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Abstract: To obtain autonomy in applications that involve Unmanned Aerial Vehicles (UAVs),
the capacity of self-location and perception of the operational environment is a fundamental
requirement. To this effect, GPS represents the typical solution for determining the position of
a UAV operating in outdoor and open environments. On the other hand, GPS cannot be a reliable
solution for a different kind of environments like cluttered and indoor ones. In this scenario,
a good alternative is represented by the monocular SLAM (Simultaneous Localization and Mapping)
methods. A monocular SLAM system allows a UAV to operate in a priori unknown environment
using an onboard camera to simultaneously build a map of its surroundings while at the same
time locates itself respect to this map. So, given the problem of an aerial robot that must follow a
free-moving cooperative target in a GPS denied environment, this work presents a monocular-based
SLAM approach for cooperative UAV–Target systems that addresses the state estimation problem of
(i) the UAV position and velocity, (ii) the target position and velocity, (iii) the landmarks positions
(map). The proposed monocular SLAM system incorporates altitude measurements obtained from an
altimeter. In this case, an observability analysis is carried out to show that the observability properties
of the system are improved by incorporating altitude measurements. Furthermore, a novel technique
to estimate the approximate depth of the new visual landmarks is proposed, which takes advantage
of the cooperative target. Additionally, a control system is proposed for maintaining a stable flight
formation of the UAV with respect to the target. In this case, the stability of control laws is proved
using the Lyapunov theory. The experimental results obtained from real data as well as the results
obtained from computer simulations show that the proposed scheme can provide good performance.

Keywords: state estimation; unmanned aerial vehicle; monocular SLAM; observability; cooperative
target; flight formation control

1. Introduction

Nowadays, unmanned aerial vehicles (UAVs), computer vision techniques, and flight control
systems have received great attention from the research community in robotics. This interest has
resulted in the development of systems with a high degree of autonomy. UAVs are very versatile
platforms and very useful for several tasks and applications [1,2]. In this context, a fundamental
problem to solve is the estimation of the positions of UAVs. For most applications, GPS (Global
Positioning System) still represents the main alternative for addressing the localization problem of
UAVs. However, GPS comes with some well-known drawbacks associated with its use. For instance,
in scenarios where GPS signals are jammed intentionally [3] or when the precision error can be
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substantial and they provide poor operability due to multipath propagation (e.g., natural and urban
canyons [4,5]). Furthermore, there are scenarios where the GPS is inaccessible (e.g., indoor). Hence,
to improve accuracy and robustness, additional sensory information, like visual data, can be integrated
into the system. Cameras are lightweight, inexpensive, power-saving, and provide lots of information,
moreover, they are well adapted to be integrated into embedded systems. In this context, visual SLAM
methods are important options that allow a UAV to operate in an a priori unknown environment
using only on-board sensors to simultaneously build a map of its surroundings while, at the same
time, locating itself in respect to this map. On the other hand, perhaps the most important challenge
associated with the application of monocular SLAM techniques has to do with the metric scale [6].
In monocular SLAM systems, the metric scale of the scene is difficult to retrieve, and even if the metric
scale is known as an initial condition, the metric scale tends to degenerate (drift) if the system does not
incorporate continuous metric information.

Many works can be found in the literature where visual-based SLAM methods are used for UAV
navigation tasks (e.g., [7,8]). For SLAM based on monocular vision, different approaches have been
followed for addressing the problem of the metric scale. In [9], the position of the first map features is
determined by knowing the metrics of an initial pattern. In [10], a method with several assumptions
about the structure of the environment is proposed; one of these assumptions is the flatness of the floor.
This restricts the use of the method to very specific environments. Other methods like [11] or [12] fuse
inertial measurements obtained from an inertial measurement unit (IMU) to recover the metric scale.
A drawback associated with this approach has to do with the dynamic bias of the accelerometers which
is very difficult to estimate. In [13], the information given by an altimeter is added to the monocular
SLAM system to recover the metric scale.

The idea of applying cooperative approaches of SLAM to UAVs has also been explored.
For example, [14,15] present a Kalman-filter-based centralized architecture. In [16–18], monocular
SLAM methods for cooperative multi-UAV systems are presented to improve navigation capabilities
in GPS-challenging environments. In [19], the idea of combining monocular SLAM with cooperative
human–robot information to improve localization capabilities is presented. Furthermore, a single-robot
SLAM approach is presented in [20], where the system state is augmented with the state of the
dynamic target. In that work, robot position, map, and target are estimated using a Constrained Local
Submap Filter (CLSF) based on an Extended Kalman filter (EKF) configuration. In [21], the problem of
cooperative localization and target tracking with a team of moving robots is addressed. In this case,
a least-squares minimization approach is followed and solved using sparse optimization. However,
the main drawback of this method is related to the fact that the positions of landmarks are assumed
a priori. In [22], a range-based cooperative localization method is proposed for multiple platforms
with different structures. In this case, the dead reckoning system is implemented by means of an
adaptive ant colony optimization particle filter algorithm. Furthermore, a method that incorporates
the ultra-wideband technology into SLAM is presented in [23].

In a previous work by the authors [24], the problem of cooperative visual-SLAM based tracking
of a lead agent was addressed. With big differences from the present work, where the (single robot)
monocular-SLAM problem is addressed, in [24] a team of aerial robots in flight formation had to
follow the dynamic lead agent. When two or more camera-robots are considered in the system, the
problem of landmark initialization, as well as the problem of recovering the metric scale of the world,
can be solved using a visual pseudo-stereo approach. On the other hand, the former problems can
constitute a bigger challenge, if only a camera-robot is available in the system. This work deals with
this last scenario.

1.1. Objectives and Contributions

Recently, in [25], a visual SLAM method using an RGB-D camera was presented. In that work, the
information given by the RGB-D camera is used to directly obtain depth information of its surroundings.
However, the depth range of that kind of camera is quite limited. In [26], a method for the initialization
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of characteristics in visual SLAM, employing the algorithm based on planar homography constraints,
is presented. In that case, it is assumed that the camera only moves in a planar scene. In [27], a visual
SLAM system that integrates a monocular camera and a 1D-laser range finder is presented; it seeks to
provide scale recovering and drift correction. On the other hand, LiDAR-like sensors are generally
expensive and can over weigh the system for certain applications presenting moving parts which can
induce some errors.

Trying to present an alternative to related approaches, in this work, the use of a visual-based
SLAM scheme is studied for addressing the problem of estimating the position of an aerial robot and a
cooperative target in GPS-denied environments. The general idea is to use a set of a priori unknown
static natural landmarks and the cooperation between a UAV and a target for locating both the aerial
robot and the target moving freely in the 3D space. This objective is achieved using (i) monocular
measurements of the target and the landmarks, (ii) measurements of altitude of the UAV, and (iii) range
measurements between UAV and target.

The well-known EKF-SLAM methodology is used as the main estimation technique for the
proposed cooperative monocular-based SLAM scheme. In this work, since the observability plays a
key role in the convergence and robustness of the EKF ([28,29]), the observability properties of the
system are analyzed using a nonlinear observability test. In particular, it is shown that by the sole
addition of altitude measurement, the observability properties of the SLAM system are improved.
In this case, the inclusion of the altimeter in monocular SLAM has been proposed previously in other
works, but no such observability analyses have been done before.

