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ABSTRACT

Motivation: It is important for the quality of biological ontologies that
similar concepts be expressed consistently, or univocally. Univocality
is relevant for the usability of the ontology for humans, as well as for
computational tools that rely on regularity in the structure of terms.
However, in practice terms are not always expressed consistently,
and we must develop methods for identifying terms that are not
univocal so that they can be corrected.
Results: We developed an automated transformation-based
clustering methodology for detecting terms that use different
linguistic conventions for expressing similar semantics. These term
sets represent occurrences of univocality violations. Our method was
able to identify 67 examples of univocality violations in the Gene
Ontology.
Availability: The identified univocality violations are available upon
request. We are preparing a release of an open source version of the
software to be available at http://bionlp.sourceforge.net.
Contact: karin.verspoor@ucdenver.edu

1 INTRODUCTION
It has been previously noted that terms in structured controlled
vocabularies, such as the Gene Ontology (GO) (The Gene Ontology
Consortium, 2000), often have a highly regular, even compositional,
linguistic structure and that this structure can be exploited for the
purposes of accessing those terms computationally and reasoning
over them (Mungall, 2004; Ogren et al., 2004; Verspoor, 2005).
This regularity is particularly important now that there are efforts to
perform intra- or inter-ontology enrichment by linking terms (Bada
and Hunter, 2008), because the tools that are used to support these
efforts analyze the formal structure of the terms and take advantage
of patterns of expression. The more consistency in expression there
is, the more terms will be able to be appropriately and automatically
linked. It is also intuitively important for human usability of the
ontologies—the more consistently concepts are phrased, the easier
the resource should be to search and augment.

We call the consistency of expression of concepts in an ontology
univocality, inspired by the philosophical term referring to a shared
interpretation of the nature of reality (Spinoza, 1677). In this article,
we take univocality to be a primary goal for assuring ontology
quality.

Community efforts in the development of ontologies and lexical
resources generally involve contributions from across various
research or database groups. Given that different individuals are
contributing new terms and changes to existing terms in ontological
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resources, it is possible that there will be terms that do not
follow established conventions for the expression of concepts. It
is important for maintenance of the quality of the ontology to
identify such terms and correct them to be univocal, or consistent
with similar terms. This has, in fact, been identified as a major
concern for ontology quality by the curators of the GO (Hill, personal
communication, January 11, 2008).

One of the concerns the GO curators raised is the potential
occurrence of redundant terms in the ontology—terms expressing
the same meaning with two distinct forms (e.g. ‘regulation of
transcription’ and ‘transcription regulation’). This is the most basic
case of a univocality violation, and would certainly indicate an error
in the ontology. However, in our work on the GO we were not able to
identify any such cases. Rather the univocality failures occurred in
semantically similar, rather than identical, concepts expressed using
different forms. We thus generalize the notion of univocality in this
work to apply to similar concepts and thereby assess the ontology
quality more broadly.

A common theme of research on ontology quality assurance is that
even manually curated lexical resources contain some percentage
of errors. Even heavily curated ontologies with strict guidelines
can suffer from consistency problems, perhaps due to their size
and the number of people involved in their development. Smith
and Ceusters have worked on two aspects of quality assurance
for ontologies: in Kohler et al. (2006) they presented a technique
for automatically locating circular or difficult-to-read definitions
in the Gene Ontology, and used it to identify 6001 potentially
deficient definitions in this resource. Ceusters et al. (2004) proposed
three algorithms for detecting errors in biomedical ontologies, and
applied them to SNOMED-CT. They uncovered a small number of
faulty relations between concepts, and a large number of redundant
concepts. Cimino has worked on quality assurance for relations
in the Unified Medical Language System. Cimino et al. (2003)
used mismatches between the semantic types of parent and child
nodes linked via the IS-A relation to uncover inconsistencies in the
UMLS Metathesaurus. They found that 59% of a small manually
examined sample of the over 17K relations uncovered by their
technique were incorrect. They also detected some pairs of concepts
that should have been linked via IS-A, but were not. Cimino (1998,
2001) applied an automated methodology for detecting ambiguity
and redundancy in the UMLS Metathesaurus to two revisions of
that lexical resource and found that his methods continued to find
errors in the Metathesaurus even after 6 years of manual curation.
In fact, even studies not specifically targeting error detection in
ontologies have uncovered significant faults in them as a side effect
of other work. For example, Ogren et al. (2004) used a standard
discovery procedure from descriptive linguistics, normally used to
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study morphology, to investigate the formation of terms in the GO.
As an incidental finding, they discovered many sets of terms—for
example, ‘cell proliferation’ and ‘regulation of cell proliferation’ —
that intuitively should have been linked in the ontology, but were
not. This finding led the GO Consortium to add a large number of
links in a subsequent revision of the ontology.

