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Abstract: Background: Gal d 1 (ovomucoid) is the dominant allergen in the chicken egg white.
Hypoallergenic variants of this allergen can be used in immunotherapy as an egg allergy treatment
approach. We hypothesised that disruption of two of the nine cysteine-cysteine bridges by
site-directed mutagenesis will allow the production of a hypoallergenic variant of the protein;
Methods: Two cysteine residues at C192 and C210 in domain III of the protein were mutated to alanine
using site-directed mutagenesis, to disrupt two separate cysteine-cysteine bridges. The mutated
and non-mutated proteins were expressed in Escherichia coli (E. coli) by induction with isopropyl
β-D-1-thiogalactopyranoside (IPTG). The expressed proteins were analysed using sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting to confirm expression.
Immunoglobulin E (IgE) reactivity of the two proteins was analysed, by immunoblotting, against a
pool of egg-allergic patients’ sera. A pool of non-allergic patients’ sera was also used in a separate blot
as a negative control; Results: Mutant Gal d 1 showed diminished IgE reactivity in the immunoblot
by showing lighter bands when compared to the non-mutated version, although there was more
of the mutant protein immobilised on the membrane when compared to the wild-type protein.
The non-allergic negative control showed no bands, indicating an absence of non-specific binding of
secondary antibody to the proteins; Conclusion: Disruption of two cysteine bridges in domain III of
Gal d 1 reduces IgE reactivity. Following downstream laboratory and clinical testing, this mutant
protein can be used in immunotherapy to induce tolerance to Gal d 1 and in egg allergy diagnosis.
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1. Introduction

Hypersensitivity to chicken egg is caused by allergens present in the egg white and egg yolk.
Among these, Gal d 1 (ovomucoid) is known to be the most allergenic and predominant allergen and it
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is found in the chicken egg white [1,2]. This 28 kDa glycoprotein accounts for approximately 11% of the
total egg white protein. The tertiary structure of Gal d 1 is composed of 186 amino acids which form
three domains, with each domain containing approximately 60 amino acids. The tertiary structure is
robustly supported by nine intra-domain cysteine-cysteine disulphide bridges and five oligosaccharide
side chains. The function of Gal d 1 is known to be a trypsin inhibitor; however, the trypsin inhibitory
activity is limited to the second domain [1]. Hypersensitivity to Gal d 1 occurs because of its ability to
efficiently bind to immunoglobulin E (IgE). It has eight IgE binding epitopes [2], some of which are
linear while others are conformational. The highly IgE-reactive epitopes present in the third domain
make it the most allergenic domain of the three. The presence of linear IgE binding epitopes in Gal
d 1 makes it resistant to conditions such as heat and/or proteolytic digestion [3]. Since egg-allergic
patients are often allergic to cooked egg [4], it can be suggested that Gal d 1 plays a crucial role in
cooked egg allergy due to its rigidity. These specific features of Gal d 1 make it the prime allergen
when compared to other allergens in chicken egg and an ideal target for the development of egg allergy
treatment strategies.

There is no long-term cure for egg allergy. Strict avoidance of egg is the currently recommended
management strategy; however, avoidance is difficult and may cause malnutrition in children [5,6],
especially in financially disadvantaged families where procurement of more expensive nutritional
supplements or food that can replace eggs may be difficult. It is also problematic to completely avoid
eggs because of the presence of components or traces of egg in various food products, pharmaceutical
products and vaccines [7,8]. Allergen-specific oral immunotherapy (OIT) offers a potential treatment
strategy, not only for egg allergy but also for other types of food allergies. OIT essentially involves
the gradual oral feeding of an allergen to the patient in order to induce tolerance [9,10]. However,
OIT can be perilous for some patients, primarily because of the high allergenecity of some allergens
and the sensitivity of the patient, which may cause adverse conditions such as anaphylaxis that
can even lead to death [11–13]. Adverse reactions to OIT are currently a potential barrier to clinical
application [14,15]. Therefore, production of less allergenic versions, or hypoallergens, of allergens
has been the focus of many research groups [16–18], because these hypoallergens can offer improved
safety of oral immunotherapy.

