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Abstract

Motivation: Large-scale cancer omics studies have highlighted the diversity of patient molecular profiles and the im-
portance of leveraging this information to deliver the right drug to the right patient at the right time. Key challenges
in learning predictive models for this include the high-dimensionality of omics data and heterogeneity in biological
and clinical factors affecting patient response. The use of multi-task learning techniques has been widely explored to
address dataset limitations for in vitro drug response models, while domain adaptation (DA) has been employed to
extend them to predict in vivo response. In both of these transfer learning settings, noisy data for some tasks (or
domains) can substantially reduce the performance for others compared to single-task (domain) learners, i.e. lead to
negative transfer (NT).

Results: We describe a novel multi-task unsupervised DA method (TUGDA) that addresses these limitations in a uni-
fied framework by quantifying uncertainty in predictors and weighting their influence on shared feature representa-
tions. TUGDA’s ability to rely more on predictors with low-uncertainty allowed it to notably reduce cases of NT for
in vitro models (94% overall) compared to state-of-the-art methods. For DA to in vivo settings, TUGDA improved
over previous methods for patient-derived xenografts (9 out of 14 drugs) as well as patient datasets (significant asso-
ciations in 9 out of 22 drugs). TUGDA’s ability to avoid NT thus provides a key capability as we try to integrate di-
verse drug-response datasets to build consistent predictive models with in vivo utility.

Availabilityand implementation: https://github.com/CSB5/TUGDA.

Contact: nagarajann@gis.a-star.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances in DNA sequencing technologies have galvanized a para-
digm shift in medicine from a one-size-fits-all approach to precision
medicine, that is tailored to stratified populations based on molecu-
lar information (Chae et al., 2017). In oncology, an appreciation of
the molecular diversity of cancers and limitations of standard-of-
care treatments have further driven this interest toward patient-spe-
cific options based on re-purposing drugs and identifying targeted
drug combinations (Brown and Elenitoba-Johnson, 2020). The
availability of a large number of cancer cell lines has provided ready
models for collecting drug response data (Iorio et al., 2016). In com-
bination with detailed omics profiles, these datasets present a unique
opportunity to advance precision oncology based on state-of-the-art
machine learning techniques (Jiang et al., 2018).

The complexity inherent in biological systems and omics data
poses two main challenges in learning models that could have

clinical utility. Firstly, the high-dimensionality of omics data rela-
tive to the number of data points available can impact the general-
izability of the models that are learnt (Azuaje, 2016). Joint models
that predict response for many drugs in a multi-task learning
(MTL) setting have been widely used to alleviate this limitation
(Costello et al., 2014; Suphavilai et al., 2018; Wang et al., 2017;
Zhang and Yang, 2018). Secondly, while cell line datasets are typ-
ically used to learn predictive models, they are not expected to cap-
ture key aspects relevant to in vivo response including tumor
heterogeneity and microenvironment, immune response and over-
all patient health (van Staveren et al., 2009). Previous works
(Geeleher et al., 2014, 2017; Sakellaropoulos et al., 2019) assumed
that batch effects were the main origin of differences to correct for
between models, without directly addressing biological variations.
Recently, some methods have sought to use domain adaptation
(DA) techniques to bridge the in vitro to in vivo gap (Mourragui
et al., 2019, 2020; Sharifi-Noghabi et al., 2020).
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An underlying principle shared for MTL and DA techniques is
that transfer learning, whether it is across tasks or domains, needs
generalization of information through shared representations.
Inability to do this effectively leads to negative transfer (NT) where
predictive performance for target tasks or domains is instead ham-
pered relative to single-task learning (STL) (Zhang et al., 2020). For
MTL, this can happen when unrelated tasks are learnt together (po-
tentially addressed by quantifying task relatedness as in GO-MTL,
Kumar and Daumé, 2012) or when poor predictors adversely impact
the shared representation (potentially addressed by weighting trans-
fer flows based on task loss as in AMTL, Lee et al., 2016 and its ex-
tension Deep-AMTFL, Lee et al., 2018). For DA, NT can occur
when there is weak or no similarity between domains (Kouw and
Loog, 2021) and the method PRECISE (Mourragui et al., 2019)
seeks to address this for drug response prediction via a robust mani-
fold alignment process. A refinement of this idea, TRANSACT
(Mourragui et al., 2020), uses Kernel-PCA based sub-space align-
ment to further capture non-linear relationships between samples
from in vitro and in vivo domains. However, to learn the similarity
between domains, existing DA methods either do not take into ac-
count the conditional distributions (PsðYjXÞ and PtðYjXÞ for drug
response Y given gene expression X in source s and target t), obtain-
ing a subset of shared features that might be unrelated to drug re-
sponse (Mourragui et al., 2019, 2020), or rely on the covariate-shift
assumption (Sharifi-Noghabi et al., 2020), where marginal distribu-
tions for features (PsðXÞ and PtðXÞ, for tasks/domains s and t) are
allowed to vary while the conditional distribution for drug response
is assumed to be the same (PsðYjXÞ ¼ PtðYjXÞ) (Kouw and Loog,
2021; Zhao et al., 2019). This assumption can often lead to NT
(Rampá�sek, 2020; Zhao et al., 2019) when e.g. drugs that are effect-
ive in vitro do not successfully translate to the clinical setting
(Wilding and Bodmer, 2014).