In monocular-based SLAM systems, the process of initializing the new landmarks into the system
state plays an important role in the performance of the system as well [30]. When only monocular
measurements of landmarks are available, it is not easy to obtain 3D information from them. In this
case, it becomes a difficult task to properly initialize the new map features into the system state due to
the missing information. Therefore, a novel technique to estimate the approximate depth of the new
visual landmarks is proposed in this work. The main idea is to take advantage of the UAV–Target
cooperative scheme to infer the depth of landmarks near the target. In this case, it is shown that by the
addition of altitude measurements and by the use of the proposed initialization technique, the problem
of recovering the metric scale is overcome.

This work also presents a formation control scheme that allows carrying out the formation of the
UAV with respect to the target. Moreover, the stability of the control system is assured utilizing the
Lyapunov theory. In simulations, the state estimated by the SLAM system is used as a feedback to the
proposed control scheme to test the closed-loop performance of both the estimator and the control.
Finally, experiments with real data are presented to validate the applicability and performance of the
proposed method.

1.2. Paper Outline

This work presents the following structure: mathematical models and system specifications are
presented in Section 2. The nonlinear observability analysis is presented in Section 3. The proposed
SLAM approach is described in Section 4. The control system is described in Section 5. Section 6
shows the results obtained from numerical simulations and with real data experiments. Finally,
conclusions and final remarks of this work are given in Section 7.

2. System Specification

In this section, the mathematical models that will be used in this work are introduced. First,
the model used for representing the dynamics of a UAV–camera system, and the model used for
representing the dynamics of the target are described. Then, the model for representing the landmarks
as map features is described. Furthermore, measurement models are introduced: (i) the camera
projection model, (ii) the altimeter measurement model, and (iii) the range measurement model.
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In applications like aerial vehicles, the attitude and heading (roll, pitch, and yaw) estimation is
properly handled with available AHRS systems (e.g., [31,32]), so in this work, the estimated attitude
of the vehicle is assumed to be provided by an Attitude and Heading Reference Systems (AHRS) as
well as the orientation of the camera pointing always toward the ground. In practice, the foregoing
assumption can be easily addressed, for instance, with the use of a servo-controlled camera gimbal
or digital image stabilization (e.g., [33]). To this effect, it is important to note that the use of reliable
commercial-degree AHRS and gimbal devices are assumed.

Taking into account the previous considerations, the system state can be simplified by removing
the variables related to attitude and heading (which are provided by the AHRS). Therefore, the problem
will be focused on the position estimation.

2.1. Dynamics of the System

Let consider the following continuous-time model describing the dynamics of the proposed
system (see Figure 1):

ẋ =


ẋt

v̇t

ẋc

v̇c

ẋi
a

 =


vt

03×1

vc

03×1

03×1

 (1)

where the state vector x is defined as:

x =
[

xt vt xc vc xa
i
]T

(2)

with i = 1, ..., n1, where n1 is the number of landmarks included into the map. In this work, the term
landmarks will be used to refer to natural features of the environment that are detected and tracked
from the images acquired by a camera.

Z

X
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W
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Z
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Figure 1. Coordinate reference systems.
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Additionally, let xt = [ xt yt zt ]T represent the position (in meters) of the target, with respect
to the reference system W. Let xc = [ xc yc zc ]T represent the position (in meters) of the reference
system C of the camera, with respect to the reference system W. Let vt = [ ẋt ẏt żt ]T represent the
linear velocity (in m

s ) of the target. Let vc = [ ẋc ẏc żc ]T represent the linear velocity (in m
s ) of the

camera. Finally, let xa
i = [ xi

a yi
a zi

a ]T be the position of the i-th landmark (in meters) with respect
to the reference system W. In Equation (1), the UAV–camera system, as well as the target, is assumed
to move freely in the three-dimensional space. Let note that a non-acceleration model is assumed for
the UAV–camera system and the target. Non-acceleration models are commonly used in monocular
SLAM systems. In this case, it will be seen in Section 4 that unmodeled dynamics are represented by
means of zero-mean Gaussian noise. In any case, augmenting the target model to consider higher-order
dynamics could be straightforward. Furthermore, note that landmarks are assumed to remain static.

2.2. Camera Measurement Model for the Projection of Landmarks

Let consider the projection of a single landmark over the image plane of a camera. Using the
pinhole model [34] the following expression can be defined:

hc
i =

[
ui

c
vi

c

]
=

1
zi

d

[ fc
du

0

0 fc
dv

] [
xi

d
yi

d

]
+

[
cu + dur + dut

cv + dvr + dvt

]
(3)

Let [ui
c , vi

c] define the coordinates (in pixels) of the projection of the i-th landmark over the image
of the camera. Let fc be the focal length (in meters) of the camera. Let [du, dv] be the conversion
parameters (in m/pixel) for the camera. Let [cu, cv] be the coordinates (in pixels) of the image central
point of the camera. Let [dur, dvr] be components (in pixels) accounting for the radial distortion of
the camera. Let [dut, dvt] be components (in pixels) accounting for the tangential distortion of the
camera. All the intrinsic parameters of the camera are assumed to be known using any available
calibration methods. Let pd

i = [ xi
d yi

d zi
d ]T represent the position (in meters) of the i-th landmark

with respect to the coordinate reference system C of the camera where

pd
i = WRc(xa

i − xc) (4)

and WRc ∈ SO3 is the rotation matrix, that transforms from the world coordinate reference system W
to the coordinate reference system C of the camera. Recall that the rotation matrix WRc is known and
constant, by the assumption of using the servo-controlled camera gimbal.

2.3. Camera Measurement Model for the Projection of the Target

Let consider the projection of the target over the image plane of a camera. In this case, it is
assumed that some visual feature points can be extracted from the target by means of some available
computer vision algorithms like [35–38] or [39].

Using the pinhole model the following expression can be defined:

ht
c =

[
ut

c
vt

c

]
=

1
zt

d

[ fc
du

0

0 fc
dv

] [
xt

d
yt

d

]
+

[
cu + dur + dut

cv + dvr + dvt

]
(5)

Let pt
d =

[
xt

d yt
d zt

d

]T
represent the position (in meters) of the target with respect to the

coordinate reference system C of the camera, and:

pt
d = WRc(xt − xc) (6)
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2.4. Altimeter Measurement Model

Let consider an altimeter carried by the UAV. Based on altimeter readings, measurements of UAV
altitude are obtained, therefore this model is simply defined by:

ha = zc (7)

It is important to note that the only strict requirement for the proposed method is the
availability of altitude measurements respect to the reference system W. In this case, the typical
barometer-based altimeters which are equipped in most UAVs can be configured to provide such kind
of measurement [40].

2.5. Range Measurement Model

Let consider the availability of a range sensor. Its measurements of the relative distance of the
UAV with respect to the target are obtained. In this case, the measurement model is defined by:

hr =
√
(xt − xc)2 + (yt − yc)2 + (zt − zc)2 (8)

For practical implementation, several techniques like [41] or [42] can be used to obtain these
kinds of measurements. On the other hand, a practical limitation for using these techniques is the
requirement of a target equipped with such a device. Thus, the application of the proposed method
with non-cooperative targets becomes more challenging.

3. Observability Analysis

In this section, the nonlinear observability properties of the proposed system are studied.
Observability is an inherent property of a dynamic system and has an important role in the accuracy and
stability of its estimation process. Moreover, this fact has important consequences in the convergence
of the EKF-based SLAM.