We introduce an automated methodology for identifying potential
failures of term univocality and apply the method to the GO to
discover a small but significant number of terms that should be
rephrased to improve the overall quality of the ontology.

2 APPROACH
Our goal is to detect sets of terms within a controlled vocabulary
that express similar concepts using different surface forms and
are therefore not univocal. We approach this problem through
term transformation and clustering. We hypothesize that pairs of
terms which are not univocal will be transformational variants of
one another, such that when they are normalized to a common
representational form they will cluster together. We automatically
apply transformations to the terms in the vocabulary in order to
normalize their form and group terms that have the same form as a
result of these transformations together into a cluster. We then utilize
an automated heuristic search over the term clusters to identify term
occurrences that are expressed non-uniformly, as compared with
similar terms. This basic strategy of transforming and clustering was
successfully applied to LocusLink by Cohen et al. (2002) to uncover
erroneous names/symbols in that resource, though their approach
targeted character-based and syntactic units, while our approach
emphasizes semantic units.

A pair of terms which are not univocal in the GO appears in
Example 1. For consistency, one of these terms should be rephrased,
e.g. GO:0009558 could be rephrased ‘embryo sac cellularization’ in
order to align not only with the other term shown here, but also
GO:0009553, ‘embryo sac development’ and similar terms.

Example 1.
GO:0009558 – cellularization of the embryo sac
GO:0009562 – embryo sac nuclear migration

Ogren et al. (2004) showed that a large proportion (65.3% in
their study) of GO terms contain another GO term as a proper
substring. Here, we draw on that insight and perform substitution
of the embedded GO term with a generic label in order to better
capture the overall structure of the (larger) term. We similarly search
for embedded occurrences of terms from the Chemical Entities
of Biological Interest (ChEBI) ontology (Degtyarenko, 2003) and
substitute them with a distinct generic label.

The three transformations we perform are as follows:

• Abstraction: identification of GO or ChEBI terms embedded
in a longer GO term, and replacement of this embedded term
with a generic GTERM token, for an embedded GO term, or
CTERM token, for an embedded ChEBI term.

• Stopword removal: elimination of stopwords, or words which
do not normally carry semantic content, such as the, of, etc.

• Reordering: alphabetic ordering of the tokens within the term.

Each cluster is identified with a three-digit binary code indicating
the transformations applied (xyz, where x=1 when abstraction is

performed, y=1 when stopword removal is performed and z=1
when the tokens are alphabetically ordered) plus the resulting
generalized form of all of the terms in the cluster. So, for instance,
all of the terms in Example 2 correspond to the cluster 111 {CTERM
CTERM oxidati}, indicating that after all three transformations have
been applied, those terms collapse to that form, consisting of two
ChEBI terms and the stem oxidati (see Section 3 for a discussion of
the approach to stemming we used).

