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Abstract

Background: Dihydrouridine (D) is one of the most significant uridine modifications that have a prominent occurrence in
eukaryotes. The folding and conformational flexibility of transfer RNA (tRNA) can be attained through this modification.

Objective: The modification also triggers lung cancer in humans. The identification of D sites was carried out through con-
ventional laboratory methods; however, those were costly and time-consuming. The readiness of RNA sequences helps in the
identification of D sites through computationally intelligent models. However, the most challenging part is turning these bio-
logical sequences into distinct vectors.

Methods: The current research proposed novel feature extraction mechanisms and the identification of D sites in tRNA
sequences using ensemble models. The ensemble models were then subjected to evaluation using k-fold cross-validation
and independent testing.

Results: The results revealed that the stacking ensemble model outperformed all the ensemble models by revealing 0.98
accuracy, 0.98 specificity, 0.97 sensitivity, and 0.92 Matthews Correlation Coefficient. The proposed model, iDHU-Ensem,
was also compared with pre-existing predictors using an independent test. The accuracy scores have shown that the pro-
posed model in this research study performed better than the available predictors.

Conclusion: The current research contributed towards the enhancement of D site identification capabilities through compu-
tationally intelligent methods. A web-based server, iDHU-Ensem, was also made available for the researchers at https://
taseersuleman-idhu-ensem-idhu-ensem.streamlit.app/.
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Introduction
A bio-chemical process in which a primordial RNA is
modified to develop functionally mature RNA is known
as post-transcriptional modification (PTM). It is known
that over 170 different RNA PTMs exist across all king-
doms of life. These modifications play critical roles in
gene expression, metabolic responses, RNA folding, RNA
localization, and many other diverse biological pro-
cesses.1,2 These modifications are also implicated in a
wide variety of human diseases, including anemia, prostate
cancer, tumorigenesis, respiratory chain defects, and

intellectual disability.3–7 The uridine modification in trans-
fer RNA (tRNA) is the most prevalent of these PTMs, and it
may undergo two of the most important alterations, known
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as the dihydrouridine (D) modification and the pseudourid-
ine (ψ) modification. Dihydrouridine synthase (Dus), a
member of the flavin enzyme family, catalyzes the produc-
tion of D. The D-loop of tRNA is rich in the modified
nucleoside dihydrouridine. D modifications have been
linked to an increased risk of developing lung cancer in
humans. Moreover, D alterations have been observed in
several neurodegenerative diseases, such as Alzheimer’s
and Huntington’s chorea.8,9 D has been found to be
involved in the regulation of gene expression in the heart,
and its alterations have been linked to cardiovascular dis-
eases.10 D has been implicated in regulating gene expres-
sion during inflammation and its alterations have been
linked to various inflammatory diseases. Consequently,
the identification of D sites is crucial due to their import-
ance in several biological processes. Traditional lab
methods are used to find such modified locations, but
these are time-consuming, expensive, and require a great
deal of effort.11 The sequence data helped to enhance the
identification of D sites through in silico methods.

The most recent work on the identification of D sites was
reported by Zhu et al.12 In this work, the researcher derived
significant features from the tRNA sequences using various
feature extraction methods and developed five different
machine learning models. The nucleotide chemical property
along with the random forest model attained the highest
accuracy (Acc), specificity (Sp), sensitivity (Sn), and
Matthew’s correlation coefficient (MCC), which were
92.73%, 0.98, 0.84, and 0.83, respectively. Similarly,
Dou et al.13 proposed a method, iRNAD_XGBoost,
which was based on a feature selection strategy and an

extreme gradient boost (XGBoost) model for the identifica-
tion of D sites. The researchers reported high achievements
of the proposed method in Sp and Sn accuracy metrics as
compared to the existing predictors. Figure 1 represents a
3D structure of Dihydrouridine representing the double
bonds.

Xu et al.14 also built a predictor, iRNAD, to predict D
modification from RNA samples. Nucleotide chemical
property and nucleotide density were used to encode the
samples. A classification model based on the support
vector machine (SVM) was utilized, and its efficacy was
evaluated using the jackknife test. The suggested model
was found to have 96.18% Acc, with Sp and Sn values of
98.13% and 92%, respectively. In other research, Feng
et al.15 developed a SVM based ensemble method for the
prediction of D sites in Saccharomyces cerevisiae. The fea-
tures were developed through different feature extraction
mechanisms, and a voting strategy was used to select the
best features that were used as input to the SVM model
for classification. Previously, Panwar and Raghava16

worked on the prediction of uridine modifications through
an SVM-based model. The model was then evaluated
using a jackknife and an independent test set.