In particular, it will be shown that the inclusion of the altimeter measurements improves the
observability properties of the SLAM system.

A system is defined as observable if the initial state x0, at any initial time t0, can be determined
given the state transition model ẋ = f(x), the observation model y = h(x), and observations z[t0, t]
from time t0 to a finite time t. Given the observability matrixOOO, a non-linear system is locally weakly
observable if the condition rank(OOO) = dim(x) is verified [43].

3.1. Observability Matrix

An observability matrixOOO can be constructed in the following manner:

OOO =
[

∂(L0
f (hc

i))
∂x

∂(L1
f (hc

i))
∂x · · · ∂(L0

f (h
t
c))

∂x
∂(L1

f (h
t
c))

∂x
∂(L0

f (ha))
∂x

∂(L1
f (ha))
∂x

∂(L0
f (hr))
∂x

∂(L1
f (hr))
∂x

]T
(9)

where Ls
fh represent the s-th-order Lie derivative [44], of the scalar field h respect to the vector

field f. In this work, the rank calculation of Equation (9) was carried out numerically using MATLAB.
The degree of Lie derivatives, used for computingOOO, was determined by gradually augmenting the
matrix OOO with higher-order derivatives until its rank remained constant. Based on this approach,
only Lie derivatives of zero and first order were needed to construct the observability matrix for all
the cases.

The description of the zero and first order Lie derivatives used for constructing Equation (9)
are presented in Appendix A. Using these derivatives the observability matrix n Equation (9) can be
expanded as follows:
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OOO =



02×6 | −Hc
i WRc 02×3 | 02×3(i−1) Hc

i WRc 02×3(n1−i)

02×6 | Hdc
i −Hc

i WRc | 02×3(i−1) −Hdc
i 02×3(n1−i)

...
...

...

Ht
c

WRc 02×3 | −Ht
c

WRc 02×3 | 02×3n1

−Ht
dc Ht

c
WRc | Ht

dc −Ht
c

WRc | 02×3n1

01×6 |
[

01×2 1
]

01×3 | 01×3n1

01×6 | 01×3

[
01×2 1

]
| 01×3n1

Hr 01×3 | −Hr 01×3 | 01×3n1

Hdr Hr | −Hdr −Hr | 01×3n1



(10)

In Equations (9) and (10), Lie derivatives that belong to each kind of measurement are distributed
as: first two rows (or first two elements in Equation (9)) are for monocular measurements of the
landmarks; second two rows (or second two elements) are for monocular measurements of the target;
third two rows (or third two elements) are for altitude measurements; and last two rows (or last two
elements) are for range (UAV–target) measurements.

3.2. Theoretical Results

Two different cases of system configurations were analyzed. The idea is to study how
the observability of the system is affected due to the availability (or unavailability) of the
altimeter measurements.

3.2.1. without Altimeter Measurements

In this case, considering only the respective derivatives on the observability matrix in
Equation (10), the maximum rank of the observability matrixOOO is rank(OOO) = (3n1 + 12)− 4. In this
case, n1 is the number of measured landmarks, 12 is the number of states of the UAV–camera system
and the target, and 3 is the number of states per landmark. Therefore, OOO will be rank deficient
(rank(OOO) < dim(x)). The unobservable modes are spanned by the right nullspace basis N1 of the
observability matrixOOO.

It is straightforward to verify that the right nullspace basis ofOOO spans for N1, (i.e., OOON1 = 0).
From Equation (11) it can be seen that the unobservable modes cross through all states, and thus
all states are unobservable. It should be noted that adding Lie derivatives of higher-order to the
observability matrix the previous result does not improve.
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N1 = null(OOO) =
(

1
z(i−1)

a −zi
a

)



xc − xa
i


(

z(i−1)
a − zi

a

)
0
0


 0(

z(i−1)
a − zi

a

)
0

 −

 xc − xi
a

yc − yi
a

zc − z(i−1)
a


vc 03×1 03×1 −vc

−−−−− −−−−−−−− −−−−−−−− −−−−−−−−−

xc − xa
i


(

z(i−1)
a − zi

a

)
0
0


 0(

z(i−1)
a − zi

a

)
0

 −

 xc − xi
a

yc − yi
a

zc − z(i−1)
a


vc 03×1 03×1 −vc

−−−−− −−−−−−−− −−−−−−−− −−−−−−−−−

xa
1 − xa

i ...
... −

 x1
a − xi

a
y1

a − yi
a

z1
a − z(i−1)

a


...


(

z(i−1)
a − zi

a

)
0
0


 0(

z(i−1)
a − zi

a

)
0

 ...

xa
(i−2) − xa

i ...
... −

 x(i−2)
a − xi

a

y(i−2)
a − yi

a

z(i−2)
a − z(i−1)

a



xa
(i−1) − xa

i


(

z(i−1)
a − zi

a

)
0
0


 0(

z(i−1)
a − zi

a

)
0

 −

 x(i−1)
a − xi

a

y(i−1)
a − yi

a
0



03×1
...

...

 0
0(

z(i−1)
a − zi

a

)




(11)

3.2.2. with Altimeter Measurements

When altimeter measurements are taking into account, the observability matrix in Equation (10)
is rank deficient (rank(OOO) < dim(x)), with rank(OOO) = (3n1 + 12)− 2. In such a case, the following
right nullspace basis N2 spans the unobservable modes ofOOO:

N2 = null(OOO) =


[

1 0 0
]T

03×1 |
[

1 0 0
]T

03×1 |
[

1 0 0
]T
· · ·

[
1 0 0

]T

[
0 1 0

]T
03×1 |

[
0 1 0

]T
03×1 |

[
0 1 0

]T
· · ·

[
0 1 0

]T



T

(12)

It can be verified that the right nullspace basis of OOO spans for N2, (i.e., OOON2 = 0).
From Equation (12) it can be observed that the unobservable modes are related to the global position in
x and y of the UAV–camera system, the landmarks, and the target. In this case, the rest of the states are
observable. It should be noted that adding Lie derivatives of higher-order to the observability matrix
the previous result does not improve.
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Table 1. Results of observability test.

Unobservable Unobservable Observable
Modes States States

Without altimeter measurements 4 x -
With altimeter measurements 2 xt, yt xc, yc, xi

a, yi
a zt, zc, zi

a, vt, vc

3.2.3. Remarks on the Theoretical Results

To interpret the former theoretical results, it is important to recall that any world-centric SLAM
system is partially observable in the absence of global measurements (e.g., GPS measurements).

In this case, the SLAM system computes the position and velocity within its map, and not respect
to the global reference system. Fortunately, this is not a problem for some applications that require
local or relative position estimates, for instance the problem addressed in this work that implies to
following a moving target.

On the other hand, it is worth noting how the simple inclusion of an altimeter improves the
observability properties of the system when GPS measurements are not considered (see Table 1). It is
very interesting to observe that, besides the states along the z-axis [zt, zc, zi

a] (as one could expect),
the velocity of the camera-robot (which is global-referenced) becomes observable when altitude
measurements are included. In this case, since the target is estimated respect to the camera, the global
velocity of the target becomes observable.

Accordingly, it is also important to note that, since the range and monocular measurements to
the target are used only for estimating the position of the target with respect to the camera-robot,
these measurements affect neither the observability of the camera-robot state nor the observability of
the landmarks states.