Example 2. 111 {CTERM CTERM oxidati}
GO:0019327 – oxidation of lead sulfide
GO:0018158 – protein amino acid oxidation
GO:0019604 – toluene oxidation to catechol
GO:0019602 – toluene oxidation via 3-hydroxytoluene
GO:0019603 – toluene oxidation via 4-hydroxytoluene
GO:0019601 – toluene oxidation via 2-hydroxytoluene
GO:0019479 – L-alanine oxidation to propanoate
GO:0019696 – toluene oxidation via toluene-cis-1,2-dihydrodiol

After the transformation and clustering steps, we apply a heuristic
search1 over the generated clusters to identify potential univocality
violations. This is an automated search over the full set of clusters
(for all xyz combinations) that draws on the intuition that the
abstraction transformation is fundamental to identifying univocality
violations—without it we are limited to only considering terms that
are near identical at the string level—and that this transformation
is the necessary starting point for our univocality analysis. Thus,
we only consider clusters for which abstraction has been applied
(1yz clusters, i.e. 100, 101, 110 and 111 clusters) in our search.
The algorithm specifically looks for terms which appear in distinct
clusters at the 100 level of generalization, but merge together upon
application of one of the other transformations. This cluster merging
indicates that the terms in the 100 clusters are semantically similar,
but that they differ in terms of either their word order or the
stopwords they contain. These differences may indicate a univocality
failure. The clusters identified automatically in this way are then
examined manually for terms which appear to violate univocality,
such as GO:0019327 above, which should be phrased ‘lead sulfide
oxidation’ for consistency, and categorized as either a true positive
cluster (containing a univocality violation) or a false positive cluster
(not containing a univocality violation).

3 METHODS
We worked with a December 2007 download of the GO, and release 48 of
ChEBI. As a result of the older GO version we used, some true positive
results reported here now correspond to obsolete terms. We are preparing a
release of an open source version of the software that will be made available
at http://bionlp.sourceforge.net.

All words in all terms are preprocessed according to the following steps.
First, all letters are converted to lower case and punctuation such as hyphens
and commas are removed. Then words are stemmed by truncating all words
longer than seven characters to a length of seven, e.g. ‘reproduction’ and

1In computer science, a heuristic search is an algorithm that ignores whether
the solution to the problem can be proven to be correct, but which usually
produces a good solution. Here, we are not certain whether our algorithm will
find all occurrences of univocality violations that exist in the transformation
clusters, but we know that it will find many cases. There are other potential
heuristics for this search that could be experimented with and we plan to do
so in future work.
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‘reproductive’ are both stemmed to ‘reprodu’. This simple approach was
found to be more useful for biological terms than other commonly used
stemming methods such as the Porter (1980) stemmer. The truncation length
was chosen empirically.

After preprocessing, all combinations of the transformations are
performed to generate clusters of the terms according to the approach
described above. The abstraction step, when performed for the 1yz trans-
formations, is always done prior to the other two transformations to avoid
spurious matches of a substring to a superficially similar GO or ChEBI
term. It requires an exact match of a substring to a full term in the relevant
vocabulary. Terms are tested for matches in descending order of length, so
the longest possible matching term is always replaced with the appropriate
CTERM or GTERM token. The stopword list we use is the list from PubMed,
with the addition of the single digits 0–9 and the word ‘an’.

For this study, we maintain redundancy in the cluster representations such
that for instance the term GO:0019480—‘L-alanine oxidation to pyruvate via
D-alanine’—does not cluster with the terms in Example 2 after transformation
but rather by itself in 111 {CTERM CTERM CTERM oxidati} due to the
occurrence of three ChEBI terms, rather than two, within that GO term.
This was done after initial analysis showed that elimination of redundancy
removed too much term expression variation and resulted in a high number
of false positives for the univocality violation detection.

When applying our heuristic search, we discovered that some clusters
contained only terms that had slight naming variations and did not in fact
indicate a true univocality violation. The script was updated to filter such
clusters out and the results reported here include that filtering. An example
of the sort of cluster removed from the set of potential univocality violations
with this filter is shown in Example 3.