The present study aimed to identify D sites in tRNA
sequences using ensemble methods. Several models were
created, and they may be grouped into ensembles through
the methods of stacking, bagging, and boosting. Models
were trained, tested, and cross-validated using the bench-
mark dataset acquired from RMBase, which contained
tRNA sequences of Homosapiens, Mus musculus, and
Saccharomyces cerevisiae. By taking nucleotide location
and formation into account, informative features from the
sequences were derived. The dimensionality reduction of
features was aided by using statistical moments.17

Independent set testing and k-fold cross-validation were
used to evaluate the efficacy of each ensemble model.
The Acc, Sp, Sn, and MCC were used to observe the per-
formance of each ensemble model. This research was com-
prised of many stages, such as selecting a group of
representative benchmark datasets, extracting relevant fea-
tures from tRNA sequence using positional and compos-
itional information of nucleotides, developing a sample
formulation, ensemble models training, and evaluation.
Eventually, a web-based server was made available to the
researchers for the enhancement in D site prediction.
Figure 2 depicts the whole cycle of this research.

Materials and methods
Typically, the samples in the benchmark dataset have been
verified by experimentation and are thus free of uncertainty.
These samples are then used for training prediction models
and performance evaluation of those models. The goal is to
compile a single, comprehensive, and useful benchmark
dataset. Extensive experimental validation studies, such asFigure 1. 3D structure of dihydrouridine.
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independent sets and validation tests (K-fold cross-
validation and jackknife test), further corroborate the
results of the experimentation. Since the conclusion is the
result of a synthesis of several separate, unbiased dataset
tests, it is crucial that the data are coherent and relevant.
The dataset accumulation, model development, and
results acquisition span almost 6 months. Directly, no
humans or animals were involved in the study. However,
experimentally verified tRNA sequences from three differ-
ent species were used, including Homosapiens,Mus muscu-
lus, and Saccharomyces cerevisiae. This section includes
the collection of benchmark datasets, feature vector gener-
ation, and the development of ensemble models.

Data samples

The data samples for the current study were obtained from
RMBase. The acquired samples of tRNA belong to
Homosapiens,Mus musculus, and Saccharomyces cerevisiae.
It is important to mention here that similar data samples were
used by Xu et al.,14 Feng et al.,15 and Duo et al.18

Positive and negative samples. The tRNA sample length was
fixed to 41. This sample size was selected due to the optimal
accuracy scores revealed during in-silico experiments. In
each of the 41 nucleotide samples that made up the data

sets, the “U” was in the middle, at position 21. A typical
tRNA sample considered in this research study can be
expressed as mentioned in equation (1):

B(U) = B−ΩB−(Ω−1). . . .B−2B−1UB+1B+2. . . .

B+(Ω−1)B+Ω
(1)

where B−Ω represents the nucleotides from position 1–20,
and the B+Ω represents the nucleotides from position 22–
41. Whereas the total length of a single tRNA sample can
be represented as 2Ω+ 1. There were a total of 1155 posi-
tive (D-sites) and 1669 negative (non-D sites) samples
among the three species. While collecting negative
samples, the position of uridine at the center and non-
dihydrouridine modification was considered. However,
once CD-HIT was set to 0.80 to get rid of duplicates,
1035 positive and 1396 negative samples were left.

Feature generation and representation from RNA
samples

Because computer models cannot directly accept and
analyze biological sequences, one of the most common pro-
cedures is to encode RNA sequences into fixed-length
feature vectors.19,20 These feature vectors are made up of
numeric values that hold information about the RNA

Figure 2. Complete flow diagram of current research methodology.
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sequences’ attributes. The present work focused on the
method for generating features based on the nucleotide’s
formation and position within a tRNA sequence. It was
first suggested by Chou in their proposition of pseudo
amino acid composition (PseAAC). That proposed tech-
nique was quickly being recognized as one of the most
widely used and productive solutions to the issue of
sequence pattern loss.21 In the present work,
pseudo-K-tuple nucleotide composition for feature vector
generation was accomplished in a manner like
PseAAC.22,23 The nucleotide position and composition
were used to create feature vectors for this study. Using
the nucleotide formulation, Vϕ(H), the samples in the
dataset were characterized as described in equation (2):

Vϕ(H) = [V1V2V3 . . .VU . . .Vn]
T (2)

In this study, a feature generation approach was used
wherein a K-tuple nucleotide is represented by a vector
whose components were all represented by the Ѵ. In this
formula, “T” denotes the transposition of the collected
feature set. Each site-specific nucleotide sample was
41 bp in length as represented in equation (3):

F = F1F2F3 · · ·F18F19F21 · · ·F39F40F41 (3)

The central position, F21, represents modified uridine, and
the rest represents cytosine, guanine, adenine, and uridine
within the nucleotide sequence.