We present a unified transfer learning approach (TUGDA) for
MTL and DA that leverages task/domain uncertainty (rather than
loss) and a relaxed covariate-shift assumption to improve robustness
of drug response prediction. Specifically, TUGDA captures both
aleatoric (Kendall and Gal, 2017) and epistemic (Kendall et al.,
2018) uncertainties, and uses them to weight the task/domain to fea-
ture transfer. In addition, TUGDA relaxes the covariate-shift as-
sumption across domains (PsðYjXÞ � PtðYjXÞ) for tasks with low
confidence predictions using shared domain features. Our evalua-
tions against state-of-the-art methods show that the use of uncer-
tainties in guiding task-to-feature transfer reduces cases of negative
transfer 94% overall and by 50% in harder cases that have limited
in vitro data. For in vivo settings, TUGDA outperformed previous
methods in transferring drug response predictions to both patient-
derived xenograft (PDX) and patient tumors. Overall, TUGDA rep-
resents a novel unified framework to leverage information from
in vitro and in vivo settings, and robustly predict cancer drug
responses from molecular profiles.

2 Materials and methods

2.1 Definitions and preliminaries
We define a dataset C ¼ fX t; ytg

T
i¼1 consisting of X t 2 R

Nt�d gene
expression profiles (d genes) and yt 2 R

Nt�1 drug response values
for T different drugs and Nt different data points (cell lines, xeno-
grafts or patients). In an MTL setting, we jointly learn predictive
models for all T tasks under the following general framework:

min
W

XT

t¼1

‘ðwt; X t; ytÞ þ RðWÞ; (1)

where ‘ is the loss function (e.g. mean squared error, in our case)
applied to each task t, with wt representing task-specific parameters
as columns of W 2 R

d�T . The regularization term R is introduced
to enforce priors over the task parameters and to improve general-
ization. This approach constrains joint learning in a naive manner
(through the regularization term) and an approach to improve this is
to assume that there exist shared latent bases across tasks (Argyriou

et al., 2008; Kumar and Daumé, 2012). We can represent this as-
sumption and improve Eq. (1) as follows:

min
L;S

XT

t¼1

f‘ðLst; X t; ytÞ þ lkstk1g þ kjjLjj2F; (2)

where W from Eq. (1) is decomposed as W ¼ LS, with L 2 R
d�k

representing the set of k latent bases, and S 2 R
k�T is the matrix

containing vectors st to combine those bases. The R term from eq.
(1) is then replaced to constrain L to be ‘2 regularized while st needs
to be ‘1 sparse, with the hyperparameters l and k controlling the ex-
tent of regularization. This framework can be extended to take ad-
vantage of neural networks and use multiple layers of shared
features followed by a task-specific layer. Here we assume that L
and S are parameters for the first and the second (task-specific) hid-
den layers, respectively. The approach in Eq. (2) tries to reduce the
risk of negative transfer by forcing unrelated tasks to use disjoint la-
tent spaces. Nevertheless shared bases are trained without consider-
ation of the quality of task-predictors, allowing for noisy and
unreliable predictors to be the source of NT (Lee et al., 2018).
Assuming that task loss is a proxy for task reliability, the transfer
from task-to-features can be guided (Lee et al., 2016, 2018) by
extending Eq. (2) as follows:

min
L;S;A

XT

t¼1

fð1þ akao
t k1Þ‘ðLst; X t; ytÞ þ lkstk1g

þcjjZ� XðZSAÞjj2F þ kjjLjj2F;
(3)

where Z ¼ XðXtLÞ is the output of the first neural layer L followed
by a non-linear activation function X [ReLU (Nair and Hinton,
2010) in our case], Z is interpreted as the shared features space and
it is used by S (task-specific parameters) to predict drug responses. A
is a matrix which controls the amount of transfer from task t to k
features by the row vector ao

t (A’s row vector). An auto-encoder
regularization is then imposed aiming to reconstruct the latent fea-
tures Z with the model output XðZSAÞ. This feedback loop between
Z and A imposed by the autoencoder is expected to control the influ-
ence of unreliable tasks (based on task-loss) into the shared feature
space. The hyperparameter a is multiplied by the training loss ‘ to
control the sparsity of ao

t , thus breaking the symmetry of transfer to
features by forcing transfer from high loss tasks to be more sparse.
Despite this sophisticated formulation, the assumption that task loss
is a proxy for reliability may be misleading, especially in cases of
overfitting from limited in vitro training data (Hawkins, 2004).

