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Task allocation among social insect workers is an ideal framework for study-

ing the molecular mechanisms underlying behavioural plasticity because

workers of similar genotype adopt different behavioural phenotypes. Elegant

laboratory studies have pioneered this effort, but field studies involving

the genetic regulation of task allocation are rare. Here, we investigate the

expression of the foraging gene in harvester ant workers from five age- and

task-related groups in a natural population, and we experimentally test how

exposure to light affects foraging expression in brood workers and foragers.

Results from our field study show that the regulation of the foraging gene in

harvester ants occurs at two time scales: levels of foraging mRNA are associated

with ontogenetic changes over weeks in worker age, location and task, and

there are significant daily oscillations in foraging expression in foragers. The

temporal dissection of foraging expression reveals that gene expression changes

in foragers occur across a scale of hours and the level of expression is predic-

ted by activity rhythms: foragers have high levels of foraging mRNA during

daylight hours when they are most active outside the nests. In the experimental

study, we find complex interactions in foraging expression between task behav-

iour and light exposure. Oscillations occur in foragers following experimental

exposure to 13 L : 11 D (LD) conditions, but not in brood workers under similar

conditions. No significant differences were seen in foraging expression over

time in either task in 24 h dark (DD) conditions. Interestingly, the expression

of foraging in both undisturbed field and experimentally treated foragers is

also significantly correlated with the expression of the circadian clock gene,

cycle. Our results provide evidence that the regulation of this gene is

context-dependent and associated with both ontogenetic and daily behavio-

ural plasticity in field colonies of harvester ants. Our results underscore the

importance of assaying temporal patterns in behavioural gene expression

and suggest that gene regulation is an integral mechanism associated with

behavioural plasticity in harvester ants.
1. Introduction
One of the most exciting new frontiers in sociogenomics is investigating how

behavioural plasticity in advanced social organisms is regulated by molecular

mechanisms [1–7]. Social insects provide an ideal system for studying the evol-

ution and ecology of behavioural plasticity because the ecological success of a

colony depends on task allocation [2,3,8,9]. Colonies operate without central
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control. Individuals respond to local cues; and in the aggregate,

the colony adjusts the numbers of workers performing various

tasks, in response to current conditions [10]. Recent molecular

studies present evidence for strong links between differential

gene regulation and worker development [11,12], behaviour

[7,13–16] and social environment [13,15,17,18]. These studies,

in conjunction with the sequencing of many social insect

genomes [19–27], provide the critical groundwork for detailed

functional analysis of target genes and their effect on social

insect behaviour.

Task allocation differs among social insect species. In many

social insect societies, workers progress through tasks in an

age-dependent manner, a process termed temporal polyethism

[28]. Diverse mechanisms, using conserved molecular path-

ways, interact to regulate age-polyethism in workers [3].

For example, genetic pathways involved in nutrition and

metabolism play a major role in the regulation of worker task

(reviewed in [3,29]). Causal relationships between gene

regulation and age-related transitions in worker task have

been documented for malvolio, a gene involved in manganese

transfer and sucrose responsiveness [30], the storage protein

gene, vitellogenin [31], the insulin-signalling TOR pathway

[32,33] and foraging, a cyclic GMP-activated protein kinase

[34–36]. The results from these studies highlight the complex-

ity of relationships between conserved genetic pathways and

transitions to foraging in social insects.

The foraging gene, a cGMP-activated protein kinase gene

(PKG), has emerged as a behavioural gene of particular interest

due to the diversity of relationships between the expression of

this gene and behaviour [14,29,34,37–45]. Foraging is associ-

ated with behaviour in diverse taxa including nematodes,

insects and mammals [40,44]. However, associations between

this gene and behaviour vary across species in both mechanism

and proposed function, ranging from learning and memory

to chemotaxis and food-related behaviours [40,44]. PKG is

activated by a common secondary messenger (cGMP) and,

when activated, phosphorylates a host of cellular proteins

[46]. Thus, this gene is associated with a diverse range of

behavioural and physiological processes [44].

The foraging gene was originally described in fruit flies [37]

and has been shown to have a direct link to foraging behaviour

in several insect species [34,35,37,43]. foraging has also been

shown to influence habituation and sucrose responsiveness,

stress tolerance, olfactory and visual learning, memory and

sleep patterns in fruit flies [47–49].