Statistical moments computation. Moments are a statistical
tool that statisticians and data analysts use to analyze a
wide variety of data distributions.24,25 The raw, Hahn and
central moments were determined and then incorporated
into features for dimensionality reduction. The reason for
the selection of these moments was the unique properties
associated with each moment class. The scale and location
class were associated with the Hahn moment. However,
central moments depend on the scale and vicinity.26 The
mean, variance, and asymmetry of the dataset were com-
puted by employing raw and central moments. On the
other hand, Hahn moments were determined using Hahn
polynomials as a reference to preserve sequence order.
According to equation (4), a matrix, J ′, is a m*n two-
dimensional array with a single element, J pq, representing
the “qth” nucleotide in the “p” sequence.

J ′ =

J11 J12 . . . J1q
J21 J22 . . . J2q

..

. ..
. . .

. ..
.

J p1 J p2 . . . J pq

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (4)

Raw moments were used to extract position-dependent fea-
tures. For this purpose, the mean, variance, and non-
symmetrical probability distribution were calculated.27

Moments in their raw form were computed up to the third
degree of polynomials (Z00, Z01, Z10, Z11, Z12, Z21, Z30,
Z03), as shown in the expression (5), where u+ v denotes
the sum of raw moments:

Zuv =
∑m
a=1

∑m
b=1

aubvβab (5)

The position has no bearing on the central moments.
Instead, they are tied to the distribution’s content and
form. The central moments were determined using the
random variable’s aberrations from the mean.28,29 The
central moments were calculated for this investigation as
indicated in equation (6):

nij =
∑n
b=1

∑n
q=1

(b− x)i(q− y)jβbq (6)

Similarly, for the Hahn moments computation, Hahn poly-
nomials were initially determined using the expression
given in equation (7):

hu,vn (r, N) = (N + V − 1)n(N − 1)n

×
∑n
k=0

(−1)k
(−n)k(−r)k(2N + u+ v− n− 1)k

(N + v− 1)k(N − 1)k

1
k!

(7)

The orthogonal normalized Hahn of the two-
dimensional data was calculated using the following
expression (8):

Hij =
∑N−1

q=0

∑N−1

p=0

βijh
ũ,v
j (q, N)hũ,vj ( p, N), m, n

= 0, 1, . . .N − 1 (8)

Position Relative Incidence Matrix (PRIM) determination. The
purpose of this research was to improve the model’s prog-
nostic accuracy. This meant that a complete model for
feature extraction was required to achieve the goal.
Nucleotide base indexing within an RNA sequence can be
easily formulated mathematically which helps in extracting
statistical information. Keeping in view of this property,
position relative incidence matrix (PRIM) was designed
to obtain the count of each nucleotide’s position with
respect to others, that is, What would be the relative pos-
ition of “A,” “G,” “U,” and “C” with “A” which occurred
at position 2? The matrix, SNPRIM , in equation (9) was
designed to obtain single nucleotide relative position infor-
mation:

SNPRIM =
S′A�A S′A�G S′A�U S′A�C
S′G�A S′G�G S′G�U S′G�C
S′U�A S′U�G S′U�U S′U�C
S′C�A S′C�G S′C�U S′C�C

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (9)
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Besides single nucleotide position, relativity paired (dual
or tripartite) nucleotide combinations were also considered.
A matrix, DUPRIM , was also designed for the representation

of dual nucleotide combinations within sequence, that is,
CA, AG, UU, GU etc. The matrix is expressed in equation
(10):

DUPRIM =

DAA�AA DAA�AG DAA�AU . . . DAA�j . . . DAA�CC

DAG�AA DAG�AG DAG�AU . . . DAG�j . . . DAG�CC

DAU�AA DAU�AG DAU�AU . . . DAU�j . . . DAU�CC

..

. ..
. ..

. ..
. ..

. ..
. ..

.

DGA�AA DGA�AG DGA�AU . . . DGA�j . . . DGA�CC

..

. ..
. ..

. ..
. ..

. ..
. ..

.

DN�AA DN�AG DN�AU . . . DN�j . . . DN�CC

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The matrix, DUPRIM , yielded 256 coefficients, and these
were reduced through statistical moments, which helped
in feature reduction. For a detailed attributes withdrawal,
a matrix, TRPRIM , as expressed in equation (11) was

designed to attain statistics about tri-nucleotide combin-
ation, that is, UUA, GCA, and CCC 4096 unique coeffi-
cients were generated from this matrix, and the statistical
moments were calculated for reducing this number:

TRPRIM =

TAAA�AAA TAAA�AAG TAAA�AAU · · · TAAA�j · · · TAAA�CCC

TAAG�AAA TAAG�AAG TAAG�AAU · · · TAAG�j · · · TAAG�CCC

TAAU�AAA TAAU�AAG TAAU�AAU · · · TAAU�j · · · TAAU�CCC

..