Production of hypoallergenic Gal d 1 can be achieved by using mutagenesis as a tool in two
different strategies: the first is by mutating the sequences of the IgE binding epitopes and the second
is by targeting the secondary structure of the proteins. Drew et al. (2004) [19] successfully produced
a hypoallergenic variant of the major latex allergen Hev b 6.10 by disrupting the cysteine-cysteine
bonds of the protein to reduce its IgE reactivity. In this study, we have successfully produced a
hypoallergenic variant of Gal d 1 by targeting only two of the nine cysteine-cysteine bridges using
site-directed mutagenesis.

2. Methods

2.1. Site-Directed Mutagenesis of Gal d 1

The cDNA of Gal d 1 was cloned into pTrcHisA expression vector as discussed in
Dhanapala et al. 2015 [20]. This construct was used for site-directed mutagenesis of nucleotides
coding two cysteine residues, using QuickChange Lightning Multi Site-Directed Mutagenesis
kit (Agilent Technologies, Santa Clara, CA, USA). Two TGC triplicates coding for cysteine
192 and 210 (Figure 1) were targeted in order to disrupt two different cysteine-cysteine
bridges located in domain III of Gal d 1 (Figure 2). The TGC codons were changed to GCC
codons that code for alanine. Initially, mutagenic primer pairs were designed according to the
mutagenesis kit guidelines. The two pairs were named PM7 and PM9, because the mutations
were targeting the seventh and the ninth cysteine-cysteine bridges, respectively. The primers
are as follows; PM7 forward 5′-GGCAACAAGTGCAACTTCGCCAATG CAGTCGTGGAAAG-3′,
PM7 reverse 5′-CTTTCCACGACTGCATTGGCGAAGTTGCACTTGTTGCC-3′, PM9 forward
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5′-ACTCTCACTTTAAGCCATTTTGGAAAAGCCTGAAAGCTTGGCTGT-3′, PM9 reverse
5′-ACAGCCAAGCTTTCAGGCTTTTCCAAAATGGCTTAAAGTGAGAGT-3′. The bolded and
underlined GCC on forward primers show the mutations. To mutate the Gal d 1 cDNA in pTrcHisA
vector, the above mentioned primers and the cDNA constructs (as template DNA) were subjected to a
polymerase chain reaction (PCR). The PCR reaction was set up according to Table 1. The PCR was
then run according to the cycling parameters outlined in Table 2. Following the PCR, the reaction was
digested with Dpn I for 5 min at 37 ◦C, to digest the non-mutated template DNA.
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Figure 1. The nucleotide and amino acid sequence of Gal d 1. The squared cysteine (C) residues at
positions C192 and C210 are the targeted residues. These were replaced with alanine by mutating the
nucleotides to GCC.

Table 1. Mutagenic polymerase chain reaction (PCR) master mix components.

Reaction Component Volume Used (µL)

10× QuickChange Lightning Multi reaction buffer 2.5
Double-distilled water 15.5

Template DNA 1 (50 ng)
Mutagenic primers 1 of each primer (100 ng of each primer)

Deoxy-nucleoside triphosphate (dNTP) mix 1
QuickChange Lightning Multi enzyme blend 1

Total 25
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Figure 2. The secondary structure of Gal d 1 showing the total number of cysteine bridges. The two
arrows show the two cysteine bridges that would be destroyed by the mutations shown in Figure 1.
Figure adapted from: Kato et al., 1987 [1].

Table 2. Mutagenic PCR conditions.

