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ABSTRACT Norepinephrine (NE), an endogenous catecholamine, is a mainstay treatment for septic shock,
which is a life-threatening manifestation of severe infection. NE counteracts the loss in blood pressure
associated with septic shock. However, an NE infusion that is too low fails to counteract the blood pressure
drop, and an NE infusion that is too high can cause a hypertensive crisis and heart attack. Ideally, the NE
infusion rate should maintain a patient’s mean arterial blood pressure (MAP) above 65 mmHg. There are a
few data-driven, quantitative models to predict the MAP, and incorporate NE effects. This paper presents a
model, driven by intensive care unit (ICU) measurable data and known NE inputs, to predict the future MAP
of an ICU patient. We derive a least square estimation model for MAP based on available ICU data, including
heart period, NE infusion rate, and respiration wave.We learn the parameters of our model from initial patient
data and then use this information to predict future MAP data. We assess our model with data from 12 septic
patients. Our model successfully predicts and tracks MAP when the NE infusion rate changes. Specifically,
we predict MAP 3 to 20 min in the future with the mean error of less than 4 to 7 mmHg over 12 patients.
Conclusion: this new approach creates the potential to advance methods for predicting NE infusion rate in
septic patients. Significance: successfully predicted patients’ MAP could reduce catastrophic human error
and lessen clinicians’ workload.

INDEX TERMS Least squares (LS), mean arterial blood pressure (MAP), sepsis, shock,
norepinephrine (NE).

I. INTRODUCTION
Vasopressors, most commonly norepinephrine (NE), are
widely used to treat septic shock and stabilize hemodynamic
variables, such as blood pressure, and decrease the duration
of shock. The benefit of using a vasopressor on septic patients
is to maintain perfusion of tissues thereby preserving life.
Compared with dopamine, another drug commonly used for
regulating blood pressure, NE improves the splanchnic tissue
oxygen utilization in sepsis [1]. Mean arterial blood pres-
sure (MAP) control in septic patients is typically based on
clinician experience. In ICU treatments, nurses and physi-
cians manually adjust the NE infusion rate to ensure that the
MAP is within a safe region, often defined as greater than

65 mmHg and no less than 60 mmHg in some cases [2], [3].
These numbers are recommended by the Surviving Sepsis
Campaign Guideline [4]. Due to this guideline, clinicians
must check blood pressure frequently and there is a chance of
a catastrophic human error. Ultimately, the error could result
in death.

As a result, clinicians want an approach to predict the
effects of NE, reduce the burden of constant monitoring,
and reduce human error. With methods to predict the effects
of NE, a new system could titrate NE automatically and
could significantly improve a patient’s drug response and
ensure blood pressures remain in safe regions. Yet, there
are currently few methods for accurately estimating MAP
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FIGURE 1. Baroreflex model flow chart.

based on the current NE infusion rate. Furthermore, there
are few dynamic MAP models for patients with septic shock,
whose physiology is different from healthy people, making it
difficult to create these methods.

A NE-based, dynamic MAP model is needed to control
NE infusion rates. In addition to the NE infusion, available
ICU data could augment the model and improve our predic-
tive ability. Previous research has defined several physiology
MAPmodels based on ICU data [5], [6], but few accounts for
the effects of NE. According to Mukkamala [7], the under-
lying model for MAP is based on a combination of four
components: heart rate, ventricular contractility, systemic
venous unstressed volume, and systemic arterial resistance.
These components are illustrated in Fig 1. In this model,
each component is nonlinearly adjusted by the autonomic
nervous system (ANS), which is a biological control system
in humans and animals, based on the history of the differences
between the detected blood pressure and the ANS expected
blood pressure. Yet, this is an ideal model and requires data
that is typically immeasurable from the patient.

In general, a clear pharmacodynamics model of NE’s effect
on MAP has not been determined from previous studies [8].
Based on prior work, NE is metabolized by intracellular
enzymes [9] and mainly eliminated by the liver [10] as well
as kidney. According to Beloeil’s study of septic patients
[8], the kinetics of NE fits a first-order elimination linear
one-compartment model, and other research [11] confirms
that the norepinephrine plasma levels of NE are predictable.
However, just knowing the pharmacodynamics model of
NE is not sufficient because the pharmacodynamics of NE
are not yet clear. In other words, the relationship between
the concentration of NE and MAP is relatively unknown.
In addition, the NE concentration level is not accessible in
real time in the ICU environment, only the current infusion
rate. Beloeil et al. [8] and Kamendi et al. [12] have created a
NE pharmacodynamics model based on a sigmoidal Emax
model, which is a common nonlinear pharmacodynamics
model based on knowing the maximum effect attributable
to the drug. However, the required parameters are not com-
monly available. Yapps [13] statistically predicts hypoten-
sion occurrence in sepsis patients with logistic regression
but does not specifically predict future MAP values. Further-
more, Zhu [14] proposed a dose-response based NE-MAP