. ..
. ..

. ..
. ..

.

TAAC�AAA TAAC�AAG TAAC�AAU · · · TAAC�j · · · TAAC�CCC

..

. ..
. ..

. ..
. ..

.

TN�AAA TN�AAG TN�AAU · · · TN�j · · · TN�CCC

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Reverse Position Relative Indices Matrix (RPRIM) formation.
The primary objective of determining feature vectors
is to collect as much valuable information as possible
for the development of a robust prediction model. The
availability of biological sequences has opened infin-
ite possibilities for applying various mathematical
and statistical techniques, which have helped in
getting discrete information. The extracted informa-
tion is fed into the artificial intelligence models,
which help in the quick analysis and prediction of
critical sites within sequences. It was observed that
reversing the sequence can help obtain more obscured
information from the sequences.30,31 Three reverse
position relative incidence matrices (RPRIM) were
created on a similar pattern of PRIM. A general
form of these matrices is shown in equation (12) in
which, RN→j, represents any nucleotide, N, located at

a specific index within a sequence with respect to,
jth base:

RVRPRIM =

R1�1 R1�2 R1�3 . . . R1�y . . . R1�j

R2�1 R2�2 R2�3 . . . R2�y . . . R2�j

R3�1 R3�2 R3�3 . . . R3�y . . . R3�j

..

. ..
. ..

. ..
. ..

.

Rx�1 Rx�2 Rx�3 . . . Rx�y . . . R4�j

..

. ..
. ..

. ..
. ..

.

RN�1 RN�2 RN�3 . . . RN�y . . . RN�j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

For dimensionality reduction, moments were calcu-
lated for RPRIM matrices, which helped in obtaining
more useful features to be used in the ensemble
model’s training.

Suleman et al. 5



Accumulative Absolute Position Incidence Vector (AAPIV). The
accumulative absolute position incidence vector (AAPIV)32

was formulated to deliver the accumulated information that
is related to the location in which each individual nucleotide
base is found. These vectors returned the total count of each
nucleotide (either single or in combination) within each
sequence. Three AAPIV are named as SAAPIV4 (13),
DAAPIV16 (14), and TAAPIV64 (15), which hold count of
single, paired, and tripartite nucleotides, respectively:

SAAPIV4 = {E1,E2,E3,E4,} (13)

DAAPIV16 = {E1,E2,E3, . . . , E15,E16,} (14)

TAAPIV64 = {E1,E2,E3, . . . , E63,E64} (15)

whereas EN(N = 1, 2, 3 . . . .) represents the statistical
count of nucleotides as a single or combination.

Frequency Vector (FV) determination. Attribute generation
relies heavily on being able to extract positional and com-
positional information from the sequence. The frequency
count of each nucleotide inside a sequence may be used
to infer information about the sequence’s pattern.33,34 To
keep track of how many times each nucleotide or nucleotide
pair appears in the sequence, we computed a frequency
vector, denoted by, Ғ, in which each frequency count of
the nth nucleotide is stored in fn. The formula for calculat-
ing such a vector is expressed in equation (16):

F = { f1, f2, . . . .., fn} (16)

Formulation of feature vector. Feature vectors for the
AAPIV, FV, Vϕ(H), PRIM, and RPRIM were generated
from the benchmark dataset through the methods. Every
feature in the dataset is represented by the feature input
vector (FIV). The FIV rows correspond to the dataset’s
individual samples, with each FIV containing 522
unique values. In a similar vein, the Expected Output
Vector was constructed using illustrative resources that
were classified according to their expected function.

This FIV is used to train, assess, and test ensemble
methods.

Ensemble models development

For the current research study, D sites and non-D sites were
classified using ensemble methods. Increased accuracy in
predictions led to the adoption of ensemble approaches
over more traditional machine learning models.35,36 The
ensemble procedures were divided into two major categor-
ies, that is, parallel and sequential. Classifiers that employ
bagging, like random forest, use bootstrap aggregation to
minimize variance by repeating the same procedure with
random subsamples of the dataset. On the other hand,
sequential ensemble methods like boosting allow the
model to be improved upon by using large weights in com-
parison to earlier models. For predicting D sites, the current
research made use of stacking, bagging, and boosting
ensemble techniques. The ensemble models deployed in
the research study were flexible and worked perfectly for
identification purposes. Moreover, the model has been fine-
tuned to alleviate aleatoric uncertainties as the meticulously
collected dataset only contains verified biological
sequences with tolerable homology. The overfitting and
underfitting uncertainties were also removed through
hyperparameter optimization of the models. Experiment
and design specifics for these ensemble approaches were
provided in the following sections.