Example 3. 110 {proprot convert activit}
GO:0004285 – proprotein convertase 1 activity
GO:0004286 – proprotein convertase 2 activity
GO:0016808 – proprotein convertase activity

4 RESULTS
Table 1 shows the number of clusters generated for each
transformation combination from 25 539 source GO terms
processed, indicating the amount of generalization introduced by
each transformation. We see from row 000 that the preprocessing
step already collapses terms together (with about a 8% reduction
in the number of clusters from the starting point where each term
is assigned a unique cluster) due to singular/plural variation and
words that have a common stem. For instance, all terms such
as ‘interleukin-1 binding’, ‘interleukin-25 binding’, etc., cluster
together as 000 {interle binding}. We also see that even after
applying all transformations, many terms do not cluster with other
terms. This is generally because the terms contain a specific named
entity neither in ChEBI nor in the GO itself, for instance ‘eosinophil
chemotaxis’ or ‘1,4-lactonase activity’, or are simply structurally
unique in the GO, e.g. ‘embryo implantation’.

It is clear from comparing the 1yz counts, corresponding to
the transformations including abstraction (the columns in the right
section of Table 1), to the 0yz counts without abstraction (the
columns in the left section of the Table 1), that the abstraction
transformation has the most power in terms of clustering terms
together, as it is able to reduce the number of clusters for the source
terms by nearly half relative to not applying that transformation.
No other transformation has such a dramatic effect—the individual
compression effect of the other two transformations ranges from
0.4% to 1.2% in contrast to the 46% reduction from the number of
000 clusters to the number of 100 clusters. Intuitively, the abstraction

Table 1. Number, mean and maximum (max) size of clusters for each xyz
transformation combination

xyz Count Mean Max xyz Count Mean Max

000 23 478 1.088 29 100 12 704 2.010 2999
001 23 395 1.092 29 101 12 594 2.028 3003
010 23 400 1.091 31 110 12 564 2.033 3012
011 23 294 1.096 31 111 12 354 2.067 3054

x is abstraction, y is stopword removal and z is token reordering.

transformation groups together semantically similar terms, and
enables us to consider semantic ‘families’ of terms for univocality
violations. Figures 1–3 show the (log) distribution of cluster sizes
for xyz=000, 100 and 111. It can be seen that the number of large
clusters increases dramatically with application of the abstraction
transformation, and somewhat more when all transformations have
been applied. In Table 2, we break down the abstraction type
observed in the 1yz clusters. We see that fully half of these clusters
have been created through one or both abstractions.

Among the 100 clusters, we find a cluster capturing a common
form in the GO: 100 {regulat of GTERM}. This cluster has 803
members, and an excerpt of those terms appears in Example 4 to
give a sense of the effect of the abstraction transformation. It can be
seen that the basic structure of each term is similar, while there is
still substantial variation among them.

Example 4. 100 {regulat of GTERM}
GO:0051270 – regulation of cell motility
GO:0030449 – regulation of complement activation
GO:0010058 – regulation of atrichoblast fate specification
GO:0045387 – regulation of interleukin-20 biosynthetic process
GO:0045652 – regulation of megakaryocyte differentiation
GO:0045655 – regulation of monocyte differentiation
GO:0050812 – regulation of acyl-CoA biosynthetic process
GO:0050818 – regulation of coagulation
GO:0002923 – regulation of humoral immune response mediated by
circulating immunoglobulin
GO:0002920 – regulation of humoral immune response
GO:0043416 – regulation of skeletal muscle regeneration
…

As shown in Table 3, the application of the automated heuristic
search to the clusters identified 237 xyz=101, 110 or 111 clusters
that potentially contain non-univocal terms. Of these, 47 were
redundant—e.g. the 111 transformation contained the identical
set of terms to the corresponding 101 transformation. The second
occurrence of a cluster of terms was identified automatically and
discarded in the analysis. This left 190 clusters to be manually
reviewed by the first author. Of these clusters, 67 (35%), were
identified as containing one or more terms that were not univocal
with other terms in the cluster. This number of true positive clusters
represents only 0.03% of the source GO terms. The total number of
terms in these 67 clusters is 374. Many of the terms in each cluster
are in the ‘correct’ (standard) form, while at least one would be in
the non-univocal form. We did not specifically count the number of
terms that were not univocal, as the decision as to which form is
standard and which is non-univocal is a curation decision for the
ontology curators.
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Fig. 1. Log distribution of cluster sizes, xyz=000.
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Fig. 2. Log distribution of cluster sizes, xyz=100.

