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Decoding neural signals into control outputs has been a key to the development of brain-computer interfaces (BCIs). While many
studies have identified neural correlates of kinematics or applied advanced machine learning algorithms to improve decoding
performance, relatively less attention has been paid to optimal design of decoding models. For generating continuous movements
from neural activity, design of decoding models should address how to incorporate movement dynamics into models and how to
select a model given specific BCI objectives. Considering nonlinear and independent speed characteristics, we propose a hybrid
Kalman filter to decode the hand direction and speed independently. We also investigate changes in performance of different
decoding models (the linear and Kalman filters) when they predict reaching movements only or predict both reach and rest. Our
offline study on human magnetoencephalography (MEG) during point-to-point arm movements shows that the performance of
the linear filter or the Kalman filter is affected by including resting states for training and predicting movements. However, the
hybrid Kalman filter consistently outperforms others regardless of movement states. The results demonstrate that better design
of decoding models is achieved by incorporating movement dynamics into modeling or selecting a model according to decoding
objectives.

1. Introduction

Brain-computer interfaces (BCIs) aim to establish an artificial
interface between the brain and external systems through
which a person can control effectors without physical move-
ments [1–4]. BCIs have been applied to rehabilitation of
motor functions lost due to neurological disorders. For
instance, a number of studies have demonstrated that patients
with tetraplegia could control assistive systems directly using
BCIs [5–10]. Also, in conjunction with robotic devices, BCIs
have been used to detect motor intentions of stroke patients
to develop a self-regulating rehabilitation system [11–14].

Restoration of motor functions particularly in people with
paralysis has been mostly investigated using invasive BCIs
that harness an ensemble of single-unit spiking activity [5–
8]. These BCIs have been designed to generate continuous
kinematic parameters such as position, velocity, acceleration,
force, and joint angles of limb movements [15–20]. Recently,
noninvasive BCIs based on electroencephalography (EEG) or
magnetoencephalography (MEG) have also been proposed to
predict continuous kinematic parameters of arm movements
in humans [21–27].

Inference of continuous kinematic parameters from neu-
ral signals requires accurate and reliable neural decoding
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models [28–33]. Decoding models aim to find a functional
mapping between neural representations and one or more
kinematic parameters. A number of mathematical models
have been employed as decoding models for invasive and
noninvasive BCIs, including the linear filter, Kalman filter,
point process models, neural networks, and support vector
machine, to name a few [34–40]. Many BCI studies on
the construction of decoding models have been focused on
proposing a state-of-the-art machine learning technique as a
new decodingmodel or simply comparing different decoding
models in terms of decoding performance to choose the best
one for their applications [40]. In particular, the design of
noninvasive BCIs has been generally rather concentrated on
finding optimal neural features than optimizing decoding
models. This is partly because the noninvasive BCI output
space is more likely limited and usually discrete so that the
characteristics of the output space seem less important to
designing decoding models. However, when a noninvasive
BCI is used to produce continuous kinematic states, which
create a much sophisticated and dynamic output state space,
one may need to be concerned with how to incorporate
the characteristics of kinematic parameters into decoding
models. In addition, departing from a simple comparison
among candidate models followed by the selection of the
best, it would be beneficial if we understand more about how
individual decoding models work in different circumstances.
It can then provide a useful guideline for BCI researchers
to choose a decoding model appropriate for their own
applications.

In the present study, we investigate whether consideration
of handmovement dynamics in the design of decoding mod-
els can enhance decoding performance. The investigation
is conducted on the human MEG data collected from a
noninvasive BCI experiment in which the human subjects
performed point-to-point arm reaching movements. We
focus especially on the nonlinear characteristics of the hand
speed profile and its independence of movement directions.
While many BCI studies have typically decoded the hand
velocity from neural signals, the hand speed alone could also
be decoded from neural signals during point-to-point reach-
ing movements [19, 41, 42]. Hence, we propose to decompose
the hand velocity into its speed and direction parameters
and decode each parameter independently. While we use the
standard Kalman filter for hand direction estimation, due
to the nonlinear characteristics of hand speed profiles, we
simply augment the Kalman filter by adding a nonlinear filter
for hand speed estimation.Then, we investigate whether such
hybrid decoding of speed and direction can improve hand
trajectory reconstruction from the human MEG signals.