In other words, the target measurements create only a “link” to the camera-robot state that allows
estimating the relative position of the target but does not provide any information about the state of
the camera-robot, and for this reason, they are not included in the observability analysis.

Later, it will be seen how the target position is used for improving the initialization of nearby
landmarks, which in turn improves the robustness and accuracy of the system.

A final but very important remark is to consider that the order of Lie derivatives and the rank
calculation of Equation (9) were determined numerically, but not analytically. Therefore, there is still a
chance, in rigorous terms, that a subset of the unobservable states determined by the analysis is in
reality observable (see [43]).

4. Ekf-Based Slam

In this work, the standard EKF-based SLAM scheme [45,46] is used to estimate the system state in
Equation (2). The architecture of the proposed system is shown in Figure 2.

From Equation (1), the following discrete system can be defined:

xk = f(xk−1, nk−1) =



xtk
vtk
xck
vck

exa
j
k

pxa
n
k


=



xtk−1 + (vtk−1)∆t
vtk−1 + ηtk−1

xck−1 + (vck−1)∆t
vck−1 + ηck−1

exa
j
k−1

pxa
n
k−1


(13)

nk =

[
ηtk
ηck

]
=

[
at∆t
ac∆t

]
(14)



Sensors 2020, 20, 3531 10 of 32

Filter
Prediction

EKF− Cooperative Monocular SLAM (Multi−UAV−Target Systems) 

Landmarks 
Initialization 

Method

System
State

Augmentation

Landmarks Initialization

x^−

xa

xa

new

P
new

,

x^

x^

k

Filter
Correction

Measurements

k

k

Zk

Monocular (landmarks)
Monocular (target)

UAV altitude
Range (UAV−target)

uc
i vc

i, ,hr

uc
t vc

t,

Figure 2. Block diagram showing the EKF-SLAM architecture of the proposed system.

From Equations (3), (5), (7) and (8), the system measurements are defined as follows:

zk = h(xk, rk) =


ehc

j
k +

erc
j
k

phc
n
k +

prc
n
k

htk + rtk
hak + rak
hrk + rrk

 (15)

rk =


erc

j
k

prc
n
k

rtk
rak
rrk

 (16)

Let exa
j = [ exj

a
eyj

a
ezj

a ]T be the j-th landmark defined by its Euclidean parametrization. Let
pxa

n = [ pxn
c o

pyn
c o zn

c o
pθn

a
pφn

a
pρn

a ]T be the n-th landmark defined by its inverse of the depth
parametrization, j = 1, ..., n2, where n2 is the number of landmarks with Euclidean parametrization,
n = 1, ..., n3, where n3 is the number of landmarks with inverse of the depth parametrization, and n1 =

n2 + n3.
Let pxc

n
o = [ pxn

c o
pyn

c o
pzn

c o ]T represent the position (in meters) of the camera when the
feature pxa

n was observed for the first time. Let pθn
a and pφn

a be azimuth and elevation respectively
(respect to the global reference frame W). Let pρn

a = 1
pdn be the inverse of the depth pdn. Let ehc

j be the
projection over the image plane of a camera of the j-th landmark. Let phc

n be the projection over the
image plane of a camera of the n-th landmark.

In Equation (14), at and ac are zero-mean Gaussian noise representing unknown linear
accelerations dynamics. Moreover, nk ∼ N (0, Qk), rk ∼ N (0, Rk) are uncorrelated noise vectors
affecting respectively the system dynamics and the system measurements. Let k be the sample step,
and ∆t is the time differential. It is important to note that the proposed scheme does not depend on a
specific aircraft dynamical model.

The EKF prediction equations are:

x̂−k = f(x̂k−1, 0) (17)

P−k = AkPk−1AT
k + WkQk−1WT

k (18)



Sensors 2020, 20, 3531 11 of 32

The EKF update equations are:

x̂k = x̂−k + Kk(zk − h(x̂−k , 0)) (19)

Pk = (I−KkCk)P
−
k (20)

with
Kk = P−k CT

k (CkP−k CT
k + VkRkVT

k )
−1 (21)

and

Ak =
∂f
∂x

(x̂k−1, 0) Ck =
∂h
∂x

(x̂−k , 0)

Wk =
∂f
∂n

(x̂k−1, 0) Vk =
∂h
∂r

(x̂−k , 0)
(22)

Let K be the Kalman gain, and let P be the system covariance matrix.

4.1. Map Features Initialization

The system state x is augmented with new map features when a landmark is observed for the
first time. The landmark can be initialized in one of two different parametrizations: (i) Euclidean
parametrization and (ii) Inverse depth parametrization, depending on how close this landmark is
from the target. Since the target is assumed to move over the ground, the general idea is to use the
range information provided by the target to infer the initial depth of the landmarks near to the target.
In this case, it will be assumed that the landmarks near the target lie at a similar altitude, situation
encountered in most of the applications. It is important to recall that the initialization of landmarks
plays a fundamental role in the robustness and convergence of the EKF-based SLAM.

4.1.1. Initialization of Landmarks near to the Target

A landmark is initialized with a Euclidean parameterization if it is supposed arbitrarily near the
target. This assumption is made if the landmark is within a selected area of the image (see Section 4.1.4).
In this case, the landmark can be initialized with the information given by the range measurement
between the UAV and the target, which is assumed to be approximately equal to the depth that the
landmark has respect to the camera.

Therefore, the following equation is defined:

exa
j = x̂c k + hr


cos

(
eθ

j
a

)
cos

(
eφ

j
a

)
sin
(

eθ
j
a

)
cos

(
eφ

j
a

)
sin
(

eφ
j
a

)
 (23)

where x̂c k is the estimated position of the camera when the feature exa
j was observed for first time, and

[
eθ

j
a

eφ
j
a

]
=


arctan 2

(
ega

j
y, ega

j
x

)
arctan 2

(
ega

j
z,

√(
ega

j
x

)2
+
(

ega
j
y

)2
)  (24)
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with ega
j = [ ega

j
x

ega
j
y

ega
j
z ]T = WRc

T
[ euj

c
evj

c fc ]T. Where, [euj
c , evj

c] define the coordinates
(in pixels) of the projection of the j-th landmark over the image of the camera. In case of a landmark
with Euclidean parameterization, the projection over the image plane of a camera is defined:

ehc
j =

[
euj

c
evj

c

]
=

1
ezj

d

[ fc
du

0

0 fc
dv

] [
exj

d
eyj

d

]
+

[
cu + dur + dut

cv + dvr + dvt

]
(25)

with

epd
j =

 exj
d

eyj
d

ezj
d

 = WRc

(
exa

j − xc

)
(26)

4.1.2. Initialization of Landmarks Far from the Target

A landmark is initialized with an inverse depth parametrization if it is supposed arbitrarily far
from the target. This assumption is made if the landmark is outside a selected area of the image
(see Section 4.1.4). In this case, pxc

n
o is given for the estimated position of the camera x̂ck when the

feature pxa
n was observed for the first time. Furthermore, the following equation is defined:

[
pθn

a
pφn

a

]
=


arctan 2

(
pga

n
y , pga

n
x

)
arctan 2

(
pga

n
z ,

√
(pga

n
x)