In social insects, the foraging gene is implicated in the age-

related transition from other tasks to foraging [34,35,39,42,

43,50]. In honeybees, Polistes metricus wasps and Bombus terres-
tris bumblebees, foragers have higher levels of expression of

foraging than nurse bees [32,34,50]. By contrast, studies on

Vespula wasps, Bombus ignites bumblebees and harvester ants

suggest that workers that forage have lower levels of foraging
mRNA than workers that do not forage [39,42,43,51]. Similarly,

the ant Pheidole pallidula shows high activity of this gene in the

soldier caste and low expression in minor workers that engage

frequently in foraging [43]. Interestingly, an experimental

manipulation of same-age cohorts and tasks in Cardiocondyla
obscurior demonstrated that foraging expression in this

short-lived ant is correlated with age, but not with the foraging

task [52].

Here, we explore foraging gene expression and task allocation

in a natural population of red harvester ants (Pogonomyrmex
barbatus). In previous work, we showed that the expression of
a harvester ant orthologue (Pbfor) to foraging at dawn was

lower in foragers than workers of other tasks, including brood

care (nurse) workers [39]. Harvester ants live in large colonies

of up to 12 000 workers in the southwestern deserts of the

United States [53]. Temporal polyethism in harvester ants

occurs over the course of a year, the approximate lifespan of a

worker [54,55]. Younger workers perform tasks related to

brood care and do not leave the nest. Workers then progress to

nest maintenance work, with brief trips out of the nest to carry

out refuse, then to patrolling, with short morning forays from

the nest, and finally to foraging [56–58]. Foragers spend the

most time out of the nest, leaving in early morning and foraging

until mid-afternoon.

In the field, foraging activity occurs in a daily temporal

pattern [59,60]. The discovery of task-specific expression of

circadian clock genes in harvester ants confirmed that fora-

gers have a functional molecular clock and endogeneous

circadian rhythms, while workers that perform tasks inside

the nest do not show pronounced circadian rhythms in

activity levels or expression of clock genes [61]. In addition,

results from a laboratory study on Pogonomyrmex occidentalis,

a congener of P. barbatus, revealed that the expression of the

foraging gene in workers can vary with time of day [62].

Foragers of P. occidentalis had low levels of foraging mRNA

only during late evening and early morning hours, and had

high levels of foraging mRNA relative to non-foraging

workers during the daytime. These laboratory results led us

to question whether the previous finding of low foraging
gene expression in P. barbatus foragers was influenced by

the early morning collection time of the field samples.

Here, we explore how gene expression correlates with the

temporal regulation of foraging behaviour in a natural popu-

lation of harvester ants. By investigating gene expression as it

occurs in the field, we are able to investigate the molecular

responses to the natural cues of temperature, light and inter-

actions among workers [63–66] that influence the circadian

pattern of foraging activity. We consider two time scales,

asking how foraging expression is associated with daily indi-

vidual activity rhythms during a circadian cycle, and how

the patterns of expression are associated with task transitions

over weeks to months as workers mature. In addition, we

experimentally manipulate the light conditions of field-

collected brood workers and foragers to test whether the

expression of foraging is correlated with exposure to light and

the expression of the circadian clock gene, cycle.
2. Material and methods
(a) Ant collection
Workers of P. barbatus were collected from colonies near our long-

term study site in Rodeo, New Mexico. To ensure representation of

all behavioural tasks and to replicate findings across colonies,

workers were collected from large, mature colonies in the early

morning hours (n ¼ 4 colonies for field study, n ¼ 6 colonies for

experimental study). Workers were designated as belonging to

one of five groups: callows, brood workers, nest maintenance,

patrollers or foragers, defined as in previous work [58,60]. We con-

sidered three age-related worker categories: immature workers

(called callows) and two of the task groups (brood care workers

and foragers) which represent clear transitions in the maturation

of workers. Two other tasks (patrolling and nest maintenance)

are more labile, so are less tightly associated with worker age



Table 1. qPCR primers designed for study.

gene forward primer reverse primer probe

PbFor TGGTGGTGACCCAATGAAGACGTA GTTCCGCGGGATTATCTCTG TCCATCACGCGTAACGCAATGGCT

PbCYCix GCGATATGCAGGTGAAAGAAGA ATCACGCAATACTTCCAATCTATGTT CGACACCACCATTGGCTGTCACAGA

PbEF1a GGCTCTGAGGGAGGCTTT CGGAGATGTTCTTCACGTTGAA CTCGCGATAACGTCG
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[57,58]. Patrollers, foragers and, to a lesser extent, nest maintenance

workers are exposed to external environmental conditions [67].