Also, we investigate how decoding models are affected
by varying model design factors. Here we examine the
effect of choosing movement states on different decoding
models. Specifically, we study the effect of two distinct arm
movement states: the rest and reach states [43]. Performance
of individual decoding models is evaluated for two cases
when eachmodel estimates the reach state only or both states
together. As for decoding models, we examine the two most
widely used filters for kinematic estimation in BCIs—the

Kalman filter and linear filter—as well as the hybrid filter
newly proposed above.

To assess the performance of decoding continuous hand
trajectories, we adopt the evaluationmeasures used for point-
ing devices [44]. These measures have also been leveraged to
assess neural cursor control performance in the previous BCI
studies [7, 8, 45] andmay well serve to evaluate reconstructed
trajectories of pointing movements. Various performance
measures used in this study are expected to collectively
provide a richer assessment tool for decoding performance.

2. Materials and Methods

2.1. Experimental Procedure. Nine subjects (19–37 years; five
males) participated in the study. All the participants were
right-handed (>80 on the Edinburgh Handedness Inventory
score) and not color-blind. The institutional review board
(IRB) of the Seoul National University Hospital approved this
study and all the participants providedwritten informed con-
sent after the study procedure had been explained to them.
During the experiment, the participants were instructed to
move their right arm in a specified three-dimensional space
while their other body parts were fixed (Figure 1(a)). A
cushionwas placed under the participants’ elbow tominimize
the potential artifacts from the arm movement. Participants’
head movements were restricted by placing their head in a
fixed MEG helmet. In addition, the tSSS filtering was applied
to the MEG signals, as described in Section 2.3, to reduce
artifacts from external sources. Stereographic images were
shown on the screen using the STIM2 system (Neuroscan,
El Paso, TX, USA) in order to give instructions of the three-
dimensional movements.

In the beginning of the experiment, the participants were
shown a sphere in the middle of the screen for four seconds.
In this period, the participants were instructed to locate their
index finger on the sphere. After this initial period, a target
sphere appeared for one second in one of the four corners
along with a line that connected the target with the center
sphere. During this period, the participants were instructed
to move their index finger from the center to the target
sphere following the line (a center-out task) and to move
back to the center sphere as fast as they could. Average
movement time was 930.1 ± 330.5ms (mean ± SD). A trial
ended after this period and continued onto the next initial
period of the consecutive trial. No time limit was imposed
on a trial because the time interval between trials was large
enough (4 s) to allow participants to complete the movement
task and rest until the onset of the subsequent movement.
The location of target sphere was randomly determined in
each of the four corners: upper-left, upper-right, bottom-left,
and bottom-right corners. A single session consisted of one
hundred twenty trials, including thirty trials per target. Each
participant completed two sessions (Figure 1(c)).

2.2. Virtual Stimuli. An anaglyph approach was employed to
produce three-dimensional images that were used as stimuli
in our experiment. An image generated by the anaglyph
approach is invisible when a person sees it with the same
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Figure 1: Experiment paradigm. (a) A photograph showing the visual stimuli.Whole-headMEG signals were acquired during point-to-point
reaching movements (center-out paradigm). (b) Movement speed profiles for different target directions. Each gray line illustrates a speed
profile for each reaching movement towards one of four targets (radial) from the center target (middle). (c) Drawings show the sequence of
the visual stimuli. At the beginning of the experiment, a sphere was presented on the center of the screen. After 4 s, a target sphere with a
stick connected to the center sphere appeared on one corner for 1 s. The subject was instructed to move his/her right index finger from the
center to the target and trace back to the center within this 1 s period. The target appeared in a pseudorandom order.