Segment Cycles Temperature Time

1 1 95 ◦C 2 min

2 30
95 ◦C 20 s
55 ◦C 30 s
65 ◦C 3 min (30 s/kb of plasmid length)

3 1 65 ◦C 5

2.2. Chemical Transformation into E. coli

The mutated plasmids were then transformed into XL10-Gold ultracompetent E. coli cells
following manufacturer’s guidelines provided with the mutagenesis kit. The reaction was incubated
with 0.5 mL of pre-heated Luria broth (LB) media at 37 ◦C for 1 h at 250 rpm. The transformant
was then spread-plated on LB agar with 50 µg/mL ampicillin and incubated overnight at 37 ◦C.
The next day, 6 clones were grown in fresh LB media with ampicillin and grown overnight. The cells in
overnight cultures were pelleted by centrifuging at 13,000 rpm for 5 min and subjected to a mini-prep
(Qiagen, Hildon, Germany) to isolate the plasmid constructs following manufacturer’s guidelines.
The isolated plasmids of the six clones were sequenced to confirm the mutations. The sequences
were aligned and compared with wild-type Gal d 1 using the NCBI BLAST tool. The clones that had
the correct sequence and the mutations were then transformed into Express Iq chemically competent
E. coli cells (New England BioLabs, Boston, MA, USA) following manufacturer’s guidelines. The
transformants were plated on LB agar with ampicillin and incubated overnight at 37 ◦C. In addition
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to the mutant transformants plate, a sample of glycerol-stocked E. coli containing the wild-type
ovoumucoid construct was also plated on LB agar with ampicillin.

2.3. Time-Course Expression of Mutant Gal d 1 to Determine Optimum Expression Time

A single colony of the mutant Gal d 1 was grown overnight in LB media with 50 µg/mL ampicillin.
The overnight culture was then subcultured in 10 mL of fresh LB media and grown to mid-log phase
(OD600 0.4–0.6). A 1 mL sample of the cells was pelleted to be used as the unexpressed control (0 h)
of the time-course expression. Expression was then induced with 40 µL of IPTG and the cells were
incubated for 6 h at 37 ◦C with shaking at 250 rpm. A 1 mL sample was collected every one hour for
the 6 h period. The pellets collected at time points 0, 2, 4, 5 and 6 were lysed using 400 µL of Cell Lytic
B (Sigma Aldrich, Natick, MA, USA) lysis reagent and centrifuged at 13,000× g for 5 min to separate
the pellet (insoluble fraction) and the supernatant (soluble fraction). The two fractions were analysed
using SDS-PAGE and western blot according to the methods described in Dhanapala et al. 2015 [20].

2.4. Expression and Immunoblotting of Wild-Type and Mutant Gal d 1 Using Three Different
Detection Antibodies

The wild-type and mutant Gal d 1 were expressed in E. coli to their optimum time points
as determined by the time-course expressions (wild-type Gal d 1 optimum time was determined
in Dhanapala et al. 2015 [20]). Cells were pelleted and lysed using Cell Lytic B as previously
described. The soluble fractions of both proteins were run on SDS-PAGE in equal amounts
(15 µL), along with a molecular weight marker. A gap lane was left between the two proteins to
avoid any cross-contamination between the two variants. The SDS gel was then transferred on to a
nitrocellulose membrane to be used for western blotting. A total of five nitrocellulose membranes were
prepared this way, of which two would be used in the analysis described in Section 2.5. Three prepared
nitrocellulose membranes were subjected to Western blotting using three different antibodies that can
detect the expressed protein (e.g., anti-Xpress antibody, tetra-His antibody and penta-His antibody).

2.5. Immunological Analysis of Wild-Type vs. Mutant Gal d 1 Using Western Blot

The two remaining nitrocellulose membranes from Section 2.4 were used for immunoblotting
using egg allergic and non-allergic patients’ sera to test for IgE reactivity. In a previous study, we used
a pool of egg allergic patients’ sera and a pool of non-allergic patients’ sera for immunological analysis
of recombinant egg white proteins [20]. In this study we used the same pooled serum preparations
and incubated one membrane with allergic patients’ sera and the other with non-allergic patient’s
sera, and incubated overnight at 4 ◦C. The blots were then incubated with anti-human IgE (alkaline
phosphatase conjugated) secondary antibody produced in goat at a dilution of 1:1000. The bands were
detected using a chromogenic substrate as used in the Western blots described in Section 2.4.