model for swine without the consideration of sepsis. Simi-
larly, Bighamian et al. [15], [16] introduced a latency-dose-
response-cardiovascular model to predict MAP, heart rate,
and other cardiovascular parameters under NE but has only
verified it in piglets without sepsis.

Neural networks and machine learning have been studied
for similar applications [17]. These approaches have not
included the effect of NE and are usually best utilized with a
large training data set. Merouani et al. [18] developed a MAP
fuzzy control system for decreasing NE infusion rates in sep-
tic shock patients. The system did not formally predict MAP.
It was geared toward decreasing NE rather than titrating NE
and does not address stability issues. Guinot et al. [19], [20]
used arterial dynamic elastance, known as Eadyn, to predict
the effects of decreasing in norepinephrine infusion rates. Yet
the approach does not predict future MAP or provide esti-
mates to predict the effect of increasing the norepinephrine
infusion rate.

As a result, there is a need to build a model that can
successfully relate NE and sepsis to MAP with available ICU
data in septic patients. This paper focuses on creating this
model for septic patients under known NE infusions rates.
Our work combines medical and engineering knowledge on
MAP control in a clinical environment. We use a reduced-
rank least squares (LS) model with multiple inputs com-
monly acquired in the ICU, including heart rate, respiration
wave, and NE infusion rate. We train and test our model
with data from twelve patients treated at the Shock Trauma
ICU at the Intermountain Medical Center in Murray, Utah.
We used the model to predict human MAP during NE infu-
sion. As expected, the prediction error of the model increases
as the length of our prediction window increases. The model
is able to reach 6 mmHg root mean squared error (RMSE)
when predicting 10 mins into the future and 7.5 mmHg when
predicting 20 mins into the future.

II. METHODS
We model MAP as a time-varying, linear system with mul-
tiple time series inputs. The linear model assumes that the
output of the system can be represented by a linear combina-
tion of the output’s previous values, the current inputs, and the
previous inputs. This model is similar to a digital filter [21]
or neural network [22] model. We use this model since it has
been shown that MAP can be expressed as the convolution
of its previous values [7]. Our inputs include the heart rate,
respiratory wave, and NE infusion rate.

Our model is trained and adapts based on the status of
a single patient. Therefore, the model is time-varying and
patient-specific. Adaptation is necessary for several reasons.
First, MAP is a function of NE infusion rate. That is, a higher
NE infusion increases the MAP. Yet, the rate that MAP
increases is generally slow [8] and varies between patients
[8]. Practitioners currently wait approximately 3-15 minutes
before the adjustment of the NE rate. Furthermore, since
the septic patient’s baroreflex system does not function nor-
mally, its relationship with MAP is difficult to predict and is
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FIGURE 2. Baroreflex modeling flow chart.

inherently time-varying. The ability to adaptively train a lin-
ear model allows our method to learn not only the status of
patients but also predict the effects of NE at a given moment
in time.

In this section, we formulate our east squares model and
its implementation. Specifically, we describe our approach
for preprocessing the data followed by learning and applying
the model to optimally predict patient MAP. Our process is
demonstrated by the flow chart shown in Figure 2. In this
paper, the unknown system is a septic patient’s baroreflex
system. Once the model is known, we can use it with current
and past measurements to predict future data.

A. SETTING
The patients studied were admitted to the 24-bed Shock
Trauma ICU or the 12-bed Respiratory ICU at Intermountain
Medical Center, an academic hospital in Murray, Utah, USA.
This study was approved by Intermountain’s Institutional
ReviewBoard (#1020798) with a waiver of informed consent.