color of glasses as the image color. The participants wore the
colored glasses with a red glass on one eye and a blue glass on
the other. Then, if a single object was shown as two different
images each being colored in red or blue, each eye would only
sense the image with opposite color and the object would
stand at the intersection of two visual fields, to create a 3D
virtual object [27].We thus generated two images of the same
object with different viewpoints (i.e., different angles) using
the Autodesk 3ds MAX 2011 program (Autodesk, San Rafael,
CA, USA). Those two images were then converted into an
anaglyph image using theAnaglyphMaker software (ver. 1.08;
http://www.stereoeye.jp/).

2.3. MEG Data Acquisition and Processing. A 306-channel
whole-headMEG system (VectorView, Elekta Neuromag Oy,
Helsinki, Finland) was used to record human MEG signals
during the experiment in the magnetic shielded room. The
system consisted of 306 sensors in triplets of two planar
gradiometers and one magnetometer distributed at the 102
locations over the whole brain. In this study, only gradiome-
ters were used due to their better signal-noise ratio (SNR)
than magnetometers [46]. The MEG signal was digitized at
a sample frequency of 600.615Hz and band-pass filtered at
0.1–200Hz. A three-axis accelerometer (KXM52, Kionix, NY,
USA) was attached on the index finger of the participants to
record three-dimensional acceleration signals with the same
sample rate as the MEG signals.

We further applied the spatiotemporal signal space sepa-
ration (tSSS) method to the MEG signals to alleviate external
interference noise [47]. The MEG signals were then divided
into a series of epochs each from −1 to 2 seconds after target
onset.The accelerometer signal was band-pass filtered at 0.2–
5Hz so as to remove linear trends. The index finger velocity
was obtained by integrating the accelerometer signal.

We selected sixty-eight gradiometer channels at thirty-
four locations over bilateral sensorimotor areas for our study
(see [27] for the exact location information).TheMEG signal
from each of these channels was band-pass filtered at 0.5–
8Hz. The filtered signals were downsampled to 50Hz. The
estimated velocity signals at the 𝑥-, 𝑦-, and 𝑧-coordinates
were also downsampled to 50Hz. In this study, we only used
the 𝑥 and 𝑦 velocity signals to simplify decoding analyses
because themost variance of the hand trajectorieswas present
in the 𝑥- and 𝑦-axis.

2.4. Decoding Models

2.4.1. Linear Filter. The 𝑥- and 𝑦-coordinates of the hand
velocity at time 𝑡 were estimated by a linear filter (LF) that
linearly combined the short history of the MEG signals at
each of sixty-eight channels to predict the velocity [25, 27].
The size of the history window applied to each channel
was 200ms, corresponding to 11 sample points (a current
time point plus 10 preceding time points with a 50Hz
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sampling rate). The window size was empirically determined
with which the optimal decoding performance was achieved
[27]. The prediction by LF was executed for each velocity
coordinate as follows:
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using the multiple linear regression method.

2.4.2. Kalman Filter. The Kalman filter (KF) has been suc-
cessfully used as a decoding algorithm of kinematic variables
such as position, velocity, and acceleration in a number of
BCI studies [5, 7, 8, 34]. Construction of KF is based on linear
Gaussian system and observation models as follows:

z (𝑡) = 𝐻 (𝑡) d (𝑡) + 𝜀 (𝑡) , (2)

x (𝑡) = 𝐴 (𝑡) x (𝑡 − 1) + ^ (𝑡) . (3)

The observation model describes how neural observa-
tions are generated from movement states (2). 𝐻(𝑡) is the
matrix ofmappingmovement states x(𝑡) to each neural signal
and estimated from the training data by the least-squares
method. The observation error vector, 𝜀(𝑡), is assumed to be
a multivariate Gaussian random vector with zero mean and
a covariance matrix, 𝑄(𝑡). Here we assume that𝐻 and 𝑄 are
time invariant. The system model describes the evolvement
of movements in time (3). It is assumed to follow a Markov
process.The systemmatrix𝐴(𝑡) is also estimated by the least-
squares method. The system error vector ^(𝑡) is assumed to
follow amultivariateGaussian randomvectorwith zeromean
and a covariancematrix of𝑊(𝑡). Again, we assume that𝐴 and
𝑊 are time invariant.