Bagging ensemble. Bagging is a technique wherein the
trained samples are split into smaller subsamples that are
then used to update the base models. Subsampling was
carried out by using a model based on row sampling with
replacement. Test data were checked using the trained
models, and a consensus was reached on a prediction
method. The four bagging models that were developed
and trained for this investigation were: bagging classifier,
random forest, extra tree classifier, and decision tree classi-
fier. Figure 3 is a schematic of a typical bagging ensemble
model. The model’s hyperparameter optimization was

Figure 3. Bagging ensemble model.
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considered for bagging ensemble models’ development.
The random forest was tuned by considering the number
of estimators (n_estimators= 100), tree depth (max_depth
= 80), max_features as “Auto,” the minimum split of data
samples (min_samples_split= 50), and min_samples_leaf
to “10.” Similarly, several parameters were considered for
tuning the extra tree classifier, such as the number of esti-
mators and tree depth. The number of estimators (n_estima-
tors) for the extra tree classifier was set to 100. Similarly,
the max_depth was set to “40.” Features selection was
made “Auto” in this classifier. Similarly, the bootstrap
value was set to “Bool.” For parameter optimization of
the decision tree classifier, the splitter, max_depth, min_-
samples_leaf, min_weight_fraction_leaf, was set to “50,”
“10,” “None,” and “0.2,” respectively. The bagging classi-
fier was hyper tuned by setting the base_estimator as
“Decision tree classifier” and the number of estimators
(n_estimators) was set to “100.” The oob_score was set
to “True,” and the random state was set as “0.”

Boosting ensemble methods development. The boosting
ensemble technique uses an optimization strategy that con-
siders the results of previously run models. It does the dif-
ferentiable loss in a sequential fashion. Several boosting
ensemble techniques, including gradient boosting,
histogram-based gradient boosting (HGB), Adaboost, and
XGB, were employed for training in the present investiga-
tion. An example of the boosting ensemble model used in
this research is shown in Figure 4. The XGB model was
hyper-tuned by considering parameters such as maximum
iteration (max_iter), depth of this boosting algorithm
(max_depth), and the random_state, which was set to “0.”
Similarly, the Adaboost was tuned by considering n_esti-
mators, random_state, and min_weight_fraction_leaf,
which were set as “100,” “None,” and “0.2,” respectively.
The “Gradient Boost Classifier” was selected as a base esti-
mator. Moreover, max_iter, max_depth, and warm_start

were set to “300,” “50,” and “True” for tuning the HGB
classifier, respectively. For optimizing the gradient boost
algorithm, the learning rate, number of estimators, and cri-
terion were selected. The learning rate was set to “0.2,”
while the number of estimators (n_estimators) and criterion
was set to “150” and “mse,” respectively.

Stacking ensemble model. Stacking typically considers
several diverse weak classifiers known as base models.
The whole dataset is divided into sub-samples and then
base models are being trained in parallel. The meta-learner
is then trained to provide a prediction based on the individ-
ual weak learners’ predictions.37 As can be seen in Figure 5,
the current research made use of a variety of different clas-
sification methods, including a grading boost classifier as a
meta classifier on top of artificial neural network, k-nearest
neighbor, SVM, and multi-layer perceptron that were used
as base classifiers. Each of the basic models was trained
using the training data and then used to provide a prediction
probability, P. Predictions were made on the test data using
the output from the meta classifier, which had been trained
using the outputs of the individual base models. Table 1
lists all classifiers along with their hyperparameter settings
for optimal performance.

Evaluation metrics

In this research, four metrics, Sn, Sp, Acc, and MCC were
used to evaluate the prediction models.38–41 The TP
denotes the D sites, whereas the TN denotes the non-D
sites. A similar notation, FN, represents the total number
of modified sites that were indeed actual D sites but were
misidentified as false D sites. Furthermore, FP stands for
the total number of false D sites that were misidentified.
However, it is important to note that the measurements
only apply to systems with a single class. The accuracy
metrics equations have been mentioned in equation (17):

Figure 4. Boosting ensemble model.
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Sn = TP
TP+ FN

0 ≤ Sn ≤ 1

Sp = TN
TN+ FP

0 ≤ Sp ≤ 1

Acc = TP+ TN / (TP+ FP+ FN + TN) 0 ≤ Acc ≤ 1
MCC = (TP ∗ TN− FP ∗ FN) /
















































(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

√ − 1 ≤ MCC ≤ 1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(17)

These accuracy metrics were used to assess the prediction
capabilities of each ensemble model deployed for this
research. The true positive rate and true negative rate
were used to exhibit the model’s classification accuracy
for actual D sites and non-D sites. These metrics also
helped when the proposed model’s performance was com-
pared with other available models in identifying D modifi-
cations through sequence data.