Patrollers, which were the first group we collected in the

morning, emerge at first light and travel around the nest

mound and foraging area, often with the abdomen tucked

under the thorax [68]. Patrollers stimulate the start of foraging

upon returning to the nest and influence the direction of foraging

each day. Nest maintenance workers make short trips outside the

nest to carry out debris and discard it in a pile away from the nest

entrance. Newly emerged adults (callows) are identified by their

distinct orange-coloured exoskeleton. In laboratory colonies, cal-

lows are usually found near the brood and queen, and may

participate in brood work [58]. Brood care workers are young

workers that are found inside brood chambers. We collected

only brood care workers that were carrying brood in their

mandibles. Foragers were collected in late morning, while they

were returning to the nest carrying food. The nests were then

excavated to collect the brood workers and callows.

(b) Field experiment set-up for time of day sampling
Callows and brood workers were placed together in 30.5 �
30.5 cm plastic boxes with sand and brood in complete darkness.

Nest maintenance and patrollers were placed in plastic boxes

with sand and rocks that were dark on one side and exposed to

ambient light on the other side; foragers were placed in plastic

boxes with sand and grasses, and half of the box was exposed to

ambient light. The boxes were housed in ambient temperature con-

ditions in a laboratory at the Southwestern Research Station

(American Museum of Natural History) in Portal, Arizona. To con-

trol for potential effects of alarm responses induced during the

transport of ants to the laboratory, we made certain that all task

groups were exposed to the same handling conditions. In the

course of the subsequent 24 h, a sample of 4–5 ants from each

task and colony were removed at 4 h intervals, and flash frozen

in liquid nitrogen. All sampling during evening hours was done

using dim red light in dark conditions. Ants were collected from

each colony at seven time points: 16.00, 20.00, 24.00, 4.00, 8.00,

12.00 and 16.00 (day 2). Approximate daylight hours during

sampling were 13 h of daylight (5.30–18.30). Frozen ants were

stored in the 2808C freezer prior to brain dissection.

(c) Light exposure experiment
Foragers and brood workers (n ¼ 18 workers per task per colony)

were collected from six medium-sized field colonies as described

above. Workers were immediately placed into artificial nest-boxes

(n ¼ 24 nest-boxes in total) in one of two treatments: 13 L : 11 D

(LD) ants were placed in nest-boxes (with water ad libitum) with

ambient daytime light and night-time darkness; DD ants were

housed in identical nest-boxes in complete darkness for 24 h.

Nest-boxes with inside workers contained some dirt/sand and

brood from the original colony. Forager nest-boxes contained

some dirt/sand and local leaves. Workers were sampled from

these artificial nest-boxes at three time points (13.00, 21.00 and

5.00). Red lights were used to sample during the dark hours to mini-

mize light exposure. Live workers were placed immediately into

cryovials and then flash frozen in liquid nitrogen. Frozen samples

were stored on dry ice, shipped to Colgate University and frozen

at minus 808C prior to brain dissection.
(d) RNA extraction and quantitative real-time PCR
Brains were dissected on dry ice and placed immediately into