Once the model parameters are estimated from the
training data, the hand velocity signals (a 2D velocity state
in the case of KF) can be decoded by KF following the two
steps. In the first step, the system model predicts the velocity
state at time 𝑡 from the state at 𝑡 − 1. In the second step,
the observation model estimates a neural vector using the
predicted velocity state and updates the predicted velocity
state based on a difference between those observed and the
predicted neural data. These steps are recursively applied to
every neural observation.

2.4.3. A Hybrid Kalman Filter. With an aim to incorporate
the arm movement dynamics into a modeling scheme, we
exploited two particular aspects of the hand speed char-
acteristics, including nonlinearity and independence. That
is, the hand speed exhibits a typical bell-shaped nonlinear

profile during a point-to-point movement and its profile is
independent of movement direction (see Figure 1(b)). To
this end, we first added new state variables to the velocity
state variables to represent the speed state. In particular, we
created three speed state variables including 𝑟(𝑡), 𝑟(𝑡−1), and
𝑟(𝑡 − 2) to represent the states of current speed, the absolute
acceleration, and the absolute jerk, respectively. Selection
of three speed state variables was based on an observation
that the bell-shaped speed profile might be described by at
least three temporal terms. Then, the state vector of the new
Kalman filter at time 𝑡 was given by

x (𝑡) = [𝑟 (𝑡) 𝑟 (𝑡 − 1) 𝑟 (𝑡 − 2) 𝑑
𝑥
(𝑡) 𝑑
𝑦
(𝑡)]

𝑇

, (4)

where𝑑
𝑥
(𝑡) and𝑑

𝑦
(𝑡) denote𝑥- and𝑦-direction, respectively.

Next, we augmented the Kalman filter by adding a
nonlinear filter. This nonlinear filter predicted the current
hand speed from the three speed state variables. We realized
the nonlinear filter using a multilayer perceptron (MLP),
composed of eighteen hidden units with the hypertangent
activation functions and one output unit with the logistic
sigmoid activation function. Note that MLP only receives the
speed state without direction input to be consistent with our
assumption of independence of speed from direction. MLP is
trained using the scaled conjugate gradient algorithm.

The hand direction is directly estimated from a subset of
the state vector of the Kalman filter, xV(𝑡) = [𝑑𝑥(𝑡) 𝑑𝑦(𝑡)]

𝑇.
At every estimation iteration, the direction vector at time
𝑡 is normalized by xV(𝑡)/‖xV(𝑡)‖ to have a unit length. The
direction vector is multiplied by the estimated speed value
fromMLP to finally produce a velocity estimate at time 𝑡.

2.5. Performance Evaluation. In order to evaluate decoding
performance, we first used a conventional measure using
root-mean-squared-error (RMSE) to assess gross accuracy.
RMSE measures the grand average of the root of squared
errors between the true and decoded hand trajectories.
In addition, to assess finer characteristics of continuous
hand trajectories decoded by BCIs, we evaluated decoded
trajectories using pointing device assessment metrics [44].
A decoded hand trajectory was evaluated with respect to
the task axis in terms of four metrics: orthogonal direc-
tion change (ODC), movement direction change (MDC),
movement error (ME), and movement variability (MV). The
task axis was defined as an optimal straight path between
the starting point and the center of the targets. ODC mea-
sures directional changes orthogonal to the task axis. ODC
represents the consistency of a decoded trajectory toward
the target. MDC measures directional changes in parallel
with the task axis. MDC depicts the smoothness of the
decoded trajectory. ME measures a mean distance of the
decoded trajectory from the task axis. ME exhibits how
much a decoded trajectory is different from the optimal path.
MV measures the standard deviation between a decoded
trajectory and the task axis. MV depicts the straightness of
a decoded trajectory. For more details of these four metrics,
the reader can be referred to MacKenzie et al. [44].
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Figure 2: Reconstructed 2D hand trajectories by three different algorithms (LF, Kalman, and hybrid Kalman). Each line shows a single trial
movement. Different colors indicate reaching movements towards different targets. Circles illustrate a target area. (a) Reconstruction results
for both reach and rest. (b) Reconstruction results for reach only.
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Figure 3: The average RMSE between the true and reconstructed hand trajectories decoded by different algorithms (linear, Kalman, and
hybrid Kalman filters). (a) The average RMSE of the hand position. Error bars indicate the standard errors of the means. ∗𝑃 < 0.05; ∗∗𝑃 <
0.01. (b) The average RMSE of speed.