Test methods

The ensemble models were assessed through well-known
testing methods, that is, independent testing and 10-fold
cross-validation.42,43 It is worth mentioning that separate
test samples were used from training samples in the inde-
pendent set test. While cross-validation involved splitting
the data into subsets, also called folds. Only a single fold
was reserved for validation purposes, while the others
were utilized in model training. To ensure that each fold
had its chance to serve as a validation fold exactly once,
the fold rotation was performed.

Results
The independent testing result is mentioned in Table 2. It
can be observed from the Table 2 that the stacking ensem-
ble model revealed the highest score in Acc, Sn, Sp, and
MCC as compared to rest of the ensemble models. All
boosting ensemble models had good Acc score with
Gradient boost, HGB, Adaboost, and XGB ensemble

achieving 0.92, 0.93, 0.92, and 0.91 values, respectively.
Figure 6 represents all the bagging ensemble model’s
area under the curve revealed during independent set
testing. However, all the bagging ensemble models
failed to exhibit excellent performance relative to stacking
ensemble and boosting ensemble models. However, the
bagging ensemble model succeeded in achieving a better
Sn value with the random forest, extra tree classifier, deci-
sion tree classifier, and bagging classifier achieving 0.89,
0.90, 0.85, and 0.91, respectively. The whole dataset is
put through its paces using a cross-validation test, with
the data set being divided into “k” separate folds.44,45

This more stringent test proves that the model is stable.
The dataset was divided into “k” folds. Model was
trained using “k-1” folds with the remaining fold used
as testing. In the research, the 10 folds were used for
cross validation repeatedly. The results of cross validation
are mentioned in Table 3. It can be observed from Table 3
that almost every ensemble model outperformed in the
k-fold cross-validation. The random forest, gradient
boost, HGB, AdaBoost, and stacking ensemble model per-
formed well by revealing 0.98 Acc. However, for Sp
accuracy metrics, the HGB and stacking model achieved
the highest value of 0.99. Similarly, for Sn, only the
extra tree classifier and the Adaboost ensemble model
did not achieve good scores relatively. Similarly, for
MCC metric, only HGB had shown maximum value of
0.98. Figure 7 shows the receiver operating characteristics
graphs revealed by all ensemble models in 10-fold cross
validation. Few statistical tests were also performed to

Figure 5. Stacking ensemble model deployed for this study.
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validate the performance of ensemble models applied in
this study. The main objective of conducting these tests
is to compare the learning algorithms for the accurate
results which these provided for classification. A two-
proportion test, also known as the Z test, was performed
on the ensemble models. The Z test was used to validate
whether the two samples were different or not. The critical
value (p) should be less than 0.05 in order to reject the
null hypothesis for exhibiting the difference between
two samples. A resampled paired t-test used a predefined
set of trials for the measurement of algorithm accuracy.
McNemar’s test is a statistical significance test used to
determine whether the difference between two proportions
in a 2× 2 contingency table is statistically significant. The
“p” value obtained through these aforementioned tests is
represented in Table 4.

Discussion
The rapid and precise prediction of PTM sites has been
made feasible by the availability of sequencing data and
sophisticated computer methods. The accurate identifica-
tion of such modified sites helps in the diagnosis of
various PTM-linked diseases such as breast cancer,46

acute infantile liver failure,47 asthma,48 diabetes,49 and leu-
kemia.50 For the current research, independent testing and
cross-validation were used to assess the performance of
the model in making predictions. It is worth noting that
the reliability and validity of the tests were independently
evaluated using a data set that was kept completely distinct
from the rest. But the whole dataset was utilized for the
cross-validation. The model’s effectiveness was evaluated
using a variety of accuracy metrics. A violin plot51 uses

Table 1. Hyper-parameters tuning of the stacking model’s classifiers.

Base models ANN KNN SVM DT

Hyper-Parameters value(s) Hidden_layer_sizes= 5,2
Random_state= 1
Activation= relu
Solver= lbfgs

Learning rate= adaptive
Alpha= 0.0001

k= 3 C= 10
Gamma= 0.0001
Kernel= rbf

Coefficient= 0.0
Probability= true
Verbose= false

Random_state= none

Splitter= ‘random’
Max_depth= 80

min_samples_leaf= 4
random_state=None

Meta Classifier (Hyperparameters) Gradient Boost classifier
n_estimators= 100, criterion= ‘mse’

ANN: artificial neural network; KNN: k-nearest neighbor; SVM: support vector machine.

Table 2. Independent testing result of bagging, boosting, and stacking ensemble models.

