
Cite this article as: Mank QJ, Thabit A, Maat APWM, Siregar S, van Walsum T, Kluin J et al. . Artificial intelligence-based pulmonary vessel segmentation: an opportu-
nity for automated three-dimensional planning of lung segmentectomy. Interdiscip CardioVasc Thorac Surg 2025; doi:10.1093/icvts/ivaf101.

Artificial intelligence-based pulmonary vessel segmentation: an 
opportunity for automated three-dimensional planning of lung 

segmentectomy

Quinten J. Manka, Abdullah Thabitb, Alexander P.W.M. Maata, Sabrina Siregara, Theo van Walsum b,  

Jolanda Kluina and Amir H. Sadeghi a,c,�

aDepartment of Cardiothoracic Surgery, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands 
bBiomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 
The Netherlands 
cDepartment of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands 

�Corresponding author. e-mail: h.sadeghi-2@umcutrecht.nl (A.H. Sadeghi).

Received 20 August 2024; received in revised form 7 February 2025; accepted 14 May 2025

Abstract 

OBJECTIVES: This study aimed to develop an automated method for pulmonary artery and vein segmentation in both left and right lungs 
from computed tomography (CT) images using artificial intelligence (AI). The segmentations were evaluated using PulmoSR software, 
which provides 3D visualizations of patient-specific anatomy, potentially enhancing a surgeon’s understanding of the lung structure.

METHODS: A dataset of 125 CT scans from lung segmentectomy patients at Erasmus MC was used. Manual annotations for pulmonary 
arteries and veins were created with 3D Slicer. nnU-Net models were trained for both lungs, assessed using Dice score, sensitivity and 
specificity. Intraoperative recordings demonstrated clinical applicability. A paired t-test evaluated statistical significance of the differences 
between automatic and manual segmentations.

RESULTS: The nnU-Net model, trained at full 3D resolution, achieved a mean Dice score between 0.91 and 0.92. The mean sensitivity 
and specificity were: left artery: 0.86 and 0.99, right artery: 0.84 and 0.99, left vein: 0.85 and 0.99, right vein: 0.85 and 0.99. The automatic 

TH
O

R
A

C
IC

 O
N

C
O

LO
G

Y
 

© The Author(s) 2025. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which per-
mits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Interdisciplinary CardioVascular and Thoracic Surgery 2025, 40(5), ivaf101                                                                                      ORIGINAL ARTICLE 
https://doi.org/10.1093/icvts/ivaf101 Advance Access publication 19 May 2025 

https://orcid.org/0000-0001-8257-7759
https://orcid.org/0000-0002-6118-2341


method reduced segmentation time from �1.5 hours to under 5 minutes. Five cases were evaluated to demonstrate how the segmenta-
tions support lung segmentectomy procedures. P-values for Dice scores were all below 0.01, indicating statistical significance.

CONCLUSIONS: The nnU-Net models successfully performed automatic segmentation of pulmonary arteries and veins in both lungs. 
When integrated with visualization tools, these automatic segmentations can enhance preoperative and intraoperative planning by pro-
viding detailed 3D views of patients anatomy.

Keywords: cardiothoracic surgery • artificial intelligence (AI) • deep learning (DL) • pulmonary vessels • lung segmentectomy

ABBREVIATIONS   

2D Two-dimensional  
3D Three-dimensional  
AI Artificial intelligence  
CI Confidence interval  
CNN Convolutional neural network  
CT Computed tomography  
DSC Dice score  
ESTS European Society of Thoracic Surgery  
FN False negative  
FP False positive  
NSCLC Non-small cell lung cancer  
RATS Robot-assisted thoracic surgery  
TN True negative  
TP True positive  
WHO World Health Organization 

INTRODUCTION

According to the World Health Organization (WHO), lung cancer 
is the leading cause of cancer-related death worldwide, with an 
estimated 2 million deaths in 2023 [1]. Early detection and ade-
quate therapy are essential for patient survival and treatment 
outcome [2]. Due to an increased application of imaging modali-
ties such as computed tomography (CT), the detection rate of 
early-stage non-small cell lung cancer (NSCLC) is rapidly increas-
ing [3]. When early-stage NSCLC is diagnosed, it is common 
practice to perform a lobectomy. However, more recent evi-
dence (e.g. JCOG-0802 trial and CALGB-140503) suggests that 
for stage 1A1 and stage 1A2 peripherally located lung tumours, a 
segmentectomy can be a safe alternative approach [4, 5].