It is important to note that this small number of univocality
failures actually indicates that in general, the GO is quite univocal,
and that overall the quality of its terms is therefore high. It
also gives an indication of how difficult in practice it is to
find univocality violations in the GO, and further motivates
the need for computational tools to generate non-univocal term
candidates. As lexical resources become increasingly larger, it
becomes correspondingly more difficult to locate errors in them.
Finding problems in a very errorful resource is easy; finding them
in a mostly correct resource is an entirely different challenge. It
would be impossible to manually check all 25K terms in the GO, let
alone pairwise combinations, for consistency. Looking through 190
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Fig. 3. Log distribution of cluster sizes, xyz=111.

Table 2. Breakdown of the 100 clusters by abstraction type

Abstraction Count Percentage

CTERM only 2489 20
GTERM only 3840 30
Both CTERM and GTERM 1415 11
No abstraction 4960 39

Table 3. Results of heuristic search for univocality violations

No. of clusters Proportion (%)

Total candidates 237
Identical 47
False positive 123 65
True positive 67 35

clusters is feasible and was done in approximately 12 person hours
without a specialized interface to the data.

4.1 Analysis of true positives
Analysis of the identified univocality violations reveals certain
patterns of differences in expression. The most frequent source
of failure of univocality is syntactic alternations of nominalization
structures. It was previously observed by Cohen et al. (2008)
that alternations are common in biomedical text, and in particular
alternations of verb nominalizations, and we see the same
phenomenon in the terms of the GO. Out of the 67 clusters
with univocality failures we identified, 30 (45%) were a result of
differences where one term contained a phrase of the form ‘X Y’,
while another term contained a semantically comparable variant
phrase ‘Y of X’ or ‘Y in X’. We see examples of these violations in
Examples 5 and 6. Terms GO:0052350 and GO:0052351 should be
rephrased as ‘induction by organism of symbiont induced systemic
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resistance’ and ‘induction by organism of symbiont systemic
acquired resistance’, respectively, for parallelism. An additional 11
cases (16%) can be attributed to more specific alternations, as in
Example 7. These cases rely on both the stopword and reordering
transformations in order to recognize the difference in phrasing.

Example 5. 111 {GTERM GTERM organis symbion}
GO:0052387 – induction by organism of symbiont apoptosis
GO:0052351 – induction by organism of systemic acquired
resistance in symbiont
GO:0052350 – induction by organism of induced systemic resistance
in symbiont
GO:0052560 – induction by organism of symbiont immune response
GO:0052399 – induction by organism of symbiont programmed cell
death
GO:0052396 – induction by organism of symbiont non-apoptotic
programmed cell death

Example 6. 111 {GTERM ventric zone}
GO:0021804 – negative regulation of cell adhesion in the
ventricular zone
GO:0021847 – neuroblast division in the ventricular zone
GO:0021900 – ventricular zone cell fate commitment

Example 7. 111 {GTERM selecti site}
GO:0000282 – cellular bud site selection
GO:0000918 – selection of site for barrier septum formation

A few (4) additional cases of univocality violations resulting
from alternations turn out to be true positives from the perspective
of this study, but yet the existing phrasing is in line with GO
conventions. Modifying these to be perfectly univocal would
introduce other irregularities in the term structure. See, for instance,
Example 8. Term GO:0003100, ‘regulation of systemic arterial
blood pressure by endothelin’, could be rephrased as ‘endothelin
regulation of systemic arterial blood pressure’. However, given that
the predominant convention in the GO is to employ the structure
regulation of GTERM for regulation processes (see also Example
4), modifying this term for univocality would violate a broader
convention in use in the GO and as such this change is not advisable.

Example 8. 111 {GTERM endothe} (partial listing)
GO:0003100 – regulation of systemic arterial blood pressure by
endothelin
GO:0004962 – endothelin receptor activity

The second most common variation, occurring 17 times,
sometimes at the same time as an alternation, is to use a determiner
(‘the’, ‘a(n)’) in front of a noun in one term, while it is left out of
a comparable term. These are cases in which the stopword removal is
the critical transformation for recognizing the univocality violation.
We see two such cases in Examples 9 and 10. For term GO:0001759
in Example 10, the corrected form for univocality should be ‘organ
induction’.