RNAlater (Ambion) to remove glands. Whole brains (including

optic lobes) were placed immediately in lysis buffer and hom-

ogenized with Qiashedders (Qiagen). RNA was purified from

three homogenized brains per sample using RNAeasy Micro

Kit (Qiagen) protocols. Purified RNA was frozen at 808C prior

to qPCR procedures. Harvester ant-specific primers for qPCR

analyses were designed from exon-coding regions to amplify a

128 bp region of foraging using the newly sequenced genome

[22,23]. cDNA was synthesized from extracted total RNA preps

using ABI TaqMan Gold Reverse Transcriptase reagents and

random hexamers. The 10 ml reactions included 1.0 ml of RNA

with 1� TaqMan RT Buffer, 5.5 mM MgCl2, 500 uM of each of

the deoxyNTPs, 2.5 uM of the random hexamer primers,

0.4 U ml21 of RNase Inhibitor and 1.3 U ml21 of MultiScribe

Reverse Transcriptase (50 U ml21). Each colony had one sample

(n ¼ 3 brains) per time point; reactions were performed in tripli-

cate for each sample (n ¼ 3 technical replicates). All reactions

were run at 258C for 10 min, 488C for 30 min and 958C for

5 min, and then stored at 2208C until quantitative PCR. For

each cDNA replicate, expression of Pbfor was assayed on an

ABI 7900 HT instrument using ABI Taqman Gold reagents and

primers designed as a Taqman Gene Expression Assay

(table 1). The 25 ml qPCR reactions for foraging included 3.5 ml

of template cDNA with 1� TaqMan Buffer A, 5.5 mM MgCl2,

200 mM each of dNTPs, 100 nM of probe, 200 nM of each

primer, 0.01 U ml21 of AmpErase UNG and 0.025 U ml21 of

AmpliTaq Gold DNA Polymerase (50 U ml21). To standardize

foraging expression, elongation factor 1a (64 bp) was used as a con-

trol for each cDNA replicate. Of the three control genes tested

(PbEF1a, Pb18S and PbRPII), the amplification efficiency of

PbEF1a was most similar to the foraging gene and levels of

PbEF1a did not vary over time. The 25 ml qPCR reactions for

the control included 1.5 ml of template cDNA. For the light

exposure experiment, expression of the cycle gene was also

measured with the same procedure used for foraging expression.

Real-time PCR reactions for Pbfor and PbEF1a were performed

under the following conditions: 2 min at 508C for one cycle, 10 min

at 958C for one cycle, 15 s at 958C, 1 min at 588C, for 45 cycles. Data

were analysed using SDS 2.1 software and quantification of rela-

tive mRNA levels was calculated using the DDCt method. For

the field experiment, relative expression levels within colonies

were calculated across all tasks and time points, and then normal-

ized (due to potential differences in gene expression levels across

colonies) using a z-score transformation. For both treatments in

the light experiment, relative expression levels within colonies

were calculated across both foraging and brood care tasks for com-

parisons of overall foraging expression between tasks. Relative gene

expression was also calculated within tasks in each treatment

to compare changes in expression over time for each task.
(e) Statistical analysis
To test for differences in individual brain expression levels among

groups, we tested for normality using Shapiro–Wilk tests in SPSS.

Because the data did not deviate significantly from a normal distri-

bution, we used mixed-model ANOVAs with time as the ‘within
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Figure 1. Relative gene expression levels of foraging across time (hours) from field-collected workers of five behavioural tasks. Relative expression values for each
data point represent the average expression level across colonies (n ¼ 4 colonies, +s.e.). Data were normalized to account for differences in the amplitude of gene
expression between colonies using a z-score transformation; thus, relative expression values are plotted as the number of standard deviations above and below the
mean value for all data points (across task and time). Standard error bars are calculated from variation across four colonies. The open stripe in the horizontal bar at
base of the plot represents the daylight phase (13 h) and the solid stripe represents the dark phase (11 h) during the night. Overall differences in foraging gene
expression among tasks are significant; only foragers have significantly different levels of Pbfor mRNA over time. *p , 0.05. (Online version in colour.)
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subject’ fixed factor, task, location or age as ‘between subjects’

fixed factors, and colony as a random factor. For the field study,

we tested three hypotheses. We tested whether foraging gene

expression was associated with task by comparing the five behav-

ioural tasks. We tested whether foraging gene expression was

associated with worker environment by comparing internal

workers (callows and brood care workers) to external workers

(nest maintenance, patrollers and foragers). We tested whether

foraging gene expression was associated with worker age by com-

paring callows (newly emerged), brood care workers (young

workers) and foragers (old workers).

Differences in the pattern of relative Pbfor expression over

time were analysed for individual task groups using mixed-

model ANOVAs. We also tested the pattern of Pbfor expression

in foragers using repeated measures contrast analyses [69].