2 +
(

pga
n
y

)2
)  (27)

with pga
n = [ pga

n
x

pga
n
y

pga
n
z ]T = WRc

T
[ pun

c
pvn

c fc ]T. Where, [pun
c , pvn

c ] define the
coordinates (in pixels) of the projection of the n-th landmark over the image of the camera. pρn

a
is initialized as it is shown in [47]. In case of a landmark with inverse depth parametrization,
the projection over the image plane of a camera is defined by:

phc
n =

[
pun

c
pvn

c

]
=

1
pzn

d

[ fc
du

0

0 fc
dv

] [
pxn

d
pyn

d

]
+

[
cu + dur + dut

cv + dvr + dvt

]
(28)

with

ppd
n =

 pxn
d

pyn
d

pzn
d

 = WRc

pxc
n
o +

1
pρn

a

 cos (pθn
a ) cos (pφn

a )

sin (pθn
a ) cos (pφn

a )

sin (pφn
a )

− xc

 (29)

4.1.3. State Augmentation

To initialize a new landmark, the system state x must be augmented by
x = [ xt vt xc vc

exa
j pxa

n xa
new ]T, being xa

new the new landmark which is initialized by
either the Euclidean or the inverse depth parametrization. Thus, a new covariance matrix Pnew is
computed by:

Pnew = ∆J

[
P 0
0 Ri

]
∆JT (30)

where Ri is the measurement noise covariance matrix, ∆J is the Jacobian
∂h(x)

∂x
, and h(x) is the

landmark initialization function.

4.1.4. Landmarks Selection Method

To determine whether a landmark is initialized with Euclidean or inverse depth parametrization,
it should be determined arbitrarily if the landmark is considered near or far from the target. To achieve
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this objective the following heuristic is used (see Figure 3): (1) firstly, a spherical area centered
on the target of radius rw is defined; (2) then, the radius rc of the projected spherical area in the
camera is estimated; and (3) the landmarks whose projection in the camera are within the projected
spherical area (idt ≤ rc) are considered near to the target and thus, they are initialized with Euclidean
parameterization (see Section 4.1.1). Otherwise (idt > rc), landmarks are considered far from the
target, and they are initialized with inverse depth parametrization (see Section 4.1.2) where idt =√(

ut
c − ui

c
)2

+
(
vt

c − vi
c
)2.

u

v

rw

rc

Landmarks far
to the Target

Landmarks near
to the Target

Z

Y

X
C

UAV-camera systemZ

X

YW

Target

Figure 3. Landmarks selection method.

Here, rc is estimated as follows:

rc =

√
(ut

c − ur
c)

2 + (vt
c − vr

c)
2 (31)

where [
ur

c
vr

c

]
=

1
zr

d

[ fc
du

0

0 fc
dv

] [
xr

d
yr

d

]
+

[
cu + dur + dut

cv + dvr + dvt

]
(32)

with

pr
d =

 xr
d

yr
d

zr
d

 = WRc (x̂t + ηηη − x̂c) (33)

and ηηη =
[

rw 0 0
]T

.
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5. Target Tracking Control

To allow a UAV to follow a target a high-level control scheme is presented. Firstly, the kinematic
model of the UAV is defined:

ẋq = vx cos(ψq)− vy sin(ψq)

ẏq = vx sin(ψq) + vy cos(ψq)

żq = vz

ψ̇q = ω

(34)

Let xq =
[

xq yq zq

]T
represent the UAV position respect to the reference system W (in m).

Let (vx, vy) represent the UAV linear velocity along the x and y axis (in m/s) respect to the reference
system Q. Let vz represent the UAV linear velocity along the z (vertical) axis (in m/s) respect to
the reference system W. Let ψ represent the UAV yaw angle respect to W (in radians); and let ω

(in radians/s) is the first derivative of ψ (angular velocity).
The proposed high-level control scheme is intended to maintain a stable flight formation of the

UAV with respect to the target, by generating velocity commands to the UAV. In this case, it is assumed
that a low-level (i.e., actuator-level) velocity control scheme exists, like [48] or [49], that drives the
velocities [vx, vy, vz, ω] commanded by a high-level control.

5.1. Visual Servoing and Altitude Control

By deriving Equation (5) the following expression can be obtained, neglecting the dynamics of
the tangential and radial distortion components, taking into account that xq = xc − qdc, where qdc is
the translation vector (in meters) from the coordinate reference system Q to the coordinate reference
system C, and assuming qdc to be known and constant:[

u̇t
c

v̇t
c

]
= Jt

c
WRc(ẋt − ẋq) (35)

with

Jt
c =

 fc
duzt

d
0 − (ut

c−cu−dur−dut)
zt

d

0 fc
dvzt

d
− (vt

c−cv−dvr−dvt)
zt

d

 (36)

Furthermore, an altitude differential λz to be maintained from the UAV to the target is defined:

λz = zq − zt (37)

Now, differentiating Equation (37):
λ̇z = żq − żt (38)

Taking Equations (34), (35) and (38), the following dynamics is defined:

λ̇ = g + Bu (39)

where

λλλ =


ut

c
vt

c
λz

ψq

 g =

[
Jt

c
WRc 02×1

c1 02×1

] [
ẋt

0

]
B = −

[
Jt

c
WRc 02×1

c1 c2

]
ΩΩΩ u =


vx

vy

vz

ω

 (40)
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with

c1 =

[
0 0 −1
0 0 0

]
c2 =

[
0
−1

]
ΩΩΩ =


cos(ψq) − sin(ψq) 0 0
sin(ψq) cos(ψq) 0 0

0 0 1 0
0 0 0 1

 (41)

It will be assumed that disturbances, as well as unmodeled uncertainty, enters the system through
the input. In this case, Equation (39) is redefined as:

λ̇ = g + ∆g + Bu (42)

where the term ∆g (representing the unknown disturbances and uncertainties) satisfies ‖ ∆g ‖≤ ε,
where ε is a positive constant, so it is assumed to be bounded. Based on the dynamics in Equation (39),
a robust controller is designed using the sliding mode control technique [50]. For the controller, the
state-feedback is obtained from the SLAM estimator presented in Section 4. In this case, it is assumed
that the UAV yaw angle is obtained directly from the AHRS device. The architecture of closed-loop
system is show in Figure 4.

EKF 
SLAM

Visual Servoing
and altitude

Control

Ψ

xt ,vt u

λd

xq

Camera

utc ,
t
cv

xc

Kinematic
of the UAV

,

AHRS

Desired values 

Ψ

xq

Figure 4. Control scheme.

First, the transformation x̂q = x̂c − qdc
j is defined, to obtain the UAV estimated position in terms

of the reference system Q.
To design the controller, the following expression is defined:

sλ = eλ + K1

∫ t

0
eλdt (43)

where K1 is a positive definite diagonal matrix, and eλ = λ̂− λd, and λd is the reference signal vector.
By deriving Equation (43) and substituting in Equations (39), the following expression is obtained:

ṡλ = −λ̇d + K1eλ + ĝ + ∆g + B̂u (44)

For the former dynamics, the following control law is proposed:

u = B̂−1
(

λ̇d −K1eλ − ĝ−K2sign(sλ)
)

(45)

where K2 is a positive definite diagonal matrix. Appendix B shows the proof of the existence of B̂−1.
A Lyapunov candidate function is defined to prove the stability of the closed-loop dynamics:



Sensors 2020, 20, 3531 16 of 32

Vλ =
1
2

sλ
Tsλ (46)

with its corresponding derivative:

V̇λ = sλ
Tṡλ = sλ

T
(
−λ̇d + K1eλ + ĝ + ∆g + B̂u

)
(47)

So, by substituting Equation (45) in Equation (47), the following expression can be obtained:

V̇λ = sλ
T (∆g −K2sign(sλ)

)
≤‖ sλ ‖‖ ∆g ‖ −sλ

T ‖ K2 ‖ sign(sλ)

≤‖ sλ ‖ ε− αsλ
Tsign(sλ)

≤‖ sλ ‖ ε− ‖ sλ ‖ α

≤‖ sλ ‖ (ε− α)

(48)

where α = λmin(K2). Therefore, if α is chosen such that α > ε, then V̇λ will be negative definite. In this
case, the dynamics defining the flight formation will reach the surface sλ = 0 and will remain there in
a finite time.