Example 9. 110 {GTERM forebra}
GO:0021861 – radial glial cell differentiation in the forebrain
GO:0021846 – cell proliferation in forebrain
GO:0021872 – generation of neurons in the forebrain

Example 10. 111 {GTERM organ}
GO:0031100 – organ regeneration

GO:0035265 – organ growth
GO:0010260 – organ senescence
GO:0001759 – induction of an organ

Afew true positives reflect a univocality failure due to inconsistent
use of punctuation in combination with prepositions. We found non-
univocal pairs as shown in Examples 11–14. Example 14 is one of the
trickiest univocality failures we discovered. Our suggestion is that
GO:0042770 should be rephrased as ‘signal transduction in response
to DNA damage’ to be univocal with GO:0043247.

Example 11.
GO:0030614 – oxidoreductase activity, acting on phosphorus or
arsenic in donors, with disulfide as acceptor
GO:0016624 – oxidoreductase activity, acting on the aldehyde or
oxo group of donors, disulfide as acceptor

Example 12.
GO:0016647 – oxidoreductase activity, acting on the CH-NH group
of donors, oxygen as acceptor
GO:0046997 – oxidoreductase activity, acting on the CH-NH group
of donors, with a flavin as acceptor

Example 13.
GO:0016653 – oxidoreductase activity, acting on NADH or NADPH,
heme protein as acceptor
GO:0016658 – oxidoreductase activity, acting on NADH or NADPH,
flavin as acceptor
GO:0050664 – oxidoreductase activity, acting on NADH or NADPH,
with oxygen as acceptor

Example 14.
GO:0043247 – telomere maintenance in response to DNA damage
GO:0042770 – DNA damage response, signal transduction

The remaining true positives are a grab bag of small errors, some
reflecting variations in word choices (e.g. ‘within’ versus ‘in’ and
‘substrate-specific’ verus ‘substrate-dependent’), or the inclusion
of superfluous words like ‘other’ (GO:0016764, ‘transferase
activity, transferring other glycosyl groups’ versus GO:0016757,
‘transferase activity, transferring glycosyl groups’), which may have
some significance in the broader context of the GO. In general, these
could be straightforwardly rectified.

4.2 Analysis of false positives
In manual review of the 190 clusters, we counted the clusters that
did not actually represent cases of univocality violations (the false
positives). We also categorized the reason that the terms in the cluster
are in fact univocal despite their collapse together as a result of our
transformations. Note that several reasons were given in some cases.
The breakdown appears in Table 4.

The primary source of false positives in our analysis, labeled
semantic import of stopword in the table, is that when stopwords
are removed, we may remove words that are in fact indicating
important semantic relationships. Consider the minimal pair shown
in Example 15. In this case, removing the stopwords and reordering
the constituent tokens clusters these two terms together, while in fact
semantically they express an opposite relationship: in the first term,
the host is acting on the symbiont, and in the second, the symbiont is
acting on the host. In general, the stopwords specify either the role
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Table 4. Breakdown of false positives

No. of clusters False positives
proportion (%)

Semantic import of stopword 61 50
Non-parallel structure 33 27
Semantic import of stemming 21 17
Syntactic variation 6 5
Semantic import of word order 1 1
Misclassified content word 1 1

of one of the entities, or the location of a process, and the choice
of stopword is significant. In Example 16, the choice of ‘at’ versus
‘in’ depends on the specific relationship between the process and
its location. Similarly, Example 17 shows how the word choice can
depend on the type of entities being related through a stopword—
‘in’ is appropriate for a location, while ‘during’ is appropriate for an
event (Zelinsky-Wibbelt, 1993).