Contrast analysis tests specific, theoretically driven, a priori pre-

dictions about patterns in repeated measures data. We tested

the prediction that daily fluctuations in foraging gene expression

follow observed daily rhythms in task behaviour. The expression

pattern of foragers was compared with a generalized sinusoidal

curve that approximates the daily foraging activity rhythms of

harvester ant foragers in the field and the locomotor activity of

foragers in laboratory colonies. We used Pearson’s correlation
analyses to test the correlation of foraging and cycle expression

within each task.

To test for differences in foraging expression in the light

exposure experiment, we used mixed-model ANOVAs with time

as the ‘within subject’ fixed factor, light condition as the ‘between

subjects’ fixed factor and colony as a random factor. We tested

within-task differences in expression over time of day with one-

way ANOVAs. We used Pearson’s correlation analyses to test the

correlation of foraging and cycle expression in foragers in LD and

DD conditions. All analyses were performed in SPSS and

we controlled for multiple testing using Bonferroni corrections.
3. Results
(a) Field study
When considering all five tasks, gene expression varies signifi-

cantly among tasks (F4,98 ¼ 3.732, pcorr ¼ 0.021, h2 ¼ 0.132;

figure 1 and table 2), and the interaction between task and

time was significant (F2,98 ¼ 2.521, pcorr ¼ 0.003, h2 ¼ 0.09).

Comparisons of internal and external tasks (callows and

brood care workers versus nest maintenance workers,



Table 2. Mixed-model ANOVA results for field study. We tested three hypotheses: the effect of task, location or age and time of day on foraging expression
in workers.

d.f. F p-valuesa h2

task task 4,98 3.732 0.021* 0.132

time 6,98 0.699 0.651 0.041

task � time 24,98 2.521 0.003** 0.090

location location 1,118 7.895 0.006** 0.062

time 6,118 1.010 0.422 0.049

location � time 6,118 4.943 0.000* 0.201

age age 2,62 14.277 0.000** 0.315

time 6,62 1.475 0.201 0.125

age � time 6,62 9.899 0.000** 0.489
aBonferroni-corrected p-values; *p , 0.05, **p , 0.01.
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Figure 2. Results from the light exposure experiment. Gene expression data
were measured across all samples and were transformed using a z-score analysis
across colonies (n ¼ 6) to control for differences in expression levels between
colonies. Bars represent the number of standard deviations above or below the
mean colony expression value (+s.e.). Differences between tasks are signifi-
cant; there is no significant effect of light condition or task � light
interaction on expression levels. BC ¼ brood care workers; FOR ¼ foragers;
LD ¼ 13 h ambient light exposure, 11 h dark; DD ¼ continuous 24 h dark.
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patrollers and foragers) revealed significant differences in gene

expression between locations (F1,118 ¼ 7.895, pcorr ¼ 0.006,

h2 ¼ 0.062), and the interaction between location and time

was significant (F6,118 ¼ 4.943, pcorr ¼ 0.000, h2 ¼ 0.201).

When considering only age-related categories (young callows

and brood care workers versus older foragers), gene expression

varied significantly across age (F2,62¼ 14.277, pcorr¼ 0.000,

h2 ¼ 0.315) and the interaction between age and time was

significant (F6,62 ¼ 9.899, pcorr ¼ 0.000, h2 ¼ 0.489).

Foragers have significant changes in foraging gene

expression over time (F6,20 ¼ 3.613, pcorr ¼ 0.019, h2 ¼ 0.520;

other tasks, see electronic supplementary material, table

S1). The pattern of expression of Pbfor mRNA in forager

brains is correlated with the generalized sinusoidal function

curve predicted from the daily fluctuations in foraging

behaviour (t ¼ 2.78, r ¼ 0.89, p ¼ 0.05). Expression levels of

Pbfor were significantly correlated with cycle expression in

foragers only (foragers: Pearson’s correlation ¼ 0.80, p ¼
0.03; other tasks, see electronic supplementary material,

table S2).
(b) Light exposure experiment
In the exposure experiment, we found significant differences

in relative gene expression for task (F1,57 ¼ 9.141, pcorr ¼

0.004, h2 ¼ 0.138), but not for light condition (F1,57 ¼ 0.058,

pcorr ¼ 0.810, h2 ¼ 0.001), time of day (F1,57 ¼ 1.643, pcorr ¼

0.202, h2 ¼ 0.055) or the interaction between task and light

condition (F1,57 ¼ 0.011, pcorr ¼ 0.916, h2 ¼ 0.000; figure 2

and table 3).