3. Results

3.1. Mutagenesis of Gal d 1

Following site-directed mutagenesis to alter C192 and C210, six clones were sequenced to confirm
the mutations. Five of the six clones had only one mutation present. One clone had both of the
mutations at the expected locations of the sequence. When the wild-type Gal d 1 sequence was aligned
with the mutant Gal d 1 sequence on NCBI BLAST, it was seen that the TGC codons (cysteine) for C192
and C210 had been changed to GCC, which in turn codes for alanine.

3.2. Time-Course Expression of Mutant Gal d 1 to Determine Optimum Expression Time

The mutant Gal d 1 protein was expressed in E. coli following IPTG induction for 6 h, and pellets
were collected every 1 h, including one before IPTG induction. The pellets from time points 0, 2, 4, 5
and 6 were lysed and the soluble and insoluble fractions were analysed using SDS-PAGE and Western
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blot. The results show that the optimum expression time point for mutant Gal d 1 is 5 h (Figure 3B),
as compared to 2 h for wild-type Gal d 1 (Figure 3A) [20]. It can also be seen that the expression level
of mutant Gal d 1 decreased after 5 h.
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Figure 3. Time-course expression of the mutant Gal d 1. A time-course expression of the wild-type Gal
d 1 (A) was previously published in Dhanapala et al. 2015 [20]. The mutant Gal d 1 (B) was subjected
to a time-course expression to determine its optimal expression time and conditions and was compared
to the wild-type Gal d 1 expression shown in (A).

3.3. Expression and Immunoblotting of Wild-Type and Mutant Gal d 1 Using Three Different
Detection Antibodies

The wild-type and mutant recombinant Gal d 1 proteins were expressed in LB until their
respective optimum time points by induction with IPTG. The proteins were analysed by SDS-PAGE
and Western blotting using three different antibodies (anti-Xpress, Tetra-His and Penta-His antibodies).
The SDS-PAGE shows that similar amounts of both proteins were loaded on to the gel (Figure 4).
The Western blots show that there was a slightly higher amount of mutant protein present on the
nitrocellulose membrane (Figure 4).
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Figure 4. Immunoblot comparison of the wild-type and mutant Gal d 1 immobilised on nitrocellulose.
Three Western blots were conducted using His-tag–specific antibodies (Tetra-His & Penta-His) and
anti-Xpress antibody to compare the expression level of wild-type and mutant (PM7/9) Gal d 1.
SDS-PAGE shows the profile of the loaded proteins.
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3.4. Immunological Analysis of Wild-Type vs. Mutant Gal d 1 Using Western Blot

Two nitrocellulose membranes were prepared using the same samples used for the blots shown in
Figure 4. The two membranes were subjected to Western blotting using egg-allergic patients’ sera and
non-allergic sera. The egg-allergic patients’ sera blot showed reduced binding (lighter colouration) for
the mutant Gal d 1 lane when compared to the wild-type Gal d 1 (Figure 5). The non-allergic sera blot
showed no detectable bands in either of the lanes representing wild-type or mutant Gal d 1 (Figure 5).
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were conducted, with exactly the same amount of proteins loaded against egg-allergic and non-allergic
patients’ sera. Anti-human IgE produced in goat was used as the secondary antibody. Non-allergic
controls were used to test for any non-specific binding of secondary antibody. The blots show a loss of
IgE reactivity in the mutant PM7/9.