Example 15. 111 {CTERM GTERM levels modulat symbion}
(partial listing)
GO:0052430 – modulation by host of symbiont RNA levels
GO:0052018 – modulation by symbiont of host RNA levels

Example 16. 110 {CTERM CTERM galacto GTERM}
GO:0033580 – protein amino acid galactosylation at cell surface
GO:0033582 – protein amino acid galactosylation in cytosol
GO:0033579 – protein amino acid galactosylation in endoplasmic
reticulum

Example 17. 110 {callose deposit GTERM}
GO:0052542 – callose deposition during defense response
GO:0052543 – callose deposition in cell wall

The false positives categorized as non-parallel structure
correspond to clusters in which the member terms do not have
an obvious common structure on which to evaluate univocality.
Essentially, these are clusters in which the transformations have
caused terms to look alike which really are not. These are generally
clusters that are characterized by sequences of GTERM and/or
CTERM tokens and no other content-bearing tokens. Several
examples appear in Examples 18–20.

Example 18. 110 {CTERM CTERM}
GO:0005204 – chondroitin sulfate proteoglycan
GO:0006088 – acetate to acetyl-CoA
GO:0015641 – lipoprotein toxin

Example 19. 110 {GTERM GTERM GTERM} (partial listing)
GO:0019896 – axon transport of mitochondrion
GO:0047496 – vesicle transport along microtubule
GO:0047497 – mitochondrion transport along microtubule
GO:0060146 – host gene silencing in virus induced gene silencing
GO:0032066 – nucleolus to nucleoplasm transport
GO:0052067 – negative regulation by symbiont of entry into host
cell via phagocytosis

Example 20. 111 {GTERM storage}
GO:0001506 – neurotransmitter biosynthetic process and storage
GO:0000322 – storage vacuole

In their ontology alignment work, Johnson et al. (2006) found that
while stemming does increase the number of proposed alignments
among two ontologies, this comes at a cost of low correctness. Here,
we find a similar phenomenon in that stemming may incorrectly
conflate multiple terms. Particularly problematic is the conflation of
word variants that express a semantic role difference. Considering
a slight transformation of the cluster in Example 4, we identify the
following members of that cluster:

Example 21. 110 {regulat GTERM} (partial listing)
GO:0045066 – regulatory T cell differentiation
GO:0045069 – regulation of viral genome replication
GO:0045055 – regulated secretory pathway
GO:0031347 – regulation of defense response

Stemming results in the conflation of ‘regulation’, ‘regulated’,
and ‘regulatory’ to the common stem ‘regulat’. However, each of
these word forms expresses a somewhat different relationship that
is lost when they are reduced to a common representation and as a
result we have a false positive cluster. Another similar problematic
example is found in Example 22. We also identified one case (mis-
classified content word) in which a content word was treated as a
stopword by our algorithm and erroneously removed (GO:0006328
‘AT binding’ was reduced to 110{GTERM}).

Example 22. 110 {activat GTERM}
GO:0001905 – activation of membrane attack complex
GO:0002253 – activation of immune response
GO:0050798 – activated T cell proliferation
GO:0051522 – activation of monopolar cell growth
GO:0051519 – activation of bipolar cell growth
GO:0002218 – activation of innate immune response
GO:0032397 – activating MHC class I receptor activity

The false positive category syntactic variation is similar to the
non-parallel structure but refers more specifically to terms which
are mostly parallel but show some semantically relevant syntactic
variation in expression. One example is in Example 23. This
variation uses coordination to link two related concepts together.

Example 23. 110 {GTERM mainten}
GO:0032360 – provirus maintenance
GO:0045216 – intercellular junction assembly and maintenance
GO:0045217 – intercellular junction maintenance
GO:0045218 – zonula adherens maintenance

The final false positive category semantic import of word order
was assigned in one case where the reordering transformation
introduces the appearance of non-univocality where in fact there
was none. For this case, the cluster shown in 24 merged with 25 at
the 111 level. As a result, the implication is that one of these clusters
should be rephrased to parallel the structure of the other cluster, for
instance by rephrasing ‘apoptosis inhibitor activity’ to be ‘inhibitor
apoptosis activity’ or, taking the other cluster as the primary case,
rephrasing ‘gibberellin binding activity’ to be ‘binding gibberellin
activity’. Either of these transformations would result in a change
in the overall meaning of the term and would be incorrect.