While segmentectomy procedures have demonstrated onco-
logical safety, the complexity of performing segmentectomies 
remains a challenge. Detailed anatomical knowledge of the pul-
monary vessels and bronchi is essential in the planning and exe-
cution of these resections [6]. Accurate identification of 
anatomical variations in pulmonary vessels is crucial, particularly 
to avoid intraoperative bleeding or the inadvertent ligation of 
vessels during surgery [7]. Currently, conventional two- 
dimensional (2D) visualization of CT-scans is the golden stan-
dard for the planning of anatomical pulmonary resections. 
However, using CT-slices to detect and classify the relevant anat-
omy for segmentectomy planning remains challenging, even for 
experienced surgeons [8]. Using a 2D visualization of the CT 
scan, the surgeon must mentally create a three-dimensional (3D) 
representation of the patient’s anatomy and then strive to apply 
it to the patient’s anatomy during the surgery, adding an extra 
layer of complexity to the process. Therefore, preoperative 3D- 
reconstruction of the patient-specific anatomy is valuable and 
beneficial for segmentectomy planning [7, 9–11], which is also 

recommended by the European Society of Thoracic Surgeons 
(ESTS) on technical standards of segmentectomy [12].

The manual reconstruction and segmentation of pulmonary 
structures can be a solution for achieving 3D visualization of a 
patient’s anatomy. Various open source or commercially avail-
able software, such as 3D Slicer [13] and Materialise Mimics [14], 
can be leveraged for labelling structures based on pixel intensity. 
While manual segmentation by a radiologist or an expert 
reaches high accuracy, it is a time-consuming process, taking up 
to 1 or several hour(s) [15]. Semi-automatic software tools can 
reduce processing time but still require interaction by an expert 
and are often expensive [16].

In recent years, artificial intelligence (AI) has been explored to 
automate numerous image-processing tasks, including the seg-
mentation of structures of interest [17]. In the literature, numer-
ous publications showcase automated DL-based segmentation 
methods for pulmonary vessel segmentation. Nonetheless, there 
is limited literature describing the clinical usability of these mod-
els specifically in the context of planning pulmonary segmentec-
tomies. In this study, we utilized and technically evaluated 
nnU-Net for the automatic segmentation of the pulmonary 
artery and vein in both the left and right lungs using manually 
labelled contrast and non-contrast CT scans. Additionally, we 
have demonstrated the potential clinical usability and feasibility 
by leveraging a 3D visualization software (PulmoSR, Nieuw 
Vennep, The Netherlands) in combination with the DL-based 
segmentations for pulmonary segmentectomy planning.

Our ultimate goal is to provide an automated segmentation 
tool for the complex task of 3D pulmonary vessels (artery and 
vein) segmentation which can be used for the preoperative seg-
mentectomy planning process. Such a tool may be used to re-
duce the preoperative manual workload required for the 3D 
reconstruction of these structures and provide a better 3D un-
derstanding of patient specific anatomy for the surgeon.

METHODS

Ethics statement

The study was approved by the Institutional Medical Ethical 
Committee (MEC-2023–008/MEC-2023–0397). Participants pro-
vided written informed consent before participating. CT scans 
were stored in a pseudonymized way on a secured drive at the 
Erasmus MC, Rotterdam, The Netherlands.

Patient population

One hundred twenty-five consecutive patients who were accepted 
for lung segmentectomy between June 2021 and July 2023 at the 
Erasmus MC, Rotterdam, The Netherlands, were included in this 
study after obtaining written informed consent approved. The 
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inclusion criteria were as follows: (i) pulmonary pathology suitable 
for lung segmentectomy (stage I NSCLC <2 cm, intrapulmonary 
metastases, and benign lesions limited to lung segments), (ii) age 
>18 years and (iii) the availability of CT scans with a slice thickness 
of 1 mm. A total of 120 patient cases were utilized to train and val-
idate the deep learning (DL) models. Additionally, we included five 
patients who underwent robot-assisted thoracic surgery (RATS) 
segmentectomy procedures, during which intraoperative record-
ings were made. These cases were specifically used to demonstrate 
how the 3D segmentation and visualization provided by our AI 
models could enhance surgical navigation.

Segmentation

Manual segmentation. The annotation of pulmonary struc-
tures was conducted using 3D Slicer (version 4.11), an open- 
source software designed for medical image visualization and 
analysis [13]. Each patient’s scan involved annotations of the pul-
monary artery and pulmonary vein for both the left and right 
lung. Despite the presence of pulmonary pathology in one lung, 
no distinction between the healthy and affected lung was made; 
both sides were segmented and included in the database for 
training the DL model. A single operator (QM) performed all seg-
mentations. All segmentations were subsequently verified by a 
cardiothoracic surgeon (AS) in both 2D (CT and CT-scan over-
layed by segmentation) and 3D using a virtual reality-based 3D vi-
sualization tool (PulmoVR, Surgical Reality, Nieuw Vennep, The 
Netherlands) of the CT-scan and segmentation overlay. The man-
ual segmentation process remained uniform across all patients.