2.2 Leveraging task uncertainty for multi-task learning
We aim to estimate two types of task uncertainties and explore their
use as alternative weights for task-to-feature transfer (Kendall and
Gal, 2017). The first type is aleatoric uncertainty which captures un-
certainty due to inherent noise in the experimental data that is being
modeled. Specifically, as shown by (Kendall et al., 2018) homosce-
dastic aleatoric uncertainty in MTL settings captures the relative
confidence between tasks. As this uncertainty does not vary with in-
put data, we can interpret it as task uncertainty reflecting the
amount of noise inherent in drug response measurements. Let f

wt ðxÞ
be the output function for input x and task-weight wt, we have the
following relationship for aleatoric uncertainty per task (rt) in a re-
gression setting:

‘aleatoric ¼
1

2r2
t

ð 1

Nt
jjyt � fwt ðxÞjj2Þ þ log rt; (4)

where r is learnable along with model parameters. Intuitively from
Eq. (4), rt can been interpreted as loss attenuation when the model
predictions are far away from ground truth. As prior work has shown
that MTL is strongly impacted by relative weighting for task losses
(Kendall and Gal, 2017), the use of aleatoric uncertainty in TUGDA
could reduce NT by automatically learning optimal loss weights.

A second type of task uncertainty that is accounted for in TUGDA
is epistemic, representing the uncertainty in model parameters (Kendall
and Gal, 2017). To do so, TUGDA uses Bayesian neural networks
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(BNNs, where weights W � Nð0; IÞ) to quantify model prediction
uncertainties (Goan and Fookes, 2020). We use dropout variational in-
ference (Gal and Ghahramani, 2016) for approximate inference in our
model during training and testing (Srivastava et al., 2014), thus ena-
bling sampling from an approximate posterior distribution for weights
(q�hðWÞ, in a tractable family) that minimizes the Kullback-Leibler di-
vergence to the true model posterior (Gal and Ghahramani, 2016). We
therefore extend eq. (4) as:

‘BNN ¼
1

2r2
t

ð 1

Nt
jjyt � fŴt ðxÞjj2Þ þ log rt; (5)

where Ŵt is sampled from the approximate distribution q�hðWÞ. In
this setting, predictions are obtained by forwarding each sample x
though the model for P passes, with weights sampled according to
dropout inference.

In the TUGDA framework, with BNN L and S, and a decoder
layer A to regularize the task-to-feature transfer, the epistemic un-
certainty for a task t given a sample x is computed in P passes as:

UtðxÞ ¼
1

P

XP

p¼1

S
�

LðxÞ
�
� 1

P

XP

p0¼1

S
�

LðxÞ
�0

@
1
A

2

: (6)

Following this, TUGDA’s novelty lies in formulating the use of
task uncertainties to guide knowledge transfer from tasks t to fea-
tures Z, which is accomplished by extending Eq. (3) as follows:

min
Lh ;Sh ;Ah

‘MTLb ¼
XT

t¼1

f
�

1þ ðU t þ kao
t k1ÞÞ‘BNNÞ þ lkstk1g

þ cjjZ� XðZSAÞjj2F þ kjjLjj2F;
(7)

where Ut is employed to weight ao
t , thus forcing tasks with high-uncer-

tainty to transfer less to the shared feature space Z (by the autoencoder
regularization). A model representation for MTL with TUGDA is
depicted in Figure 1 (blue layers) showing how the influence of unreliable
tasks is attenuated by both aleatoric (‘BNN) and epistemic (Ut) uncertain-
ties, and how constraints for ao

t are learnt in an end-to-end fashion.

2.3 Domain adaptation with task uncertainty and

relaxed covariate-shift assumption
To enable domain adaptation from in vitro to in vivo settings while
avoiding NT for tasks where similarity between domains is limited,
we extend eq. (7) by adding a Discriminator module D (Fig. 1, D in
gray) that is responsible for classifying an extracted feature Z from

L(x) into different domains (cell line, xenograft or patient tumor).
The idea here is to use adversarial learning to match source (in vitro)
and target (in vivo) marginal distributions (Ganin and Lempitsky,
2015). In this manner, we can describe the training process as a two-
player game, where the module ðLðxÞÞ learns features that forces
DðLðxÞÞÞ toward confusion, while D needs to accurately classify
domains (Fig. 1, blue and gray, done in both supervised and unsuper-
vised steps). In the end, L(x) is expected to learn features Z that are
domain-invariant and so we can describe the learning process as:

min
Lh ;Sh

max
D

‘adv ¼�
1

ns

Xns

i¼1

�
log
�

DðLðxs
i Þ
��

� 1

nt

Xnt

i¼1

�
log
�

1�DðLðxt
iÞ
�� (8)