4. Discussion

Hypersensitivity to chicken egg white is mainly caused by four major egg white allergens.
Of these, Gal d 1 is known to be the most allergenic protein. Gal d 1 is known to cause hypersensitivity
in its natural or cooked form. This may primarily be due to its rigid tertiary structure which allows
it to withstand harsh conditions such as heat and stomach/digestive acids. Due to the lack of an
effective curative treatment, strict avoidance is currently the standard method of managing egg allergy.
However, this strategy is not feasible due to the difficulty in achieving complete egg avoidance and
the high nutritional value of eggs in a balanced diet, especially for children. Induction of tolerance
to allergens is a well-established strategy for treatment of different types of allergies such as insect
venom or pollen allergy. Immunotherapy, specifically oral immunotherapy (OIT), which is a type
of allergen-specific immunotherapy (SIT), has been explored for the induction of tolerance to food
allergens. OIT involves feeding a patient increasing amounts of raw or cooked versions of the allergen
source, in order to induce desensitization or long-lasting tolerance to the allergen [21]. One barrier
to implementation of OIT in the clinical setting is the high rate of adverse reactions necessitating
discontinuation of therapy, which primarily involve immediate allergic reactions to the allergen [14,15].
Recombinant versions of allergens offer an approach to reduce adverse reactions, thereby allowing
improved effectiveness [22]. These recombinant allergens are purer and free from contamination
from other allergens of the food source, and thus may also be useful for the diagnosis of allergy
(e.g., skin prick tests or immunoassay).
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Food allergies, including allergy to chicken egg, may sometimes cause severe reactions such
as anaphylaxis. In such patients, use of natural allergens for diagnosis or immunotherapy may
be associated with unwanted allergic reactions. Therefore hypoallergenic, or less allergenic,
versions of allergens would be useful in such patients with severe allergic reactions. Production
of hypoallergenic variants has been rigorously pursued in allergy research, for example the production
of a hypoallergenic variant of the major latex allergen Hev b 6.01 by site-directed mutagenesis by Drew
et al., 2004 [19], and the development of a vaccine using hypoallergenic derivatives of the birch pollen
allergen Bet V 1 by Niederberger et al., 2004 [23]. In this study, we developed a hypoallergenic variant
of the major egg white allergen Gal d 1 (Gal d 1) which showed reduced IgE reactivity when compared
to its wild-type counterpart.

For mutagenesis, it was decided to use alanine as a replacement for cysteine residues at C192 and
C210 because it is the most common amino acid that does not have extreme electrostatic or steric effects
on the conformation of the protein [24]. The sequencing result of the six clones post-mutagenesis
showed that five clones had only one of the desired mutations present. The mutagenesis kit used in
this study allowed introducing multiple mutations in a single reaction. Therefore, the low efficiency
can be attributed to factors such as the quality of the template DNA or the efficiency of the mutagenic
primers. Nevertheless, one clone had both of the desired mutations at C192 and C210, replacing TGC
codons (cysteine) with GCC (alanine). The Gal d 1 secondary structure is made up of three tandem
domains (I–III), with domain III showing high IgE reactivity [25]. By targeting C192 and C210,
we aimed to destroy two cysteine-cysteine disulphide bridges in domain III, thus altering its
conformation. We hypothesised that altering the conformation of domain III may have a significant
effect on IgE reactivity of the whole protein.

The mutant Gal d 1 was successfully expressed in E. coli. A time-course expression was conducted
to determine the optimum time point for the expression of the mutant protein. We previously reported
that the wild-type recombinant Gal d 1 was best expressed at 2 h post-induction with IPTG [20].
However, the expression pattern of the mutant protein was different to that of the wild-type, as shown
in Figure 3. The mutant protein’s expression level increased with time up until 5 h, as opposed to the
wild-type protein’s which showed a reduction in expression after 2 h. Similar to the wild-type, the
mutant was highly expressed in the insoluble fraction, indicating that the expression of the protein
causes the formation of inclusion bodies in E. coli. Nonetheless, the amount expressed in the soluble
fraction was sufficient for the remainder of this study.