B. DATA COLLECTION
In our model, we predict future MAP based on common
ICU measurements: the NE infusion rate per unit weight,
the patient’s heart period, and the patient’s respiratory pattern.
Table 1 describes each of these parameters and their units.
In a clinical setting, the MAP, the NE infusion rate, and the
patient’s heart period can be computed directly from mea-
surements taken by ICU equipment. Specifically, the MAP
and respiration wave is calculated from the arterial blood
pressure (ABP) waveform, which is recorded by standard
ICU monitors. The NE infusion rate is recorded by the
infusion pump in the ICU and is automatically uploaded to
our electronic medical record system in our hospital by the

TABLE 1. Data parameter characteristics.

infusion pumps via the wireless network. Instead of using
heart rate, we measure the heart period (HP) by calculating
the time interval between each heart beat. The respiration
wave is a measure of respiratory function and is a key input
into the parasympathetic arm of the autonomic nervous sys-
tem. It is measured by computing the wave of the diastolic
end of the arterial blood pressure (i.e., valley envelope of
the arterial blood pressure). In a real-time clinical setting,
the envelope is computed by smoothing the diastolic square
wave. The diastolic wave is captured by taking the diastolic
signal of previous heart period.

Based on the results in the literature [7], ourmodel assumes
that the MAP can be predicted from time-variations in these
four inputs. Figure 3 illustrates these inputs from one example
septic patient. In this figure, we observe that NE changes
more often during the first half of the dataset to stabilize
the patient’s hemodynamic status early. Commonly, the NE
is titrated to maintain a MAP of 60-70 mmHg.

Note that while the data can be effectively gathered from
the ICU equipment, much of the data is corrupted by noise.
Most noise in the patient data is the result of physical move-
ment by the patient or from clinicians handling the ICU
equipment. In one typical patient, for example, the standard
deviation of MAP in a 1-hour window across an 11-hour
period varies from 1.19 mmHg to 20.7 mmHg.

C. PREPROCESSING AND SMOOTHING
Factors that contribute to noise cannot be easily controlled
and noise can be substantial. Therefore, noise reduction is an
important preprocessing step before learning the LS model.
Periods of high noise are manually eliminated by connecting
the data before and after noise. These periods usually start
with a large spike that is followed by unrealistically large con-
stant values (> 90 mmHg), or constant values (< 40 mmHg),
or large, rapid variations (> 5 mmHg variations between
successive heart beats).

Noise reduction is then applied on periods of relatively
lower noise by averaging the data over time. Specifically,
we use a real-time single-pole averaging filter to average
noise. These filters are commonly used in noise reduction
applications, including audio noise reduction [23]. The output
y(n) of a single-pole filter is defined by

y(n) = βy(n− 1)+ (1− β)x(n) (1)

where x(n) represents any patient input data (MAP, heart
period, or the respiration wave), y(n) represents filtered data,
and β is the filtering coefficient. A large value (near one)
of β corresponds to a high degree of smoothing while low
values (near zero) correspond to little smoothing. We apply
this single-pole filter to each of our four inputs. In this paper,
we use a filtering coefficient of 0.9999 to achieve a long
smoothing operation. The equivalent time constant of this
smoothing filter is 79.992 seconds.

Figure 3 illustrates the inputs after applying smoothing.
Note that we also apply smoothing to the NE input since it is
reasonable to assume there is a time constant for the change
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FIGURE 3. The sample plots of observed MAP (top right), NE infusion rate (top left), heart period (bottom left), and captured respiration
(bottom right).

in NE input to take effect. In addition, smoothing the input
also reduces unrealistic, abrupt changes in our prediction.

D. LEAST SQUARES CARDIOVASCULAR MODEL
In this subsection, we introduce our model for defining the
relationship between MAP, NE infusion rate, heart period,
and respiration wave. Specifically, the model is defined by

x(n) = A(n)x(n− P) (2)

where x(n) is a vector of the lastN previousmeasurements for
MAP, NE infusion rate, heart period, and respiration wave.
We refer to this as our state vector. We define the state
vector x(n) as

x(n) = [MAP(n) · · · MAP(n− N + 1) HP(n)

· · · HP(n− N + 1) NE(n) · · · NE(n− N + 1)

×Resp(n) · · · Resp(n− N + 1)] (3)

The matrix A(n) represents weights that relate prior states
from P time-samples in the past to the current states. That is,
we assume the lastN inputs and outputs can be represented by
a linear combination of the N last states from P time-samples
previous. Based on this model, the weight matrix A(n) needs
to be learned through system identification.

E. REDUCED RANK MODEL LEARNING
To learn our model, we determine the relationship between
the previous states and the current states. It should be noted
that there are 4N × 1 current and past states and 4N × 4N
weights in A(n) to learn. For one collection of states, this
represents a highly underdetermined problem. Therefore,
we learn A(n) from a collection of states across different
points in time. We achieve this by building an 4N × D

Toeplitz matrix of data

X(n) = [x(n) x(n− 1) · · · x(n− D+ 1)] (4)

so that we can now represent our model as

X(n) = A(n)X(n− P) . (5)

Compared with our previous expression in (2), this model
assumes that the relationship A(n) between the current and
past states is constant during the last D time samples. For
this paper, we use D = 6000 (20 minutes) of past states to
learn A(n).