with ns and nt being the number of training samples from source
(in vitro) and target (in vivo), respectively. To enable this adversarial
training, we employed the Gradient Reversal Layer (GRL) approach
(Ganin and Lempitsky, 2015) that works by flipping the sign of gra-
dients that flow through D to the network during back-propagation.
By adding a discriminator module D we end up with a framework
that jointly learns a shared space between models (aligns the margin-
als) and uses these features to predict cancer drug response in an MTL
setting. As we regularize transfer from task-to-features using task-
uncertainties, we constrain our model (by the ao

t sparsity in A) to
transfer less from predictions with high uncertainty based on shared
features from different domains and tasks. An important by-product
of this formulation is the relaxation of the covariate-shift assumption
for transferring information from high-uncertainty predictors with the
basis that they are less likely to retain predictions across domains.
With this, TUGDA is trained in an end-to-end fashion as follows:

min
L;Z;S;A

max
D

‘final ¼ ‘MTLb þ kadv‘adv (9)

with kadv as a hyperparameter which controls the influence of adver-
sarial training.

3 Results

3.1 TUGDA reduces negative transfer in multi-task

learning of in vitro drug responses
3.1.1 Dataset and baselines

To evaluate the MTL performance of TUGDA (Fig. 1, blue), we
used the Genomics of Drug Sensitivity in Cancer (GDSC) database

Fig. 1. TUGDA framework for multi-task learning and domain adaptation in cancer drug response prediction. The layer L receives input data from cell lines (source data) in

the supervised step or from other domains (PDX or patients, target data) in the unsupervised step and maps them to a latent space Z. Then, in the supervised step, the multi-

task layer S uses these latent features to make predictions, as well as compute task-uncertainties Ut for regularizing the amount of transfer from tasks/domains in A to the latent

features in Z by employing an autoencoder regularization. Using adversarial learning, in both supervised and unsupervised steps, the discriminator D (in place to classify Z in

different domains) receives the extracted features from Z and regularizes L to learn domain-invariant features. L, S, A and D consist of a single fully connected layer. Cell-line,

PDX and tumor icons were Created with BioRender.com.
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(Iorio et al., 2016) to obtain cell line drug response and transcrip-
tomic data. Following the steps in Mourragui et al. (2020) to pre-
process data, we obtained a matrix of normalized gene expression
values for 806 cell-lines and 1780 genes (Hoogstraat et al., 2014), in
addition to response values for 200 drugs. As prior work has shown
that regularized linear models often yield state-of-the-art results
(Costello et al., 2014; Jang et al., 2014), we employed Ridge linear
regression as the single-task learning baseline (we also experimented
with Elastic Net as the baseline [median MSE¼2.78], but Ridge
presented better overall performance [median MSE¼2.26], thus
suited to explore NT cases). We then compared TUGDA with the
state-of-the-art neural network-based multi-task learners GO-MTL
(Kumar and Daumé, 2012), AMTL (Lee et al., 2016) and Deep-
AMTFL (Lee et al., 2018), that are designed to avoid NT behavior.
By combining the input layer and the module L with GO-MTL and
AMTL we obtained two extended baselines that we refer to as
Deep-GO-MTL and Deep-AMTL (Dizaji et al., 2020; Lee et al.,
2016, 2018), respectively. Thus, all deep neural network models
share the same number of layers until the prediction step (Input
layer, L and S; Fig. 1), and the differences are only in terms of the
regularization used. We performed 3-fold nested cross-validation
(Varma and Simon, 2006) to report MTL performance. In this pro-
cess, we select hyperparameters based on validation performance in
the inner loop. The best performing model of the inner loop is eval-
uated on an outer test fold (unseen cell lines). This process obtains a
performance estimate unbiased by hyperparameter selection. We
searched for the best set of hyperparameters (list and range in
Supplementary Note S2) using the Tree-structured Parzen Estimator
algorithm (Bergstra et al., 2011).

3.1.2 Results with cell line data

Models were trained to predict log IC50 values (concentration
which kills 50% of cells; log-transformed) and compared in terms of

mean squared error (MSE) distribution across all 200 drugs. As can
be seen in Figure 2a (Supplementary Fig. S1a, full distribution),
TUGDA improves over prior methods with the lowest median MSE
of 1.65 and the highest Pearson correlation of 0.51 (Supplementary
Fig. S1c). Higher performances were also observed in our ablation
analysis, which consists of the following setup: TUGDA(-UT-E) is
solely based on aleatoric uncertainty; TUGDA(-UT-A) uses epistem-
ic uncertainty; and TUGDA(-UT) uses both uncertainty types but
excludes the use of Ut to weight ao

t , i.e. feedback loop from A to Z
will not take into account task-uncertainties. This analysis suggests
that epistemic uncertainty plays an important role in TUGDA’s per-
formance when compared to aleatoric uncertainty, but the full
model is key in this dataset (Fig. 2a). We also employed Wilcoxon
signed-rank test to compare TUGDA’s performance with the base-
lines and observed that TUGDA is significantly better than all base-
line methods (Fig. 2a, significance bars and asterisks on top).