6. Experimental Results

To validate the performance of the proposed method, simulations and experiments with real data
have been carried out.

6.1. Simulations

6.1.1. Simulation Setup

The proposed cooperative UAV–Target visual-SLAM method is validated through computer
simulations. For this purpose, a Matlab R© implementation of the proposed scheme was used.
The simulated UAV–Target environment is composed of 3D landmarks, which are randomly
distributed over the ground. In this case, a UAV equipped with the required sensors is simulated.
To include uncertainty into the simulations, the following Gaussian noise is added to measurements:
for camera measurements σc = 4 pixels; for altimeter measurements σa = 25 cm; and for range sensor
measurements σr = 25 cm. All measurements are emulated to be acquired with a frequency of 10 Hz.
The magnitude of the camera noise is bigger than the typical noise of real monocular measurement.
In this way, it is intended to consider, in addition to the imperfection of the sensor, the errors in
camera orientation due to the gimbal assumption. In simulations, the target was moved along a
predefined trajectory.

6.1.2. Convergence and Stability Tests

The objective of the test presented in this subsection is to show how the robustness of the
SLAM system takes advantage of the inclusion of the altimeter measurements. In other words,
both observability conditions described in Section 3 (with and without altimeter measurements) are
tested. For this test, a control system is assumed to exist able to maintain the target tracking by the UAV.

It is well known that the initial conditions of the landmarks play an important role in the
convergence and stability of SLAM systems. Therefore, a good way to evaluate the robustness of the
SLAM system is to force bad initial conditions for the landmarks states. This means that (only for this
test) the proposed initialization technique, described in Section 4.1, will no be used. Instead, the initial
states of the landmarks xa

new, will be randomly determined using different standard deviations for
the error position. Note that in this case, the initial conditions of x̂t, x̂c, v̂t, v̂c are assumed to be
exactly known.
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Three different conditions of initial error are considered: σa = {1, 2, 3}meters, with a continuous
uniform distribution. Figure 5 shows the actual trajectories followed by the target and the UAV.
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Actual Target trajectory

Actual UAV trajectory
Landmarks

Start

Finish

Figure 5. Actual UAV and target trajectories.

Figure 6 shows the results of the tests. The estimated positions of the UAV are plotted for each
reference axis (row plots), and each column of plots shows the results obtained from each observability
case. The results of the estimated state of the target are very similar to those presented for the UAV
and, therefore, are omitted.

Table 2 summarizes the Mean Squared Error (MSE) of the estimated positions obtained for both
the target and the UAV.
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Figure 6. UAV estimated position.
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Table 2. Mean Squared Error for the estimated position of the target (MSEXt, MSEYt, MSEZt) and the
estimated position of the UAV (MSEXc, MSEYc, MSEZc).

MSEXt(m) MSEYt(m) MSEZt(m) MSEXc(m) MSEYc(m) MSEZc(m)

With Altimeter
σa = 1 m 0.0075 0.0187 0.0042 0.0045 0.0151 0.0033
σa = 2 m 0.1214 0.2345 0.0302 0.1170 0.2309 0.0219
σa = 3 m 18.9603 3.0829 0.9351 18.9578 3.0790 0.8962

Without Altimeter
σa = 1 m 0.0178 0.0139 0.0153 0.0145 0.0105 0.0207
σa = 2 m 1.7179 0.4689 0.2379 1.7078 0.4686 0.2084
σa = 3 m 80.9046 12.8259 7.3669 80.9000 12.8185 6.9981

Taking a closer look at Figure 6 and Table 2, it can be observed that both, the observability
property and the initial conditions, play a preponderant role in the convergence and stability of the
EKF-SLAM. For several applications, the initial position of the UAVs can be assumed to be known.
However, in SLAM, the position of the map features must be estimated online. That confirms the great
importance of using good features initialization techniques in visual-SLAM; and, as it can be expected,
the better observability properties the better performance of the EKF-SLAM system, indeed.

6.1.3. Comparative Study

In this subsection a comparative study between the proposed monocular-based SLAM method
and the following methods is presented,

(1) Monocular SLAM
(2) Monocular SLAM with anchors.
(3) Monocular SLAM with inertial measurements.
(4) Monocular SLAM with altimeter.
(5) Monocular SLAM with a cooperative target: without target-based initialization.

There are some remarks about the methods used in the comparison. The method (1) is the
approach described in [47]. This method is included only as a reference to highlight that purely
monocular methods cannot retrieve the metric scale of the scene. The method (2) is similar to the
previous method. But in this case, to set the metric scale of the estimates, the position of a subset of the
landmarks seen in the first frame is assumed to be perfectly known (anchors). The method (3) is the
approach described in [12]. In this case, inertial measurements obtained from an inertial measurement
unit (IMU) are fused into the system. For this IMU-based method, it is assumed that the alignment
of the camera and the inertial measurement unit is perfectly known; the dynamic error bias of the
accelerometers is neglected as well. The method (4) is the approach proposed in [13]. In this case,
altitude measurements given by an altimeter are fused into the monocular SLAM system. The method
(5) is a variation of the proposed method. In this case, the landmark initialization technique proposed
in Section 4.1 is not used, and instead only the regular initialization method is used. Therefore,
this variation of the proposed method is included in the comparative study to highlight the advantage
of the proposed cooperative-based initialization technique.

It is worth pointing out that all the methods (included the proposed method) use the same
hypothetical initial depth for the landmarks without a priori inference of their position. Also for the
comparative study, a control system is assumed to exist able to maintain the target tracking by the UAV.

First Comparison Test

Using the simulation setup illustrated in Figure 5, the performance of all the methods were tested
for estimating the position of the camera-robot and the map of landmarks.

Figure 7 shows the results obtained from each method when estimating the position of the UAV.
Figure 8 shows the results obtained from each method when estimating the velocity of the UAV. For the
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sake of clarity, the results of Figures 7 and 8 are shown in two columns of plots. Each row of plots
represents a reference axis.

Table 3 summarizes the Mean Squared Error (MSE) for the estimated relative position of the UAV
expressed in each one of the three axes. Table 4 summarizes the Mean Squared Error (MSE) for the
estimated position of the landmarks expressed in each one of the three axes.
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Figure 7. Comparison: UAV estimated position.
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Figure 8. Comparison: UAV estimated velocity.

Table 3. Total Mean Squared Error for the estimated position of the UAV.