3. Results

Using either the reaching onlymovement data or the reaching
and resting movement data, along with the corresponding
multichannel MEG data, we trained three different decoding
models and reconstructed the hand trajectories. Figure 2
illustrates a sample of the true and reconstructed hand
trajectories by each decoding model in the 2D space in
one of the participants. Specifically, Figure 2(a) shows the
reconstruction of reaching movements after training and
estimating both reaching and resting movements, whereas
Figure 2(b) shows reaching movements after training and
estimating reaching movement only.The reconstructed hand

trajectories followed similar paths to the true trajectories in
most trials.

We first evaluated the gross performance using RMSE.
We evaluated RMSE of the hand speed as well as the
hand position, because we aimed at the improvement of
speed decoding. The RMSE measurement revealed that the
proposed hybrid Kalman filter produced significantly lower
errors than the standard Kalman filter or the linear filter
(paired 𝑡-test, 𝑃 < 0.01) for both position and speed
(Figure 3). Such lower errors were achieved regardless of
movement states: reach and rest or reach only.The linear filter
exhibited lower position and speed prediction errors than the
Kalman filter when the data of reaching movement were only
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Table 1: Movement prediction performance by different algorithms.

Algorithm Movements ODC MDC ME MV
Kalman Reach + rest 19.728 ± 0.227 23.262 ± 0.242 0.148 ± 0.003 0.190 ± 0.003
Hybrid Reach + rest 8.015 ± 0.175 9.321 ± 0.180 0.191 ± 0.004 0.251 ± 0.005
Linear Reach + rest 20.010 ± 0.277 21.585 ± 0.333 0.215 ± 0.004 0.300 ± 0.006
Kalman Reach 12.995 ± 0.167 16.992 ± 0.181 0.125 ± 0.001 0.169 ± 0.002
Hybrid Reach 7.956 ± 0.113 9.841 ± 0.153 0.188 ± 0.002 0.258 ± 0.002
Linear Reach 15.410 ± 0.193 17.441 ± 0.244 0.159 ± 0.002 0.222 ± 0.003
All values are the mean ± standard error of the mean. ODC: orthogonal direction changes; MDC: movement direction changes; ME: movement error; MV:
movement variability.

used (𝑃 < 0.01). However, the performance of two filters
was on par with each other when the data of both reaching
and resting movements were used. Notice that overall RMSE
of the position decreased when the reaching movement data
were only used (Figure 3(a)), whereas overall RMSE of the
speed increased for the same case (Figure 3(b)).