To quantify NT behavior, STL-based MSEs were subtracted
from corresponding MTL-based MSEs s.t. positive values indicate
NT (Supplementary Fig. S2, full distribution). As shown in
Figure 2b, TUGDA presented the fewest number of NT cases (12
out of 200 tasks, 94% of tasks with no NT), reducing the number of
tasks with NT by 50% relative to the next best method (Deep-GO-
MTL). We next focused our analysis of performance on the more
challenging tasks with smaller sample sizes (19 out of 200 drugs;
where sample size median is 49 and maximum is 382) compared to
the rest (sample size minimum is 716 and median is 745). We
devised this experimental setup to reflect a more realistic scenario
where drug response data can be limited. Here again, TUGDA
improved over the existing methods Deep-AMTL and Deep-
AMTFL in terms of median MSE (Fig. 2c), and the ablation analysis
highlights the utility of the full model. As can be seen from
Figure 2d, NT cases were clearly enriched in this set of 19 tasks and
TUGDA reduces the number from 11 (for the next best method,

(a) (b)

(c) (d)

Fig. 2. MTL performance evaluation using in vitro datasets. (a) Barplots (error bars represent standard deviation) showing MSE across tasks for different models including

state-of-the-art methods (Deep-GO-MTL, Deep-AMTL, Deep-AMTFL), and TUGDA and its ablated variants (median MSE values are shown on the bottom along with statis-

tical significance bars on top, where * stands for digits after the decimal p-value point i.e. ‘****’ signifies 1e-4), (b) Strip plots comparing the degree of negative transfer and

the number of such tasks (shown in parenthesis). (c) and (d) Barplots and strip plots comparing MSE and NT for tasks with smaller sample sizes (19 tasks)
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Deep-GO-MTL) to 9 (52% of tasks without NT; reduction of NT
tasks by 18% relative to Deep-GO-MTL). Taken together, these
results highlight the importance of addressing task-uncertainty in
MTL settings and TUGDA’s utility in more realistic pharmacoge-
nomic settings for new drugs.

3.2 TUGDA provides a robust approach for domain

adaptation from in vitro to in vivo response prediction
3.2.1 Datasets and baselines

We evaluated the unified TUGDA framework (Fig. 1, blue and gray
modules) against existing unsupervised DA methods for transferring
cancer drug responses from cell lines (in vitro) to two different
in vivo settings, patient-derived xenografts (PDX) and patient
tumors. PDX data was obtained from the Novartis Institutes for
Biomedical Research (Gao, 2015) containing gene expression pro-
files (n¼399) and drug responses values. Patient tumor gene expres-
sion profiles were obtained from TCGA (Network et al., 2013) as
well as curated response data from Ding et al. (2016). All cell line,
PDX and tumor data were processed using the same pipelines, with
pre-processing steps and experimental setup as proposed in
Mourragui et al. (2020). As baselines for both PDX and patient
tumor predictions we employed (extended from Mourragui et al.,
2020) the following: (i) an Elastic Net regression trained solely on
cell line data. (ii) An Elastic Net regression trained solely on batch
corrected cell line data (Elastic Net þ Combat) approach similar to
Geeleher et al. (2017). (iii) Deep Learning model (DL) (Mourragui
et al., 2020), (iv) Deep Learning þ Combat (DL þ Combat), similar
to Sakellaropoulos et al. (2019), as well as the unsupervised DA
approaches, (v) PRECISE (Mourragui et al., 2019) and (vi)
TRANSACT (Mourragui et al., 2020) (see implementation details
for all baselines in Supplementary Note S4).

Similar to previous UDA methods (Mourragui et al., 2019,
2020), TUGDA is based on transductive learning (Kouw and Loog,
2021), where in the unsupervised learning step (Fig. 1) all target
(ignoring labels) data is used to learn a domain-invariant space. The
models are fine-tuned following the approach in Ganin and
Lempitsky (2015), where the best set of hyperparameters was deter-
mined by minimizing MSE loss on source data (cell line AUC) using
the domain-invariant features. This procedure was done for PDX

data (list and range of hyperparameters in Supplementary Note S3,
Supplementary Tables S2 and S3) and patient data (list and range of
hyperparameters in Supplementary Note S3, Supplementary Tables
S4 and S5). In both cases, the Tree-structured Parzen Estimator al-
gorithm (Bergstra et al., 2011) was used for searching
hyperparameters.