Example 24. 110 {GTERM CTERM activit}
GO:0005194 – cell adhesion molecule activity
GO:0003712 – transcription cofactor activity
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GO:0008189 – apoptosis inhibitor activity
GO:0003794 – acute-phase response protein activity
GO:0000772 – mating pheromone activity

Example 25. 110 {CTERM GTERM activit}
GO:0045306 – inhibitor of the establishment of competence for
transformation activity
GO:0010331 – gibberellin binding activity
GO:0010427 – abscisic acid binding activity

5 DISCUSSION
Though our automated method was able to identify many good
examples of univocality violations that upon correction will
contribute to improved quality of the GO, it required substantial
manual effort to separate the true positives from the false
positives. The analysis of both sets of results shows that it is
important to distinguish purely syntactic transformations of a term—
transformations which do not impact the meaning conveyed by
that term—from transformations which have semantic import.
The transformations we experimented with here were effective
in grouping semantically similar terms together, as evidenced by
the cluster data presented above in Table 1, but they were overly
aggressive and as such also grouped together terms with important
semantic differences. This led to the inclusion of many false positive
cases among the identified potential cases.

It appears on the basis of these experiments that identification
of univocality violations would be best achieved by specifically
searching for syntactic alternations that are known to preserve the
meaning of the terms, in addition to punctuation variations. An
alternative, but related, idea is to filter the output of the current
algorithms to remove those clusters which seem to vary only
according to a known alternation with semantic import. This would
allow some of the more unpredictable ‘grab bag’ true positives to
persist into the set evaluated manually while eliminating many of
the false positives that stem from the semantic import of stopwords.

There are also, of course, potentially other violations of
univocality in the GO that we have not identified in this analysis.
These may be identifiable through a more specific treatment of
alternations as suggested above. The analysis did also suggest
several additional avenues for variations that we could specifically
look for, including use of determiners and words like ‘other’, but
also taking more advantage of abstraction by converting the tokens
affecting naming variation—integers, Greek letters and individual
letters—to a generic token such as NUMBER. We could further take
advantage of abstraction by incorporating ontologies such as the
Cell Ontology (CL) in addition to ChEBI, or by generalizing over
linguistic forms, such as abstracting words like ‘regulation’ and
‘proliferation’ to -ION_WORD. The latter especially may provide
access to some even less obvious univocality violations. Similarly,
we may find that we have fewer non-parallel structure false positive
cases if we take advantage of the structure of the GO and abstract
the biological process, molecular function and cellular component
terms separately, analogously to what is done in Bada and Hunter
(2008).

Univocality violations that derive from singular/plural variation
would in our current approach be placed into the same cluster during
preprocessing and would not be picked up by our heuristic search.
These could be automatically identified through a more sophisticated

treatment of stemming, in which we track suffixes and compare the
morphological structure of comparable terms. Finally, we are likely
missing univocality violations due to our maintenance of redundancy
in the cluster representations (see Section 3). We plan to add a fourth
transformation which reintroduces redundancy removal, and explore
a refinement to our heuristic search which makes effective use of
that additional level of cluster merging.

Ultimately, we would like to have a set of tools that identifies
univocality violations with a high rate of accuracy and less manual
intervention. This could then be used to establish a quality metric
for ontologies or ontology versions based on the proportion of terms
in an ontology that are not univocal. However, even the tools as
they stand today provide significant utility—reducing the number
of terms that need to be assessed manually from over 25 000 to
under 200, with a reasonably good true positive rate. Through
the application of our methodology, we have made detection of
univocality violations across a large ontology feasible. To the
extent that we can improve the transformation and clustering or the
heuristic search steps in future work, we can further reduce the set
of terms to be assessed manually, and/or improve the true positive
rate within that set.

6 CONCLUSION
We have introduced an automated method for identifying violations
of univocality among a set of controlled vocabulary terms that
reduces the set of terms that need to be examined manually to a
manageable size. Using the method, we were able to identify 67
examples of univocality violations in the GO that can be addressed
in order to improve the quality of that ontology.
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