Through this formulation, we are able to solve for A(n)
through a standard matrix inversion (assuming D > 4N ) or
least squares inversion. Yet, this approach still has significant
challenges. Through the inversion process, an ill-conditioned
data matrix X(n−P) with noise can significantly change our
learned weights A(n) and cause instabilities when predicting
future states. Therefore, we perform a least squares matrix
inversion through a reduced-rank approximation of the data.

Specifically, we first compute a reduced-rank (i.e.,
reduced-dimension) approximation of the data matrix
X(n− P) to remove noise that causes instabilities. We com-
pute the singular value decomposition

X(n− P) = USVT , (6)

which decomposes X(n − P) into two orthogonal singular
vector matrices U and V and one diagonal singular value
matrix S. We then remove rows and columns of U, V and
S that correspond to singular values that are less than a given
threshold τ . This produces smaller matrices Û, Ŝ, and V̂T that
create the reduced-rank approximation

X̂(n− P) = Û Ŝ V̂T (7)
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for the data matrix. In this process, we choose our singular
value threshold τ = 50 based on our observations of the
singular values.

We learn A(n) by performing a least squares inversion on
the reduced-rank approximation of the data matrix. That is,
our estimate of A(n) is expressed as

Â(n) =
[
X̂(n− P)

]† X(n) (8)

where [·]† corresponds to the Moore-Penrose pseudo-inverse
operation. The Moore-Penrose pseudo-inverse is equivalent
to the least squares inverse solution [2].

F. MODEL PREDICTION
To predict future states, we assume the relationship between
the states from P time samples in the past and current states
is equivalent to the relationship between the current states
and states that are P time samples in the future. Therefore,
we can use the weights matrix A(n) to predict future states.
Specifically, we predict future states by computing

x̂(n+ P) = A(n)x(n) (9)

Note that this approach does not just predict the future
MAP. It also predicts the future heart period and respiratory
wave. Figure 4 demonstrates the predicted MAP in dark line
along with real MAP in light line.

FIGURE 4. A sample prediction period where the light curve represents
the true MAP and the dark line represents the predicted MAP.

III. CASE STUDY
A. PATIENT DATA
To demonstrate our approach, we collected ICU data from
103 patients with severe sepsis or septic shock with an
indwelling arterial catheter at the Shock Trauma ICU in the
Intermountain Medical Center in Murray, Utah. Table 1 dis-
plays the parameters collected in this study: the MAP, heart
period, respiration wave, and NE equivalent infusion rate.
The original data is sampled from bedside Philips Intellivue
monitors using the Research Data Export (RDE) functional-
ity. RDE provides 125-Hz digitized tracings of arterial blood
pressure and EKG. The NE equivalent infusion rate is sam-
pled at 1 per minute. Due to the difference in the sampling

rate of patient’s data from the Intermountain Healthcare ICU
patients’ database, we first filter the signals using (1) and
then resample all of the parameters in Table 1 to 5 Hz for
synchronization.

We sorted the 12 patients who only receive NE as their
vasopressor based on the quality, length, and availability of
their data. Of the 103 patients, data from 91 patients were
excluded. 31 patients were excluded due to lack of Nore-
pinephrine dosage information and/or use of multiple vaso-
pressor drugs during treatment. The other 60 are excluded
due to having less than 24 hours of uninterrupted signals of
MAP, ECG, and NE infusion rates or having ECG and ABP
be substantially affected by a patient’s physical movement.
Therefore, the beat, systolic, and diastolic must detectable
by the patient monitor system over 24 hours. Our study
group consists of patients who receive NE as the vasopressor
within 16-24 hours of ICU admission. We then take their
first 10 hours of data to equalize the study time for each
patient. The patients’ characteristics are shown in Table 2 for
reference. The baseline clinical information for all 12 patients
is displayed in Table 2. The hemodynamic information is
displayed in Table 3.

TABLE 2. Patient characteristics.