3.2.2 Results with PDX data

We evaluated the transfer of drug responses from GDSC cell-lines to
PDX data based on 14 shared drugs (extended seven drugs from
Mourragui et al., 2020) and computed Spearman correlations for
predicted (AUC) and measured response values in the PDX setting
(PDX best average response, lower values are related to sensitivity).
Out of 14 drugs, TUGDA provided the highest Spearman correl-
ation for 9 drugs (Fig. 3, Alpesilib, Buparlisib, Cetuximab, LGK974,
Luminespib, Paclitaxel, Ribociclib, Tamoxifen and Trametinib),
while DL, TRANSACT and Elastic Net were the best methods for
three (Afatinib, Gemcitabine and Ruxolitinib), one (Erlotinib) and
one (Fluorouracil) drugs, respectively. Furthermore, when examin-
ing these results for moderate or higher correlations, TUGDA pre-
sented 8 out 14 drugs above this threshold (0.3, dashed line Fig. 3),
followed by TRANSACT and Elastic Net with 5 and 4 drugs, re-
spectively. Investigating the learnt feature space, we observed that
cell-lines and PDX samples from the same tissue tend to cluster to-
gether, showing that the model infers a biologically appropriate
in vitro to in vivo transformation (See Supplementary Note S6,
Supplementary Fig. S4).

3.2.3 Results with patient tumor data

For patient tumor data, we evaluated performance for transferring
drug response predictions from cell-lines to patients based on 22
drugs shared in GDSC and TCGA (extended 5 drugs from
Mourragui et al., 2020). As analyzed previously (Ding et al., 2016;
Mourragui et al., 2020), TCGA drug responses were categorized
into two groups, Responders (‘Complete Response’ and ‘Partial
Response’) and Non-responders (‘Stable Disease’ and ‘Progressive
Disease’). Despite several additional sources of variation in patient
response data (tumor heterogeneity and environment, immune re-
sponse, patient health status), TUGDA showed significant

Fig. 3. DA performance for predicting drug response in PDX models. Comparison of Spearman correlation between cell-line and PDX response values for 14 drugs across dif-

ferent models. Numbers in parenthesis represent PDX sample size. The dashed line stands for a threshold for moderate or higher correlation
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associations for nine drugs including Bleomycin, Carboplatin,
Dacarbazine, Docetaxel, Doxorubicin, Paclitaxel, Premetexed,
Tamoxifen and Vinblastine (Table 1; one-sided Mann-Whitney test
between predicted AUC responses for Responders and Non-res-
ponders; P-value < 0.05), improving on TRANSACT (7 drugs), DL
(7 Drugs), PRECISE (6 drugs), DL þ Combat (4 drugs), Elastic Net
þ Combat (4 drugs) and Elastic Net (4 Drugs) baselines. Moreover,
we compared against all baselines in terms of effect size (effect size
associated with the Mann-Whitney test divided by the sample size)
and noted that TUGDA outperformed them with 7 drugs presenting
significant associations and the largest effect size (blue values,
Table 1). In comparison, TRANSACT, DL, Elastic Net and Elastic
Net þ Combat, presented 5, 2, 1 and 1 drug, respectively, with this
property. Collectively, out of 31 different drugs tested across the
two domains, TUGDA captured significant associations (Spearman
correlation from PDX and largest effect-size for significant drugs in
TCGA data) for 14 drugs (Alpesilib, Buparlisib, Cetuximab,
LGK974, Luminespib, Ribociclib, Tamoxifen, Trametinib from
PDX and Bleomycin, Dacarbazine, Docetaxel, Doxorubicin,
Pemetrexed, Vinblastine from TCGA data). In comparison the next
best method, TRANSACT, captured significant associations for 6
out of 31 drugs (Erlotinib from PDX, and Carboplatin, Cisplatin,
Gemcitabine, Paclitaxel and Trastuzumab from TCGA data). These
results confirm TUGDA’s relative utility for transfer learning of
drug responses from in vitro to in vivo models (TUGDA also pre-
sented the largest improvements relative to the next best method, see
Supplementary Note S5). As was the case for the PDX model, the
UMAP projection of the learnt feature space from TUGDA largely
clusters cell-line and patient tumor data by tissue type (see
Supplementary Note S6, Supplementary Fig. S5), highlighting that it
can successfully learn shared biological properties.

3.3 Interpretability of TUGDA’s predictions is supported

by known drug mechanisms
To explore the interpretability of TUGDA’s learnt feature space we
computed the weights (attributions) of each gene using the
Integrated Gradients (IG) method (Sundararajan et al., 2017) for the
PDX and TCGA test samples projected onto TUGDA’s shared fea-
ture space. IG computes the gradient of the model prediction output

(AUC) relative to its input features (gene expression), where positive
or negative weights are associated with increases (high expression,
resistance) or decreases (low expression, sensitivity) of the AUC out-
put, respectively. We then looked for enriched pathways present in
TUGDA predictions using the computed ranking for each gene
based on IG scores, and a pre-ranked gene set enrichment analysis
(FDR correction at 25%, 1000 permutations and the gene sets
MSigDB c2 and BioCarta) (Mourragui et al., 2020; Subramanian
et al., 2005).