When analysing two proteins on an immunoblot to compare their reactivity for an antibody,
it is essential to immobilise similar amounts of the two proteins. When comparing recombinant
proteins, it is crucial that the proteins are purified to allow loading of similar amounts of proteins
to a gel to be transferred on to a nitrocellulose membrane. In this study, we did not have purified
recombinant versions of the wild-type or mutant Gal d 1. Therefore, after inducing expression until
the optimum time point of each variant, we loaded similar volumes of the crude E. coli extracts onto
gels, transferred on to nitrocellulose and subjected to detection using different antibodies to confirm
that both proteins are expressed and loaded at similar quantities. When analysed on SDS-PAGE
and Western blotted using Anti-Xpress, Tetra-His and Penta-His antibodies, it was evident that there
was more of the mutant protein immobilised on the nitrocellulose membrane when compared to
the wild-type protein. This was not a significant issue as we were testing the IgE reactivity of the
mutant against the wild-type Gal d 1. It was only vital to ensure that the wild-type protein did not
exceed the amount of mutant protein on the membrane. Following the aforementioned immunoassays,
the two proteins were compared against each other for IgE reactivity using egg-allergic patients’ sera.
The blot in Figure 5 clearly shows that there is a significantly visible reduction of IgE reactivity in
the mutant protein, although there is more of the mutant protein immobilised on the membrane.
One may argue that the IgE in the sera may have attached/reacted to E. coli protein; however, we have
previously shown that the IgE in the egg-allergic sera we used did not react to E. coli proteins [20].
The membrane incubated with non-allergic sera showed no bands, indicating that the secondary
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antibody, anti-human IgE produced in goat, does not non-specifically bind to the recombinant proteins.
Furthermore, breaking down and accumulation of the protein was evident by the presence of multiple
bands on the immunoblots on Figure 4. The presence of less bands in the Penta-His antibody blot,
compared to Tetra-His, can be attributed to the detection of proteins broken down at the histidine tag
by the Tetra-His antibody.

This study shows that disruption of only two out of nine cysteine-cysteine bridges in Gal d 1 by
targeting C192 and C210 significantly reduces its reactivity to egg-specific IgE. The result also suggests
that the structure of the protein plays a crucial role in its allergenecity. This mutant Gal d 1 has the
potential to be used in safer egg oral immunotherapy. This study provides preliminary results for
future research involving the production of hypoallergenic variants of egg allergens, in particular
Gal d 1. The result obtained from this study should be followed by further in vitro and in vivo
experimentation. The foremost next step is purification of the protein from the soluble fraction of E. coli.
We have expressed the protein with a 6× histidine tag; therefore, nickel affinity purification techniques
can be utilsed for this purpose. The purified protein can then be used in B-cell and T-cell activation
tests/assays. T-lymphocytes (T-cells) are known to be important in allergic desensitization [26,27];
therefore, it is imperative to test the ability of the hypoallergenic Gal d 1 produced in this study to
stimulate T-cells. Animal models also play a pivotal role in food allergen research [28], and therefore it
should be suggested that the hypoallergenic Gal d 1 we produced should undergo animal model–based
experimentation prior to clinical testing. We have previously shown that Gal d 1 is more reactive
in comparison to other allergens when tested against egg-allergic patients’ sera [20]. In addition,
the same study showed that patients show reactivity to more than one allergen, even the patients
showing high reactivity to Gal d 1. Therefore, it should be highlighted that a hypoallergenic variant of
Gal d 1 is only useful for reducing allergic response in patients allergic to multiple allergens during
immunotherapy, rather than complete abolition of reactivity, thus showing the importance of research
into the development of hypoallergenic variants of other allergens in the egg.

5. Conclusions

In summary, we have successfully produced a hypoallergenic variant of the major egg white
allergen Gal d 1 by disrupting two cysteine-cysteine bridges using site-directed mutagenesis.
This hypoallergenic variant, upon purification and further immunological analysis, may be used
as an excellent constituent in future immunotherapy vaccines for egg allergy.
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