B. DATA ANALYSIS AND VERIFICATION
We implement our algorithm in a way that will make it com-
patible with ultimate deployment in a real-time monitoring
and control system. That is, we require no future data or
extensive offline signal processing to make our predictions.
We train our model with past data using (8) and then predict
future MAP based on this model with (9). For each new data
point, we repeat this process. Therefore, the algorithm creates
and updates a patient-specific model in real-time to produce
our predicted MAP minutes ahead of the actual measurement
time. We then compare the predicted MAP with our observed
MAP from patients. This verification process is also known
as time series cross-validation [24].

In a second study, we sequentially removed inputs (the
heart period, respiration wave, and/or norepinephrine) to
study the contributions of each input to our model. For differ-
ent combinations, we then study the average change in RMSE
for each of the patients as a function of prediction intervals
from 3.3 minutes to 20 minutes into the future.

C. CLINICAL CONTEXT
According to [4], MAP should be higher than 65 mmHg
(i.e., the lower limit of the target MAP) to prevent a
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TABLE 3. Patient hemodynamic data.

FIGURE 5. MAP hypotensive event 6 minutes prediction.

hypotensive event. Figure 5 shows an example of the MAP
when dropping below 65 mmHg in one of our patients. The
grey line represents the actual MAP that is collected from
the patient while the black line represents the predicted MAP,
calculated by using data from 6 minutes (360 seconds) prior.
In the plot, the observed MAP drops below 65 mmHg at
360 seconds. The predicted MAP drops below 65 mmHg
at 400 seconds (approximately one minute later). Therefore,
we predict the drop below 65 mmHg at 40 seconds (i.e., when
the MAP is approximately 67 mmHg).

Across our twelve patients, we observe a total of 11
hypotensive events (i.e., regions of time under 65 mmHg).
We correctly predict 8 of those 11 events before their occur-
rence (predicting 6.67minutes in the future).We also estimate
the sensitivity, specificity, and accuracy of our predictions
across all time. We consider the cases where we are predict-
ing 3.33 minutes, 6.67 minutes, 10 minutes, 13.33 minutes,
16.67 minutes, and 20 minutes into the future. These results
are shown in Table 4. As expected, the performance decreases
as the prediction window increases, but we still achieve an
81% accuracy when predicting 10 minutes into the future.

IV. RESULTS AND DISCUSSION
TheMAP-NEmodel demonstrates two results. First, we show
that our method can successfully predict MAP better than a

FIGURE 6. The mean error(RMSE) of the predicted MAP after training.
The lines demonstrate the error of each individual patient. The
vertical bars demonstrate the mean and 95% CI of them.

standard naive approach. Our naive approach assumes that the
MAP does not change during the prediction interval. We also
show that, as expected, the prediction error increases as the
prediction interval increases.

Second, we show that incorporating NE infusion rate,
or intermediary inputs between NE and MAP, improves our
prediction efficiency. This demonstrates that we are predict-
ing MAP based on the learned relationship between NE and
MAP for each individual patient. This also suggests that the
NE infusion can be tuned through our model to control MAP.
We discuss each of these results in greater depth in this
section.

Note our model is patient-specific and time-varying (i.e.,
adaptive). We perform a time-series cross-validation [24],
which uses the data prior to the observed dataset as train-
ing data to forecast the future data. According to [24],
overfitting is the same as failing to identify the cor-
rect model under these circumstances. Due to the patient-
specific and time-varying nature of our model, there is
no global model applied in our approach. In future work,
we will also evaluate the use of a global model to improve
the initial convergence efficiency for our personalized
prediction model.
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TABLE 4. Sample based hypotensive prediction accuracy.

FIGURE 7. The mean MAP error change when naive method (top right), HP and Resp inputs(top left), NE and
HP inputs (bottom right), and only NE applied(bottom right) compared with the results in Figure 5.

A. PRIMARY OUTCOME: PERFORMANCE VERSUS
A NAIVE APPROACH
In this subsection, we verify the performance of our method
through the data analysis study described in Section III.
We learn A(n) from current and prior inputs, including the
MAP. We then use this model to predict the future MAP.
We measure the RMSE performance for an 8.8-hour window
of patient data after the model has sufficient data to begin
prediction (approximately 14 to 40 minutes).

Figure 6 demonstrates the RMSE for our method and the
naive approach as a function of prediction time. The error
bars illustrate a 95% confidence interval around themean. For
our approach, the mean error is 3 mmHg with a 3.33-minute
prediction interval and 5.5 mmHg for a 10-minute prediction
interval. This is compared with the respective mean errors
of 4.5 mmHg and 7 mmHg for the naive approach. Hence,
our approach has much tighter confidence intervals when
compared with the naive method for all prediction times.
Note that the error bars in Figure 6 illustrate the performance
variability across all patients.