Method MSEX (m) MSEY (m) MSEZ (m)

Proposed method 0.5848 0.2984 0.0001
Monocular SLAM 9.1325 3.6424 0.0642
Monocular SLAM with anchors 4.9821 1.8945 0.0394
Monocular SLAM with inertial measurements 4.9544 1.2569 0.0129
Monocular SLAM with altimeter 3.5645 1.5885 0.0016
Monocular SLAM with a cooperative target 5.5552 1.9708 0.0367

Table 4. Total Mean Squared Error for the estimated position of the landmarks.

Method MSEX (m) MSEY (m) MSEZ (m)

Proposed method 0.6031 0.2926 0.1677
Monocular SLAM 8.1864 2.8295 0.3861
Monocular SLAM with anchors 4.4931 1.4989 0.2701
Monocular SLAM with inertial measurements 4.4739 0.9979 0.3093
Monocular SLAM with altimeter 3.2397 1.2609 0.3444
Monocular SLAM with a cooperative target 5.0374 1.5394 0.3054

Second Comparison Test

In this comparison test, the performance of all the methods was tested for recovering the metric
scale of the estimates. For this test, the target and the UAV follow a circular trajectory for 30 s.
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During the flight, the altitude of the UAV was changed (see Figure 9). In this case, it is assumed that
all the landmarks on the map are seen from the first frame and that they are kept in the camera field of
view throughout the simulation.

The scale factor s is given by [51]:

s =
dreal
dest

(49)

where dreal is the real distance, and dest is the estimated distance. For the monocular SLAM problem,
there exist different kind of distances and lots of data for real (and estimated) distances: distances
between camera and landmarks, distances between landmarks, distances defined by the positions of the
camera in time periods (camera trajectory), among other distances. Therefore, in practice, there is not
such a standard convention for determining the metric scale. But in general, for determining the scale,
the averages of multiple real and estimated distances are considered. In this work, authors propose to
use the following approximation, which averages all the distances among the map features.

dreal =
1

∑n−1
k=1 (n− k)

n

∑
i=1

n

∑
j=i+1

dij dest =
1

∑n−1
k=1 (n− k)

n

∑
i=1

n

∑
j=i+1

d̂ij (50)

Let dij represent the actual distance of the i-th landmark respect to the j-th landmark. Let d̂ij

represent the estimated distance of the i-th landmark respect to the camera j-th landmark, and let n be
the total number of landmarks. From (49), if the metric scale is perfectly recovered then s = 1.

For this test, an additional method has been added for comparison purposes. The Monocular
SLAM with altimeter (Loosely-coupled) explicitly computes the metric scale by using the ratio between
the altitude obtained from an altimeter, and the unscaled altitude obtained from a purely monocular
SLAM system. The computed metric scale is used then for scaling the monocular SLAM estimates.

Case 1: The UAV follows a circular flight trajectory while varying its altitude (see Figure 9,
upper plot). In this case, the UAV gets back to fly over its initial position, and thus, the initial
landmarks are seen again (loop-closure).

Figure 9 (lower plot) shows the evolution of the metric scale obtained for each method. In this
case, for each method, the metric scale converged to a value, and remains almost constant. Even the
monocular SLAM method (yellow) which does not incorporate any metric information, and the
monocular SLAM with anchors (green) that only includes metric information at the beginning of the
trajectory, exhibit the same behavior. It is important to note that this is the expected behavior since
the camera-robot is following a circular trajectory with loop closure where the initial low-uncertainty
landmarks are revisited.

Case 2: The UAV follows the same flight trajectory illustrated in Figure 5. In this case, the UAV
drifts apart from its initial position, and thus, the initial landmarks are never seen again.

Figure 10 (upper plot) shows the evolution of the metric scale obtained for each method. In this
case, the monocular SLAM method (yellow) was manually tuned to have a good initial metric scale.
The initial conditions of the other methods are alike as those of the Case 1, but the vertical limits of the
plot have been adjusted for better visualization. Figure 10 (middle and lower plots respectively) shows
the Euclidean mean error in position for the camera-robot ec and the Euclidean mean error in position
for the landmarks ea for each method, where

ec =

√
(xc − x̂c)

2 + (yc − ŷc)
2 + (zc − ẑc)

2

ea =

√√√√( 1
n

n

∑
i=1

xi
a − x̂i

a

)2

+

(
1
n

n

∑
i=1

yi
a − ŷi

a

)2

+

(
1
n

n

∑
i=1

zi
a − ẑi

a

)2
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Observing Figure 10, as could be expected, for the methods that continuously incorporate metric
information into the system through additional sensors, the metric scale converges to a value, and
remains approximately constant (after time > 100 s). On the other hand, the methods that do not
continuously incorporate metric information (monocular SLAM and monocular SLAM with anchors),
exhibit a drift in the metric scale. As one could also expect in SLAM without loop-closure, all the
methods present some degree of drifting in position, both for the robot-camera trajectory and the
landmarks. The above reasoning is independent of the drift in metric scale (the methods with low drift
in scale also present drift in position). Evidently, it is convenient to maintain a low error/drift in scale,
because it affects the error/drift in position.

It is interesting to note that the loosely-coupled method (purple) appears to be extremely sensitive
to measurements noise. In this case, the increasing “noise” in error position is because the scale
correction-ratio increases as the error in the scale of the purely monocular SLAM (yellow) also increases.
In other terms, the signal-to-noise ratio (S/N) increases. Surely some adaptations can be done,
as filtering the computed metric scale, but a trade-off would be introduced between the time of
convergence and the reduction of noise effects.
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Figure 9. Case 1: Comparison of the estimated metric scale.
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Figure 10. Case 2: Comparison of the estimated metric scale and Euclidean mean errors.

6.1.4. Estimation and Control Test

A set of simulations were also carried out to test in a closed-loop manner the proposed control
scheme. In this case, the estimates obtained from the proposed visual-based SLAM estimation
method are used as feedback to the control scheme described in Section 5. The value of the
vector λd, that defines the desired values of the servo visual and altitude control, is: λd =

[ 0, 0, 7 + sin(t · 0.05), atan2(ŷq, x̂q) ]T. Those values for the desired control mean that the UAV
has to remain flying exactly over the target at a varying relative altitude.

Figure 11 shows the evolution of the error respect to the desired values λd. In all the cases,
note that the errors are bounded after an initial transient period.
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Figure 11. Errors with respct to λd.

Figure 12 shows the real and estimated position of the target and the UAV.
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Figure 12. Estimated position of the target and the UAV obtained by the proposed method.

Table 5 summarizes the Mean Squared Error (MSE), expressed in each of the three axes, for the
estimated position of: (i) the target, (ii) the UAV, and (iii) the landmarks.
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Table 5. Mean Squared Error for the estimated position of target, UAV and landmarks.

MSEX (m) MSEY (m) MSEZ (m)

Target 0.5149 0.0970 0.0036
UAV 0.5132 0.0956 0.0018

Landmarks 0.5654 0.1573 0.2901

Table 6 summarizes the Mean Squared Error (MSE) for the initial hypotheses of landmarks depth
MSEd. Furthermore, Table 6 shows the Mean Squared Error (MSE) for the estimated position of
landmarks, expressed in each of the three axes. In this case, since the landmarks near to the target are
initialized with a small error, its final position is better estimated. Once again, this result shows the
importance of the initialization process of landmarks in SLAM.

Table 6. Mean Squared Error for the the initial depth (MSEd) and position estimation of the landmarks.