Model Acc Sp Sn MCC p values

Bagging Random Forest 0.98 0.97 0.98 0.97 0.00167

Extra Tree Classifier 0.97 0.97 0.96 0.96 0.00153

Decision Tree 0.94 0.91 0.98 0.89 0.00141

Bagging classifier 0.97 0.96 0.97 0.94 0.00120

Boosting Gradient Boost 0.98 0.97 0.98 0.96 0.00136

HGB 0.98 0.99 0.98 0.98 0.00166

AdaBoost 0.98 0.98 0.96 0.97 0.00145

XGBoost 0.97 0.96 0.98 0.94 0.00134

Stacking 0.98 0.99 0.98 0.97 0.00167

Standard deviation (σ) 0.012 0.022 0.008 0.025 0.00153
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density curves to visually illustrate how numerical data is
distributed over one or more groups. White dots may be
used to indicate the median, black bars can show the inter-
quartile range, and dark lines can show the ranges of the
lowest and highest values around the bar. Figure 8 is a
violin plot that shows the accuracy values found in each
fold for the best stacking, bagging, and boosting ensemble

models. The output of computationally intelligent models
can be observed in detail through powerful visualization.
Methods of boundary visualization have been used to
show how well each ensemble model can predict and
analyze.

Figure 9 displays the decision surface plots of the classi-
fication algorithms used in this study. The decision surface

Figure 6. Independent testing receiver operating characteristics (ROC) curves (A). Bagging ensemble models ROC (B). Boosting ensemble
models ROC (C). Stacking model ROC.

Table 3. K-fold cross-validation scores of Acc, Sp, Sp, and MCC for ensemble models.

Model Acc Sp Sn MCC p value

Bagging Random Forest 0.87 0.86 0.89 0.75 0.00195

Extra Tree Classifier 0.89 0.88 0.90 0.79 0.00184

Decision Tree 0.89 0.92 0.85 0.78 0.00176

Bagging classifier 0.91 0.90 0.91 0.82 0.00163

Boosting Gradient Boost 0.92 0.91 0.92 0.83 0.00191

HGB 0.93 0.94 0.92 0.86 0.00121

AdaBoost 0.92 0.92 0.92 0.84 0.00299

XGBoost 0.91 0.93 0.89 0.83 0.00183

Standard deviation (σ) 0.018 0.024 0.022 0.033

Stacking Stacked 0.96 0.96 0.95 0.92 0.00163

Baseline (KNN) 0.87 0.78 0.98 0.77 0.00192

Baseline (DT) 0.93 0.92 0.95 0.87 0.00122

Baseline (ANN) 0.90 0.84 0.97 0.81 0.00199

Baseline (SVM) 0.95 0.95 0.96 0.91 0.00186

ANN: artificial neural network; KNN: k-nearest neighbor; SVM: support vector machine.
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plots helped in visualizing the prediction performance of an
ensemble model across the input feature space. When a spe-
cific classifier has been trained using a dataset, it defines a
set of hyperplanes that are used to separate data points of
one class from other. These can be also called as decision
boundaries as it helps in depicting data points to be separ-
ately placed across boundaries of different classes. The
first step includes the training of data being used to fine-tune
the model. The trained model was then used to make predic-
tions for a grid of values over the input domain. It can be
observed that extra-tree classifier outperformed in exhibit-
ing true classification boundaries.

Comparison with pre-existing models

The proposed model, iDHU-Ensem, was built on the best
performing stacking ensemble model and compared with
pre-existing predictors to assess the model’s efficacy on
the independent datasets. iDHU-Ensem was compared
with the available predictors such as D-pred,15 iRNAD,14

and the RF-based model developed by Zhu et al.12 The
D-pred performs prediction and analysis of RNA sequences
derived from Saccharomyces cerevisiae through an
SVM-basedensemblemodel.Moreover, iRNADalsoutilized
SVM for classification of D sites and non-D sites using data
samples of Homosapiens, Mus musculus, Escherichia coli,
Saccharomyces cerevisiae, and Drosophila melanogaster.
Similarly, Zhu et al. employed RF and SVM for classifying
D sites. The independent testing results revealed that the pro-
posed model outperformed the existing predictors in accur-
acy. Separate 207 positive and 280 negative samples were
used for independent testing. Table 5 presents the result of
independent testing and 10-fold cross validation which
shows that iDHU-Ensem outperformed the other available
predictors. The iRNAD and D-Pred and revealed 92.86%
and 83.09% accuracy, respectively, while the Zu et al.
model revealed a 96.97% accuracy score. However, the pro-
posed model outperformed in accuracy metrics, revealing
an accuracy score of 98%. The proposedmodel also achieved
optimal scores in Sp and Sn revealing 0.98 and 0.97 scores,
respectively. Similarly, the iDHU-Ensem revealed a 98%
accuracy score followed by D-pred, IRNAD and Zhu et al.
predictor in 10-fold cross-validation. Similarly, the MCC
value exhibited by D-pred was very low as compared to all
predicting models. However, the predictor proposed by Zhu
et al. exhibits better MCC. The reason can be the selection
of samples in the independent set. However, with the most
rigorous test, 10-fold cross-validation, the results revealed
that iDHU-Ensem achieved optimal scores in Acc, Sn, Sp,
andMCC.The results canbe better shared throughvisualization
tools.For thispurpose,Figure10displays thecomparisonresults
of pre-existing predictors with the proposed model,
iDHU-Ensem, through bar plots and radar maps. It can be
seen that the iDHU-Ensem outperformed, revealing high

Figure 7. A 10-fold cross-validation receiver operating characteristics (ROC) curves (A). Bagging ensemble models (B). Boosting ensemble
models ROC (C). Stacking model ROC.