Overall, Figure 6 shows promising results. For 4 of
12 patients, the mean error remains under 5.5 mmHg for the
entire prediction period. The best result exhibits a mean error
of less than 3.5 mmHg for a 10-minute prediction interval
and the worst result exhibits a mean error of approximately

9mmHg for the 10-minute prediction interval. For longer pre-
diction times, the errors expectedly converge as the prediction
becomes increasingly more difficult. Our approach shows a
statistically significant improvement (p-value < 0.04) for up
to a 10-minute prediction interval.

Additionally, we applied the same data to conventional
time-series prediction models, such as auto-regressive (AR)
and auto-regressive moving average (ARMA), which act on
only one time series input. With a MAP input and the same
prediction lengths, ARMAwas significantly computationally
slower than our approach and often became unstable, leading
to errors greater than 50 mmHg.

We also validated our approach with patients from the
open MIMIC-III Waveform Database [25]. We restricted the
validation to the nine patients within the MIMIC-III database
that had all of the required concurrent data for the model. The
MIMIC-III data yielded similar results, as shown in Table 5.

B. SECONDARY OUTCOME: INPUT VARIABILITY
AND OTHERS
In this section, we illustrate our results with different inputs
and illustrate how they affect our error. Figure 7 illustrates the
additional RMSE error relative to the full input results after
removing specific inputs. A positive value in Figure 7 indi-
cates that the removed input has a positive contribution to the
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TABLE 5. Sample based hypotensive prediction accuracy.

FIGURE 8. (a) The mean error of the predicted MAP after training. (b) The
standard deviation of the mean error.

MAP estimate. The error bars illustrate the 95% confidence
intervals.

Figure 7(a) shows the additional error exhibited after
removing NE from the inputs. Removing NE increases the
error by a statistically significant amount (p < 0.04) for up to
a 13 minute prediction window. Note that the effect on MAP
is relatively small since the effects of NE can still be indirectly
related to Resp and HP. As the prediction length increases,
the improvement from including NE decreases.

Figure 7(b) and Figure 7(c) show the change in RMSE
when we remove HP and Resp as well as just remove Resp,
respectively. While these results have similar trends, includ-
ing HP helps reduce additional variation for short prediction
times. The similarity between Figure 7(b) and Figure 7(c) is
reasonable since MAP is primarily a function of prior MAP
and NE while HP and Resp partially relate to the effects of
NE with MAP.

Figure 7(d) shows the change in RMSE when only prior
MAP is used as the input. In this result, the error and error
variation increase significantly. As a result, prior MAP alone
is a poor parameter for predicting future MAP, particularly
for prediction intervals from 5 to 15 minutes.

Figure 8(a)-(b) illustrates the means and standard devia-
tions for five different sets of inputs as a function of prediction
time. Two observations can be derived from Figure 8. First,
when NE is part of the input, the model accuracy improves
and the standard deviation lowers. Second, if NE is not

available, the combination of HP and Resp can function as
a substitute since HP and Resp indirectly related to NE and
MAP. However, including NE further improves the result,
as shown in Figure 7(a).

V. CONCLUSION AND FUTURE WORK
This paper explores the topics of norepinephrine pharmaco-
dynamics and MAP prediction on septic patients. There are
few studies ofMAP prediction in clinical settings. By review-
ing the current understanding of the baroreflex system in
human, we introduce a novel MAP model based on the NE
infusion rate.

We then verified this model in a group of septic patients
in an ICU. Our method was able to better predict MAP than
a naive approach that assumed MAP was constant over a
prediction interval. This improvement was statistically sig-
nificant for up to a 10-minute prediction interval (p-value
< 0.04). In addition, we demonstrated that incorporating NE
as an input led to improvements in our result. This represents
the first step toward a MAP control system based on NE
infusion rates.With recent advances inmachine learning [26],
and deep neural networks with memory [27], incorporation
of these techniques may improve our approach. We plan to
investigate this in future efforts.

APPENDIX A
LIST OF SYMBOLS
• MAP – Mean arterial blood pressure;
• HP – Heart period;
• NE – Nor-epinephrine;
• Resp – Respiration;
• LS – Least squares;
• PKPD – Pharmacokinetic/Pharmacodynamic;
• ANS – Autonomic nervous system;
• TPR – Total peripheral resistance;
• RMSE – Root mean squared error;
• RDE – Research data export;
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