regression is quite robust against 
outliers and, unlike models that use trimmed data, 
are not vulnerable to change when different trimming 
criteria are employed. 
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Table 2. Estimates (mean), asymptotic and empirical standard errors, and empirical type I error 
rates from fitting the classic linear, semi-parametric, and rank regression models to data 
simulated from t-distributed errors

Models

β1 β2

mean
standard error type I

error mean
standard error type I

errorasymptotic empirical asymptotic empirical

Absence of outliers

 classic linear 0.98 0.16 0.35 0.05 1.00 0.07 0.11 0.05
 semi-parametric 0.98 0.16 0.35 0.05 1.00 0.06 0.11 0.05
 rank regression 1.00 0.12 0.11 0.05 1.00 0.05 0.05 0.06

Presence of outliers

 classic linear >104 >104 >104 0.25 >104 >104 >104 0.80
 semi-parametric >104 >104 >104 0.25 >104 >104 >104 0.80
 rank regression 1.05 0.30 0.29 0.06 0.99 0.31 0.30 0.07



5. Software for alternative linear regression models 
Most major software such as R and SAS has the 
capability of fitting the semi-parametric linear regression 
model. In R, there are several packages available for 
fitting the generalized estimating equations (GEE). 
Although GEE is an extension of the semi-parametric 
method for longitudinal data, we may still use these 
packages for fitting the semi-parametric model to cross-
sectional data by introducing an ‘ID’ variable that has 
unique values for each of the observations. For example, 
if the GEE package is installed, then one may apply 
the following codes to fit the semi-parametric linear 
regression model: 

library (gee);
id = 1: length (y); 
gee (y ~ x, id = id)

where y is the outcome and x is the covariate matrix.
Similarly, SAS also offers ‘Procedures’ for fitting the 

GEE which can be utilized to provide estimates for semi-
parametric linear regression models. For example, by 
adding an ID variable to the SAS data set, we may apply 
the Procedure GENMOD to fit the semi-parametric 
model: 

ROC GENMOD DATA = data;
Model y = x1 x2;
Repeated subject = id;
Run;

At the time of writing, SAS does not have the 
capability to fit the rank regression. For our simulated 
and real study examples, packages in R were used to fit 
this robust alternative model. To perform this regression 
model, first download the R functions from the website: 
http://www.stat.wmich.edu/mckean/HMC/Rcode/
AppendixB/ww.r. Then, we use the following command 
in R to obtain estimates from fitting the rank regression: 

wwest (x, y, bij = ”WIL”)
where y is the outcome and x is the covariate matrix. 

Note that while SAS is a commercial software 
package, R is free to download, install, and run. In 
addition, software for newer statistical methods are 
generally first available in R. However, unlike SAS, R has 
no designated technical support so users generally rely 
on peer-support, web postings, and books for resolving 
issues concerning applications of specific packages and 
general data management problems. 

6. Discussion
Classic linear regression has a number of weaknesses, 
limiting its applications to real study data. We discussed 
two robust alternatives, the semi-parametric model and 
the rank regression model. Although the former yields 
more valid estimates than the classic linear model, it 
breaks down when there are extremely large (or small) 
observations in the response (i.e., the dependent 
variable). In the presence of such outliers, the rank 
regression model provides much more robust estimates. 
Unlike ad-hoc methods such as trimming outliers based 
on 3 x interquartile range, rank regression generates 
the same estimates regardless of the actual values of 
the response as long as the rankings of the observations 
remain the same. This formal approach not only 
removes any subjective element in the estimates, but 
it also makes it easier to compare results of different 
analyses based on the same study data and to compare 
results between different studies. Further, the rank 
regression model is also capable of addressing outliers 
in the independent variables, although this tutorial only 
discussed outliers in the response variable.  

Currently, rank regression is only available in some 
selected software packages such as R – we included 
sample R codes for fitting this robust regression model 
in this report to facilitate its use by readers. As this 
approach becomes more popular, it is likely that other 
major software giants such as SAS will have similar 
offerings. 

Unlike the classic and semi-parametric linear 
regression models, rank regression is only available for 
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Table 3. Estimates, standard errors, and p-values from fitting the classic linear, semi-parametric, 
rank regression, classic linear with trimmed outliers, and semi-parametric with trimmed 
outliers models to the risk-reduction intervention study

Model
β1

estimate standard error p-value
 classic linear -6707.0 6667.7 0.315
 semi-parametric -6707.0 6667.7 0.315
 rank regression -0.4286 0.4630 0.355
 classic linear with trimmed outliers -0.6738 0.9818 0.493

 semi-parametric with trimmed outliers -0.6738 0.9775 0.491

http://www.stat.wmich.edu/mckean/HMC/Rcode/AppendixB/ww.r
http://www.stat.wmich.edu/mckean/HMC/Rcode/AppendixB/ww.r


fitting cross-sectional data. This is, in part, due to the 
complexity of computing estimates and asymptotic 
standard errors. However, as longitudinal studies 
become the norm rather than the exception in modern 
clinical research, it will become increasingly important to 
develop software that can extend this robust model to 
longitudinal research data and, thus, help investigators 
more effectively deal with imperfections in real study 
data. 
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概述 : 线性回归模型被广泛应用于精神卫生和卫生服
务相关研究。然而，经典线性回归分析是假设该数据
为正态分布的，但是很多研究所获得的数据并不符合
这种假设。解决该问题的方法之一是采用不要求数据
为正态分布的半参数模型。但是，半参数模型对离散
数据相当敏感，因此在处理包含离散值的数据时产生
的估计值是不可靠的。在这种情况下，一些研究者在
删减这些极端值后再进行分析，但是，删减数据的事
先法则（ad-hoc rules）是基于主观标准的，所以不同
的调整方法就会产生不同的结果。等级回归为处理包

括离散值的非正态分布数据提供了更为客观的方法。
本文采用虚拟和实际数据来阐述这个非常有用的处理
离散值的回归方法，并与采用经典回归模型和半参数
回归模型所得出的结果进行比较。

关键词 : 正态分布，非正态分布，线性回归，半参数
回归模型，等级回归，性健康
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