Next, we evaluated fine measures including ODC, MDC,
ME, and MV for individual trajectories (see Methods for
details of each measure). The evaluation results are summa-
rized in Table 1.The hybrid Kalman filter produced the fewest
ODC and MDC for both cases of reach and rest or reach
only.The linear filter and the Kalman filter, on the other hand,
producedmoreODC andMDC, showing that the trajectories
by these filters were relatively less consistent and smooth.The
hybridKalmanfilter reducedODCandMDScompared to the
linear filter by approximately 55% and 51%, respectively. On
the contrary, the standard Kalman filter produced the lowest
ME and MV compared to the hybrid Kalman filter and the
linear filter.The hybrid Kalman filter produced lowerME and
MV than the linear filter when the data of both reach and rest
were used but higher than the linear filter when the data of
reach only were used.The Kalman filter reducedME andMV
compared to the linear filter by approximately 27% and 31%,
respectively. Note that the four measures of the linear and
Kalman filters were reduced when the reaching movement
data was used only (all measures; 𝑃 < 0.01), while those of
the hybrid Kalman filter remained relatively steady (ODC;
𝑃 = 0.828, MDC; 𝑃 = 0.022, ME; 𝑃 = 0.204, MV; 𝑃 = 0.065).

4. Conclusions and Discussion

The present study addressed how we could improve the
design of a decoding model in an MEG-based noninvasive
BCI by incorporating the properties of continuous arm
movements. Based on the fact that the hand speed shows
nonlinear profiles and is generally independent of movement
direction, we designed a model that separately decoded
speed and direction to reconstruct hand trajectories from the
humanMEG.Themodelwas built by adding a nonlinear filter
for speed decoding to the Kalman filter while the direction
information was directly inferred by the Kalman filter. We
demonstrated that this hybrid Kalman filter generated lower
prediction errors to reconstruct the hand trajectory and also
to estimate the hand speed than the standard Kalman filter
and the linear filter. We also investigated how the selection of

movement states affected decoding performance. We found
that the linear filter performed better than the Kalman filter
when the data of reaching movement was only used. On the
other hand, the performance of the two filters was similar
when the data of both reaching and resting movements
was used. This result demonstrates that the choice of a
decodingmodel may be dependent on the type of continuous
movements a BCI is designed to estimate.

We note that speed RMSE increased but position RMSE
decreased when we used the data of reaching movements
only. It may imply that speed decoding could be improved
by training more diverse movements including reach and
rest. However, position RMSE could be improved by training
more specific movements including reach only and allowing
decoding models to focus on movement prediction. We also
note that the linear filter outperformed the Kalman filter
when the data of reaching movements was only consid-
ered. This may imply that, for stereotyped movements, the
simple direct decoding approach such as the linear filter
could perform reasonably well and the generative decoding
approach such as the Kalman filter might provide little
advantage. However, when we modified the Kalman filter
to fit to the characteristics of BCI output (here, continuous
arm movements), we could significantly improve decoding
accuracy.

We used a variety of assessment tools to evaluate BCI
performance.Thefinemeasures adopted in this study, includ-
ing ODC, MDC, ME, and MV, allowed us to look into more
details of how accurately and reliably the hand trajectories
were reconstructed [7, 8, 45]. In fact, four different measures
revealed certain advantages and disadvantages of using the
new hybrid Kalman filter, demonstrating that a new decoding
model should be evaluated in multiple angles. This would
not be possible if we only used a gross measure of RMSE.
The worse outcomes in terms of ME and MV with the
hybrid Kalman filter might be due to its wide range of
variability in the reconstructed trajectories. It shows the
current limitations of the proposed model and also gives us
a direction of how to improve this model to improve the
straightness of the trajectory in the following study.

Finally, we would like to underline that the present study
demonstrates an approach of improving neural decoding
models, not by adopting a cutting-edge machine learning
algorithm but by taking the properties of a BCI output
into account. Demonstration of decoding improvement by
redesigning a current Kalman decodingmodel based on hand
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movement characteristics may indicate the importance of
design factors in decoding models and thus in BCIs. We also
examined a possibility of estimating the hand speed directly
from the KF state variable without adding a nonlinear filter
to the state variables. It resulted in a decoding performance
significantly worse than the performance of using an MLP
(𝑃 < 0.01). Hence, we verified that adding a nonlinear filter
improved performance further. Yet, we also fully recognize
that a complete evaluation of a decoding model should be
done in a closed-loop BCI system, and therefore we will
pursue online BCI studies using our new approach in the
future.
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