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The temperature scales of screening of local magnetic and
orbital moments are important characteristics of strongly
correlated substances. In a recent paper, Deng et al.1 using

dynamic mean-field theory (DMFT) have identified temperature
scales of the onset of screening in orbital and spin channels in
some correlated metals from the deviation of temperature
dependence of local susceptibility from the Curie law. We argue
that the scales obtained this way are in fact much larger than the
corresponding Kondo temperatures, and, therefore, do not
characterize the screening process. By reanalyzing the results of
this paper we find the characteristic (Kondo) temperatures for
screening in the spin channel TK ≈ 100 K for V2O3 and TK ≈
350 K for Sr2RuO4, which are almost an order of magnitude
smaller than those for the onset of the screening estimated in the
paper (1000 K and 2300 K, respectively); for V2O3 the obtained
temperature scale TK is therefore comparable to the temperature
of completion of the screening, Tcmp ~ 25 K, which shows that the
screening in this material can be described in terms of a single
temperature scale.

Deng et al.1 have performed a detailed analysis of the tem-
perature dependence of orbital and magnetic local susceptibilities
of two strongly correlated materials, Sr2RuO4 and V2O3 within
DMFT2–4. At high temperatures, the susceptibilities obey the
Curie law, χ(T) ~ 1/T. The temperatures Tons of the onset of
screening of spin- and orbital local moments are obtained from
the deviation of Tχ(T) from a constant value. Corresponding
temperature scales Tons are found to be much larger than the
scales, corresponding to the completed screening (onset of the
Fermi-liquid behavior) Tcmp ~ 25 K.

In the following, we argue however that the temperatures Tons,
obtained by the authors, do not correspond to the temperature
scales of the spin screening. Indeed, instead of considering the
quantity Tχ(T), we plot inverse spin susceptibility χ−1(T) for both
considered compounds, Sr2RuO4 and V2O3 on the basis of the
data of the paper (see Fig. 1). For Sr2RuO4 (see Fig. 1a) we do not
find any peculiarity at the onset temperature Tons= 2300 K

suggested by the authors. Instead, at all considered temperatures
the local susceptibility follows the Curie–Weiss law:

χðTÞ ¼ C
T þ θ

ð1Þ

with a positive temperature θ ≈ 500K (in agreement with the
earlier result of ref. 5 and experimental data6). Following Wil-
son’s result for the local spin S= 1/2 Kondo problem7–9, the
temperature θ ’ ffiffiffi

2
p

TK yields the temperature scale of screening
of the local moment (Kondo temperature) TK. Since the
dependence χ(T)/χ(0) is almost universal for different S values 10,
the abovementioned relation between θ and TK is also expected
to hold approximately for arbitrary local spin S. Therefore,
for Sr2RuO4 we find the temperature scale of spin screening TK ≈
350 K, which is much smaller than Tons, obtained by the authors.
We also note that very similar linear dependence of the inverse
susceptibility is observed in the other Hund metals: α-iron (TK=
50 K for density–density interaction and TK ≈ 320 K for
Kanamori interaction)11–13, γ-iron (TK ~ 700 K)14, nickel (TK ~
850 K)13, etc.

For V2O3 the situation is more complex, since the inverse
susceptibility shows at T ~ 600 K a crossover (see Fig. 1b) from
the Curie behavior (θ ≈ 0) to Curie–Weiss behavior with θ ≈
150 K. This crossover, however, is likely not related to the
screening, but reflects passing from a crossover regime to
metallic one in the vicinity of Mott metal–insulator transition
for this compound15–17. To confirm this viewpoint, we present
in the inset of Fig. 1b the temperature dependence of the
inverse local spin susceptibility of the single-band half-filled
Hubbard model on the square lattice with nearest-neighbor
hopping t (on-site Coulomb repulsion U= 9t is in the vicinity
of Mott transition), showing that this dependence is qualita-
tively similar to the one, obtained for V2O3. Therefore, the
screening scale of local magnetic moments in V2O3 is again
given by the Kondo temperature TK ¼ θ=

ffiffiffi

2
p � 100 K, extrac-

ted from the low-temperature part of the local susceptibility in
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the paramagnetic phase. The latter value is also much smaller
than obtained by the authors and has the same order of mag-
nitude as the temperature, at which the screening is completed,
Tcmp ~ 25 K. This makes it reasonable to describe spin screen-
ing in V2O3 in terms of a single energy (or temperature) scale,
as it should be for a screening process of a single impurity site,
considered in DMFT. We note that rather large Weiss tem-
perature of local spin susceptibility of V2O3 (~600 K), observed
experimentally in nuclear magnetic resonance studies18,19 in
the temperature range T > 150 K may be related to the impact of
strong antiferromagnetic correlations on local susceptibility,
which is absent in paramagnetic DMFT solution.

The observation that for V2O3 the Kondo temperature TK ~
Tcmp is in contrast to the above-described situation in Sr2RuO4,
where TK≫ Tcmp ~ 25 K. We note that such an inequality is also
fulfilled for nickel13, and in that case this was attributed to
underscreened Kondo effect, since the Fermi level of nickel is
close to the upper edge of the band. The origin of the strong
difference between Kondo temperature and the temperature,
corresponding to the completion of the screening in Sr2RuO4,
requires further studies and clarification.

Data availability
The DMFT data for susceptibility of Sr2RuO4 and V2O3, analyzed here, are taken from
ref. 1. The data on the single-band model are available within the present paper.
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Fig. 1 Temperature dependences of inverse local susceptibilities χ−1 (T).
The inverse susceptibility, calculated from the data of ref. 1 for Sr2RuO4 is
shown on the plot (a) and that for V2O3 is shown on the plot (b). The inset
in (b) shows inverse spin susceptibility of the single-band half-filled
Hubbard model on the square lattice with nearest-neighbor hopping t and
on-site Coulomb repulsion U= 9t (triangles) in comparison to the inverse
spin susceptibility of the Kondo model7 (circles); the Kondo temperature
TK= 0.032t of the Hubbard model is extracted from the fit of the low-
temperature part of the susceptibility to the Kondo model. Dashed lines
show linear fits to the data.
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