When relative expression is calculated within tasks across

time of day, foragers differ in foraging levels depending on

time of day only in the LD treatment, but this difference is

not significant following correction for multiple tests (LD:

F2,9 ¼ 2.859, pcorr ¼ 0.109, h2 ¼ 0.389; DD: F2,10 ¼ 0.982,

pcorr ¼ 0.408, h2 ¼ 0.164; figure 3). Foraging expression in

foragers is significantly correlated with the expression of cycle,
a circadian clock gene in LD (Pearson’s correlation¼ 0.627,

p ¼ 0.007) and DD (Pearson’s correlation ¼ 0.633, p ¼ 0.005)

conditions. Brood workers do not show differences in foraging
expression depending on time of day in either treatment (LD:

F2,9 ¼ 0.670, pcorr¼ 0.536, h2 ¼ 0.130; DD: F2,15¼ 0.765,

pcorr ¼ 0.483, h2 ¼ 0.092).
4. Discussion
The temporal dissection of foraging expression in harvester ants

reveals that the regulation of this gene is associated with

worker behaviour at two time scales. On the scale of hours,

gene expression undergoes changes greater than twofold, in

magnitude, during the daily activity rhythms of foragers. On

the scale of weeks to months, a shift in the daily temporal pat-

tern of gene expression occurs during worker ontogeny from

young workers inside the nest to older foragers. The temporal

patterns of foraging gene expression in harvester ants are

associated with worker task, age, location and exposure to

light. Thus, our results reveal a complex gene � physiology �
environment interaction, as would be expected for a behav-

iour-related gene that is one component of an intricate

network. These associations are driven by significant fluctu-

ations of Pbfor expression in workers of a particular task,

foraging. Of the five worker groups studied, only foragers

show significant daily fluctuations in foraging gene expression.

The regulation of this gene in foragers is associated with daily

activity patterns. Foragers have relatively higher expression

during the day, when they are most active outside the nest,

collecting food.
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Table 3. Mixed-model ANOVA results for experimental study. We tested
one hypothesis: the effects of light condition (LD or DD) and time of day
on foraging expression in workers.

d.f. F p-values h2

task 1,57 9.141 0.004** 0.138

light condition 1,57 0.058 0.810 0.001

time 2,57 1.643 0.202 0.055

task � light 1,57 0.011 0.916 0.000

task � time 2,57 0.558 0.576 0.019

light � time 2,57 0.401 0.671 0.014

task � light � time 2,57 0.585 0.560 0.020

**p , 0.01.
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Our field results demonstrate an increase in foraging
expression when foragers are most actively foraging outside

the nest, exposed to light and other external environmental

cues. However, nest maintenance workers and patrollers are

also exposed to external conditions, although for a shorter

amount of time than foragers, but these workers do not

show significant diurnal changes in foraging expression. For-

agers in laboratory colonies of a related species, P.
occidentalis, also had high levels of foraging mRNA during

the day [62]. This increase in foraging expression in harvester

ant foragers may be associated with exposure to new external

stimuli when the worker begins to forage, including exposure

to light, and the rapid learning associated with foraging be-

haviour [44]. The fact that gene expression does not change

significantly over time for either nest maintenance workers

or patrollers in field colonies suggests that if external factors

do indeed influence the foraging pathway, the duration of

exposure to the external environment may be important.

Our experimental results support the hypothesis that

exposure to light may modulate foraging expression in fora-

gers but not brood workers. Expression levels of the

foraging gene are depressed in foragers relative to brood

workers in time points representing the dark phase of the

LD treatment and are relatively low, and with more variabil-

ity, in the DD treatment. Previous laboratory experiments on
honeybees established a causal link between foraging gene

expression, and foraging behaviour and suggested a potential

role for foraging in phototaxis [34,35]. Differences in photo-

taxis between tasks have not yet been adequately tested in

harvester ants. If Pbfor expression is linked to phototactic

behaviour, then it is reasonable to expect that the levels of

Pbfor in nest maintenance workers and patrollers would be

similar to forager levels during their active hours outside

the nest, but this was not the case in our study.