Based on the top-ranked gene set for each drug, we observed
strong associations between TUGDA’s latent feature space attribu-
tion and known drug response mechanisms. For example, IG ana-
lysis with TUGDA’s model identified overexpression of the
interleukin-6 (IL-6) signaling pathway as a significant marker of re-
sistance to Tamoxifen (FDR¼0.059, Supplementary Fig. S6a). This
is consistent with the known role of IL-6 secretion by cancer-associ-
ated fibroblasts for tamoxifen resistance in luminal breast cancers
(Sun et al., 2014a,b). Similarly for Paclitaxel (another drug with a
predictive TUGDA model for PDX [Fig. 3] and patient data
[Table 1]), we noted enrichment of genes linked as potential
microRNA 302 targets (FDR¼0.233, Supplementary Fig. S6b). The
microRNA 302 family regulates cell proliferation and differenti-
ation, and high expression of miR-302 has been associated with
Paclitaxel resistance (Greer Card et al., 2008; Wu et al., 2019).
Among other associations, we noted MET signaling for Docetaxel
(FDR¼0.202, Supplementary Fig. S6c) as observed in Kosaka et al.
(2011), Wnt Signaling for Doxorubicin (FDR¼0.034,
Supplementary Fig. S6d) which regulates resistance in breast cell
lines (Martin-Orozco et al., 2019), and activation of NFAT signal-
ing for Trametinib (FDR¼0.061, Supplementary Fig. S6e) resist-
ance as has been reported previously (Zhang et al., 2017). Together,
these observations support the notion that TUGDA’s framework
captures relevant biological aspects of different drug response mech-
anisms which can be probed further using the IG method.

4 Discussion and conclusion

TUGDA’s strength lies in the fact that it represents a novel unified
transfer learning approach for multi-task learning and domain

Table 1. DA performance for predicting drug response in patient data

Drug Samples Elastic Net Elastic NetþCombat DL DLþCombat PRECISE TRANSACT TUGDA

Bicalutamide 17 0.142 [0.71] 0.116 [0.74] 0.285 [0.62] 0.525 [0.50] 0.116 [0.74] 0.244 [0.64] 0.330 [0.60]

Bleomycin 53 0.128 [0.65] 0.494 [0.50] 0.332 [0.56] 0.528 [0.49] 0.082 [0.68] 0.091 [0.67] 0.043 [0.72]

Carboplatin (Cisplatin) 166 0.262 [0.53] 0.333 [0.52] 0.114 [0.56] 0.428 [0.51] 0.023 [0.59] 0.004 [0.63] 0.023 [0.59]

Cetuximab 19 0.484 [0.51] 0.419 [0.53] 0.484 [0.51] 0.419 [0.53] 0.484 [0.51] 0.077 [0.70] 0.298 [0.58]

Cisplatin 308 3.6e-4 [0.64] 4.6e-4 [0.63] 6.9e-5 [0.65] 8.5e-4 [0.60] 2.1e-5 [0.66] 7.2e-7 [0.69] 0.244 [0.53]

Cyclophosphamide 102 0.491 [0.50] 0.402 [0.53] 0.755 [0.42] 0.874 [0.36] 0.112 [0.65] 0.587 [0.47] 0.531 [0.49]

Dacarbazine (AICAR) 30 0.278 [0.56] 0.225 [0.58] 0.368 [0.54] 0.178 [0.60] 0.384 [0.53] 0.692 [0.48] 0.014 [0.73]

Docetaxel 102 0.447 [0.51] 0.674 [0.47] 0.326 [0.53] 0.564 [0.49] 0.762 [0.46] 0.115 [0.57] 0.001 [0.69]

Doxorubicin 101 0.216 [0.55] 0.977 [0.38] 0.347 [0.52] 0.965 [0.39] 0.998 [0.32] 0.703 [0.47] 1.1e-4 [0.72]

Epirubicin 25 0.113 [0.73] 0.113 [0.73] 0.129 [0.71] 0.239 [0.64] 0.677 [0.42] 0.190 [0.67] 0.615 [0.45]

Etoposide 84 0.002 [0.77] 0.003 [0.76] 0.002 [0.77] 0.005 [0.74] 0.007 [0.73] 0.026 [0.68] 0.582 [0.48]

Fluorouracil 186 0.763 [0.47] 0.896 [0.44] 0.747 [0.47] 0.848 [0.45] 0.800 [0.46] 0.361 [0.52] 0.251 [0.53]

Gemcitabine 156 0.004 [0.62] 0.013 [0.60] 0.024 [0.59] 0.063 [0.57] 0.040 [0.58] 0.003 [0.63] 0.114 [0.56]