MSEd (m) MSEX (m) MSEY (m) MSEZ (m)

Far from the target 13.4009 3.5962 2.5144 7.6276
Near to the target 1.6216 0.5188 0.1280 1.6482

According to the above results, it can be seen that the proposed estimation method has a good
performance to estimate the position of the UAV and the target. It can also be seen that the control
system was able to maintain a stable flight formation along with all the trajectory respect to the target,
using the proposed visual-based SLAM estimation system as a feedback.

6.2. Experiments with Real Data

To test the proposed cooperative UAV–Target visual-SLAM method, an experiment with real data
was carried out. In this case, a Parrot Bebop 2 R© quadcopter [33] (see Figure 13) was used for capturing
real data with its sensory system.

Figure 13. Parrot Bebop 2 R© quadcopter.

The set of sensors of the Bebop 2 that were used in experiments consists of (i) a camera with a
wide-angle lens and (ii) a barometer-based altimeter. The drone camera has a digital gimbal that allows
to fulfill the assumption that the camera is always pointing to the ground. The vehicle was controlled
through commands sent to it via Wi-Fi by a Matlab R© application running in a ground-based PC.
The same ground-based application was used for capturing, via Wi-Fi, the sensor data from the drone.
In this case, camera frames with a resolution of 856× 480 pixels were captured at 24 fps. The altimeter
signal was captured at 40 Hz. The range measurement between the UAV and the target was obtained by
using the images and geometric information of the target. In experiments, the target was represented
by a person walking with an orange ball over his head (See Figure 14). For evaluating the results
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obtained with the proposed method, the on-board GPS device mounted on the quadcopter was used
to obtain a flight trajectory reference. It is important to note that, due to the absence of an accurate
ground truth, the relevance of the experiment is two-fold: (i) to show that the proposed method can be
practically implemented with commercial hardware; and (ii) to demonstrate that using only the main
camera and the altimeter of Bebop 2, the proposed method can provide similar navigation capabilities
than the original Bebop’s navigation system (which additionally integrate GPS, ultrasonic sensor,
and optical flow sensor), in scenarios where a cooperative target is available.

Figure 14 shows a frame taken by the UAV on-board camera. The detection of the target is
highlighted with a yellow bounding box. The search area of landmarks near the target is highlighted
with a blue circle centered on the target. For the experiment, a radius of 1 m was chosen for the
sphere centered on the target that is used for discriminating the landmarks. In this frame, some visual
characteristics are detected in the image. The red cercles indicate those visual features that are not
within the search area near the target, that is, inside the blue circle. Instead, the green circles indicate
those detected features within the search area. The visual features that are found within the patch that
corresponds to the target (yellow box) are neglected, this behaviour is to avoid considering any visual
feature that belongs to the target as a static landmark of the environment.

Figure 14. Frame captured by the UAV on-board camera.

Figure 15 shows both the UAV and the target estimated trajectories. This figure also shows the
trajectory of the UAV given by the GPS and the altitude measurements supplied by the altimeter.
Although the trajectory given by the GPS cannot be considered as a perfect ground-truth (especially for
the altitude), it is still useful as a reference for evaluating the performance of the proposed visual-based
SLAM method, and most especially if the proposed method is intended to be used in scenarios where
the GPS is not available or reliable enough. According to the experiments with real data, it can be
appreciated that the UAV trajectory has been estimated fairly well.
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Figure 15. Comparison between the trajectory estimated with the proposed method, the GPS trajectory
and the altitude measurements.

7. Conclusions

This work presented a cooperative visual-based SLAM system that allows an aerial robot following
a cooperative target to estimate the states of the robot as well as the target in GPS-denied environments.
This objective has been achieved using monocular measurements of the target and the landmarks,
measurements of altitude of the UAV, and range measurements between UAV and target.

The observability property of the system was investigated by carrying out a nonlinear
observability analysis. In this case, a contribution has been to show that the inclusion of altitude
measurements improves the observability properties of the system. Furthermore, a novel technique to
estimate the approximate depth of the new visual landmarks was proposed.

In addition to the proposed estimation system, a control scheme was proposed, allowing to
control the flight formation of the UAV with respect to the cooperative target. The stability of control
laws has been proven using the Lyapunov theory.

An extensive set of computer simulations and experiments with real data were performed to
validate the theoretical findings. According to the simulations and experiments with real data
results, the proposed system has shown a good performance to estimate the position of the UAV
and the target. Moreover, with the proposed control laws, the proposed SLAM system shows a good
closed-loop performance.
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Appendix A. Lie Derivatives of Measurements

In this appendix, the Lie derivatives for each measurement equation used in Section 3,
are presented.

From Equations (3) and (1), the zero-order Lie derivative can be obtained for landmark
projection model:

∂(L0
f (hc

i))

∂x
=
[

02×6 | −Hc
i WRc 02×3 | 02×3(i−1) Hc

i WRc 02×3(n1−i)

]
(A1)

where

Hc
i =

fc

(zi
d)

2
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d
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0 zi
d
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− yi

d
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 (A2)

The first-order Lie Derivative for landmark projection model is:

∂(L1
f (hc

i))

∂x
=
[

02×6 | Hdc
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From Equations (5) and (1), the zero-order Lie derivative can be obtained for target
projection model:
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f (h

t
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The first-order Lie Derivative for target projection model is:
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From Equations (7) and (1), the zero-order Lie derivative can be obtained for the altimeter
measurement model:

∂(L0
f (ha))

∂x
=
[

01×6 | 01×2 1 01×3 | 01×3n1

]
(A11)

The first-order Lie Derivative for the altimeter measurement model is:

∂(L1
f (ha))

∂x
=
[

01×6 | 01×5 1 | 01×3n1

]
(A12)

From Equations (8) and (1), the zero-order Lie derivative can be obtained for the range
sensor model:

∂(L0
f (hr))

∂x
=
[

Hr 01×3 | −Hr 01×3 | 01×3n1

]
(A13)

where
Hr =

[
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]
(A14)

The first-order Lie Derivative for the range sensor model is:
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Appendix B. Proof of the Existence of B̂−1

In this appendix, the proof of the existence of B̂−1 is presented. For this purpose, it is necessary to
demonstrate that

∣∣B̂∣∣ 6= 0. From Equation (40),
∣∣B̂∣∣ = ∣∣∣M̂ Ω̂̂Ω̂Ω

∣∣∣, where

M̂ = −
[

Ĵt
c

WRc 02×1

c1 c2

]
(A17)

using
∣∣B̂∣∣ = ∣∣∣M̂ Ω̂̂Ω̂Ω

∣∣∣ = ∣∣M̂∣∣ ∣∣∣Ω̂̂Ω̂Ω∣∣∣. From Equation (41), then
∣∣∣Ω̂̂Ω̂Ω∣∣∣ = 1. For this work, given the assumptions

for matrix WRc (see Section 2), the following expression is defined:

WRc = −

 0 1 0
1 0 0
0 0 −1

 (A18)

based on the previous expressions, then
∣∣M̂∣∣ = − ( fc)

2

(ẑt
d)

2
dudv

. Finally,
∣∣B̂∣∣ = − ( fc)

2

(ẑt
d)

2
dudv

.

Since fc, du, dv, ẑt
d > 0, then,

∣∣B̂∣∣ 6= 0, therefore B̂−1 exists.
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