Alternatively, harvester ant foragers possess strong mol-

ecular circadian rhythms [61], and this internal clock may be

linked to the regulation of behavioural genes involved in task

allocation. The association of the circadian clock with the regu-

lation of the foraging gene gains support in this study from both

behavioural and molecular data. In rhythmic foragers, the

expression of Pbfor is correlated with daily behavioural pat-

terns and with the expression of the clock gene, cycle, in both

field and experimental conditions. Arrhythmic brood workers

do not have differences in foraging expression with time of day,

even when exposed to LD conditions. However, foragers typi-

cally maintain rhythms and cyclic expression of cycle in DD

(data not shown), while we do not see significant differences

in foraging expression under DD conditions in this study.

These results suggest that foraging expression is modulated

by the extended exposure to hours of light or other external fac-

tors, and is not simply influenced by endogenous rhythms.

Another possibility is that significant oscillations in foraging
expression are too difficult to measure given the weak circadian

oscillations in DD conditions, a phenomenon also seen in some

circadian genes.

Daily oscillations in the foraging gene were also evident in

a microarray analysis of circadian rhythms in honeybee fora-

gers, although subsequent qPCR analyses did not detect

significant variation over time for either nurses or foragers

[15]. The molecular pathways affected by circadian circuitry

are not yet well understood, but recent work emphasizes

multiple molecular responses to oscillations in circadian

genes that are related to behaviour [15,70–73].

Our results highlight the importance of considering the

effect of time on sampling expression levels of behavioural

genes, particularly those that are likely to be closely linked

to circadian rhythms. In harvester ants, daytime levels of

foraging mRNA can be higher in foragers relative to other

task groups, but at some times of day, foragers exhibit

lower expression levels of foraging than other task groups.

This finding has two implications. First, brood workers and

callows have relatively greater expression during late evening

and early morning hours. This explains why, in a previous

study in which ants were sampled at dawn [39], foraging
expression was lower in foragers relative to other task

groups. Second, our results indicate that some of the reported

experimental differences among species in the patterns of

foraging expression may not represent distinct associations

of foraging gene expression with species-specific behaviour.

Instead, differences in the timing of sample collections may

lead to the inadvertent capture of discrete snapshots of

expression levels across the daily fluctuations in expression

of the gene. Our review of the methods in previous studies

of social insects [34–36,42,43,50,52] did not provide enough

detail on the timing of sampling to determine how much

this may have influenced the results.

One limitation of this field study is that it is not possible to

completely disentangle the effects of age from the effects of
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location and/or task. Because ants probably perform nest

maintenance and patrolling across a range of ages, and some

may overlap with ages of foragers, experiments would be

needed using similar-age cohorts that perform different

tasks. This has been done in elegant laboratory experiments

on social insects (e.g. [34,52]) but would be difficult to do in

a natural field experiment.

Gene expression and the presence of foraging mRNA do

not necessarily translate to protein activity differences

in vivo. Future experiments should examine expression pat-

terns in FOR protein in brains of foragers versus workers of

other task groups. Additionally, in situ studies of RNA

levels will elucidate whether the differential regulation of

foraging is limited to particular brain areas in particular task

groups, or during particular stages of behavioural matu-

ration. A study of the ant Pheidole pallidula indicates that the

spatial distribution of the foraging protein in the brain differs

between minor and major workers of this species [43]. Thus,

there may be changes in the location of foraging-sensitive

regions of the brain involved in the transitions between

tasks in harvester ant workers that could be determined by

immunohistochemical analyses.

The flexibility in the regulation of foraging expression

underscores the potential importance of this gene in the

development of behavioural plasticity in social insect workers

[45]. The foraging gene is highly conserved in the Hymenop-

tera, with little evidence for functional evolution in amino

acid sequence [62]. It appears that gene regulation is the inte-

gral mechanism associated with behavioural plasticity, at
least in harvester ants. The growing body of work showing

that the amino acid-encoding sequences of many genes affect-

ing social behaviour are highly conserved opens an exciting

new direction in sociogenomics [2,3,74]—to understand

when and where these conserved genes are active and how

these differences play a role in organizing behaviour. Our

results emphasize the importance of understanding how

gene expression influences behaviour in natural field environ-

ments as well as in laboratory settings. Understanding the

diversity of mechanisms by which conserved molecular path-

ways regulate behavioural plasticity in workers is a central

issue in social insect biology and is critical to unravelling

the molecular organization of social behaviour.
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