Table 4. Critical values (p values) exhibiting the significance of
ensemble models in Z-test, resampled paired t-test, and McNemar’s
test.

Model Z-test
Resampled
paired t-test

McNemar’s
test

Bagging Random
Forest

0.00167 0.00092 0.0015

Extra Tree
Classifier

0.00153 0.00051 0.0022

Decision
Tree

0.00141 0.00064 0.0031

Bagging
classifier

0.00120 0.00098 0.0097

Boosting Gradient
Boost

0.00136 0.00088 0.0076

HGB 0.00166 0.00076 0.0065

AdaBoost 0.00145 0.00065 0.0054

XGBoost 0.00134 0.00043 0.0044

Stacking 0.00167 0.00050 0.0033
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scores in all accuracymetrics. The design and development of a
novel feature extractionmethod helped in achieving the optimal
scores in the classification of D and non-D sites. The feature
development method helped in obtaining obscured information
from the sequences, which assisted in providing all the required
inputvalues to theensemble computationally intelligentmodels.
Also, the parameter tuning of ensemble models helped exhibit
these high accuracy values. The D site identification is

substantial due to its involvement in different biological activ-
ities and human lung cancer.

Limitations of current research

The limitation of the current research study is the limited
availability of experimentally proven tRNA sequences.
Since no hypothetical samples were created, the available

Figure 8. Violin plots of 10-fold cross-validation accuracy (Acc) metric results for (A) bagging ensemble (B) boosting ensemble and (C)
stacking ensemble.

Figure 9. Boundary visualization of ensemble models used in this study as follows: (A) Input data, (B) Stacking, (C) Random Forest, (D)
ExtraTree, (E) Decision Tree, (F) Bagging, (G) Gradient Boost, (I) Histo Gradient Boost, (H) Adaboost, and (I) XGBoost.

Table 5. Comparative analysis of iDHU-Ensem with other D site predictors.

Model

Independent set test 10-fold Cross-validation

Acc (%) Sp Sn MCC Acc (%) Sp Sn MCC

D-Pred 83.09 0.89 0.76 0.62 85 0.91 0.77 0.65

iRNAD 92.86 0.96 0.86 0.83 91 0.94 0.86 0.80

Zhu et al. 96.97 0.97 0.96 0.94 97.31 0.98 0.97 0.95

iDHU-Ensem 98 0.98 0.97 0.92 98 0.99 0.98 0.97
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concrete samples were used in the processes of feature
extraction, computational model development, training, and
testing of models. Moreover, the tRNA sequences belonging
to three species, such as Homosapiens, Mus musculus, and
Saccharomyces cerevisiae, were only available from the
verified databases. Therefore, only these species were con-
sidered for the identification of D sites in tRNA sequences.

Webserver availability
The predictor was made available by deploying a web-
based server, iDHU-Ensem. The webserver is available at
https://taseersuleman-idhu-ensem-idhu-ensem.streamlit.
app/. The free availability of the predictor facilitates rapid
and straightforward computational analysis for the identifi-
cation of dihydrouridine sites.

Conclusion
This work employed an ensemble approach to identify
dihydrouridine (D) sites, one of the most common PTMs,
in RNA sequences. The D modification plays a pivotal
part in the stability of RNA. The researchers also discov-
ered its abundance in cancerous cells. The current research
employed an innovative method for extracting features
from RNA sequences that make use of the positional and
compositional characteristics of individual nucleotides.
The dimensionality reduction of the obtained features was
carried out using statistical moments. Multiple ensemble
models using stacking, bagging, and boosting were
trained using the final feature set. Independent testing and
cross-validation were then used to assess the efficacy of
the trained models. Accuracy, specificity, sensitivity, and
Matthew’s correlation coefficient were used to assess the
models. The best-performing ensemble model was then

used to construct the final proposed model, iDHU-Ensem.
The proposed model’s performance in classifying D sites
with non-D sites was also compared with the pre-existing
models. However, iDHU-Ensem was found to have the
greatest score across the board for accuracy measures.
Therefore, it can be stated that iDHU-Ensem optimized
the identification of D sites.
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