Irinotecan 25 0.826 [0.38] 0.717 [0.43] 0.263 [0.59] 0.630 [0.46] 0.536 [0.49] 0.464 [0.52] 0.737 [0.42]

Oxaliplatin 66 0.246 [0.55] 0.001 [0.73] 0.029 [0.64] 0.005 [0.69] 0.027 [0.65] 0.035 [0.64] 0.987 [0.33]

Paclitaxel 160 0.429 [0.51] 0.114 [0.56] 0.005 [0.62] 0.291 [0.53] 0.129 [0.56] 0.004 [0.63] 0.010 [0.61]

Pemetrexed 38 0.517 [0.50] 0.124 [0.61] 0.506 [0.50] 0.336 [0.54] 0.179 [0.59] 0.368 [0.53] 0.018 [0.70]

Tamoxifen 23 0.825 [0.38] 0.989 [0.21] 0.790 [0.40] 0.943 [0.30] 0.487 [0.51] 0.896 [0.34] 0.024 [0.76]

Temozolomide 96 0.153 [0.60] 0.238 [0.57] 0.260 [0.56] 0.500 [0.50] 0.587 [0.48] 0.182 [0.59] 0.618 [0.47]

Trastuzumab (Afatinib) 16 0.024 [0.96] 0.117 [0.79] 0.048 [0.89] 0.034 [0.93] 0.024 [0.96] 0.016 [1.00] 0.468 [0.54]

Vinblastine 16 0.336 [0.57] 0.298 [0.59] 0.664 [0.44] 0.263 [0.60] 0.500 [0.51] 0.584 [0.48] 0.022 [0.81]

Vinorelbine 30 0.403 [0.53] 0.053 [0.71] 0.035 [0.73] 0.053 [0.71] 0.163 [0.63] 0.384 [0.54] 0.671 [0.45]

Note: Drug names in parenthesis are corresponding matches from GDSC. We report P-values (in bold for P < 0.05) and the effect-size in brackets. Blue col-

ored values indicate significant associations with the largest effect size for a drug.
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adaptation that leverages the concept of task/domain uncertainty.
These attributes align it to the fundamental challenges found in
building predictive models for precision oncology, including sample
size limitations, lack of curated in vivo data and violations of the
covariate-shift assumption when taking into account drug responses.
Our experiments show that TUGDA can provide notable benefits in
a multi-task setting to reduce negative transfer, particularly when
training data is limited. In addition, it shows promise as a way to ro-
bustly transfer information from in vitro data to in vivo settings,
based on confidence in task predictions. In particular, for domain
adaptation with patient data, we observed that TUGDA performed
well for drugs that were often distinct and complementary to those
from previous STL DA methods, potentially due to its multi-task
learning formulation finding an alternate optimum that minimizes
the error for more drugs (Zhang and Yang, 2018). However, as a
side effect of this, for a subset of drugs TUGDA was not able to pre-
sent strong performance relative to STL DA methods (e.g
Fluorouracil and Gemcitabine for PDX data and Cisplatin,
Etoposide, Gemcitabine, Oxaliplatin and Trastuzumab for patient
data). A possible future direction is to explore which tasks should be
learned together and which tasks should be automatically down-
graded to STL (Standley et al., 2020; Lozano and Swirszcz, 2012).

There a several potential pitfalls in the use of deep learning meth-
ods for computational biology, including unstable predictions
(Mourragui et al., 2020), overfitting and interpretability. TUGDA’s
design seeks to address these by providing a stable training and pre-
diction process (see Supplementary Note S8), and employing
Bayesian neural networks, L1 and L2 regularizations for feature and
task-specific layers, dropouts and task-uncertainties for regularizing
task-to-feature transfer (instead of attention weights, Nguyen et al.,
2020) to avoid overfitting. To address the interpretability gap
(Gilpin et al., 2019), we explored and presented predictions for
drugs with different mechanisms of action and trained on different
domains (PDX or patient) that could be explained by the target’s
pathway.

TUGDA’s approach to relaxing the covariate-shift assumption is
a natural by-product of MTL using low-uncertainty features in a ad-
versarial domain adaptation framework. This is distinct from prior
work (Adel et al., 2017) that is based on learning the probability of
label changes across source and target domains and using this to
weight transfer. In a recent study, the concept of label-shift has also
been highlighted as a source of NT (Tan et al., 2020). Intrinsic differ-
ences in cancer cell lines and patient tumors (e.g. the enrichment of
genomic alterations and in vitro selection of subpopulations) make
this scenario a likely one for domain adaptation in precision oncol-
ogy. We envisage that TUGDA’s framework can be extended to alle-
viate NT in the marginal distribution of drug responses as well,
advancing the goal of realistic precision oncology models further.
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