Automatic segmentation. nnU-Net was used for the auto-
matic segmentation [18]. The nnU-Net automatically configures 
itself and executes all the steps in the segmentation pipeline. 
The architecture of the nnU-Net (Fig. 1) is based on the U-Net, 
which is a convolutional neural network (CNN) architecture that 
was proposed for biomedical image segmentation. A dataset of 
100 manually segmented arteries and veins of both right and left 
lung was used as input for training the nnU-Net. Four different 
models were trained for all structures (left pulmonary artery, left 
pulmonary vein, right pulmonary artery, right pulmonary vein). 
After training the nnU-Net, technical evaluation was performed.

For training and validation, a distribution of 80% (80 CT scans) 
and 20% (20 CT scans) of the dataset was used. An additional 25 
CT-scans were used as a separate test set to evaluate the techni-
cal (20 scans) and clinical (5 scans and surgical videos) usability 
of the models.

Technical validation

To assess the disparity between automatic and manual segmen-
tation techniques, the differences were visualized utilizing 3D 
Slicer software. Furthermore, the mean segmentation time of the 
automatic approach was determined. To quantitatively assess the 
performance of the DL segmentation algorithm, the Dice score 
(DSC) was used. The DSC measures the overlap between the pre-
dicted segmentation and the ground truth manual segmentation. 
It quantifies how much the predicted region matches the true re-
gion in terms of spatial location and size. The DSC is defined as 
the ratio between true positive (TP), false positive (FP) and false 
negative (FN) (Equation 1). The DSC ranges from 0 (indicating no 
overlap between the two segmentation maps) to 1 (reflecting 
complete overlap between the two segmentation maps). 

DSC ¼ 2 �
jA \ Bj
Aj j þ jBj

¼
2TP

2TPþ FPþ FN
(1) 

where A \ B represents the number of pixels that are correctly 
classified as positive (foreground) in both the predicted mask (A) 
and the ground truth mask (B). Essentially, it denotes the num-
ber of pixels of the overlap between the two masks.

In addition to the DSC, sensitivity and specificity were calcu-
lated to provide a more comprehensive evaluation of the mod-
el’s performance (Equations 2 and 3). Sensitivity measures the 
proportion of actual positive pixels (pulmonary vessels) that are 
correctly identified by the model, while specificity measures the 
proportion of actual negative pixels (non-vessel regions) that are 
correctly classified. 

Sensitivity ¼
TP

TPþ FN
(2) 

Specificity ¼
TN

TNþ FP
(3) 

These metrics offer insight into the model’s ability to correctly 
identify both the vessel and non-vessel regions, which is crucial 
for assessing both the accuracy and reliability of the segmenta-
tion approach.

Statistical testing

A paired t-test was performed to assess the statistical signifi-
cance of the differences between the DSCs of the DL segmenta-
tion algorithm and the manual segmentation. The significance 
level (alpha) was set to 0.01. Using the TTestPower function from 

Figure 1: Workflow diagram of the DL-based pulmonary vessel segmentation
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the statsmodels library in Python, ensuring that the study was 
designed to achieve a statistical power of 0.9. This power level 
corresponds to a 90% probability of detecting a true effect if it 
exists, minimizing the risk of Type II errors and ensuring the ro-
bustness of the test.

The reference DSC of 0.869 was derived from relevant 
literature on pulmonary vessel segmentation performance in 
similar contexts [19–21]. This value served as a baseline to as-
sess the efficacy of the segmentation model against estab-
lished standards.

In addition to hypothesis testing, the 95% confidence interval 
(CI) for the average DSCs in the test set was calculated. The CI pro-
vides a range within which the true mean DSC is likely to fall, offer-
ing a measure of the precision and reliability of our segmentation 
results. This CI was also used to compare our results with the refer-
ence DSC, further validating the performance of our model.

Clinical applicability

To demonstrate feasibility, we have retrospectively analysed the 
model’s performance in five patients who underwent robot- 
assisted pulmonary segmentectomy. To describe the clinical us-
ability of the 3D models, an additional application of the use of 
3D segmentations was illustrated. By loading the automatic seg-
mentations in PulmoSR software (Surgical Reality, Nieuw 
Vennep, The Netherlands), a deformable 3D model can be gen-
erated. Manual deformation of the 3D model enables simulation 

(e.g. deformation of lung lobes, such as posterior retraction or 
opening the fissure) of realistic intraoperative scenarios [22]. 
Utilizing intraoperative recordings, anatomical verification can 
be performed by comparing the deformable 3D model, derived 
from automatic segmentation, with intraoperative situations 
where the lung anatomy (artery, vein and bronchus) 
was observable.

RESULTS

Comparison between manual and automatic 
segmentation

A 3D visualization of the left pulmonary vessels was generated 
together with 2D CT scans with a coloured segmentation in 
Fig. 2. Supplementary Figure S1 provides a 3D visualization of 
the right pulmonary vessels.

Figure 3 shows that the difference between the left manual 
and automatic segmentation is most prominent at the hilum of 
the heart and the most peripheral branches of the vessels. 
Supplementary Figure S2 provides the difference between the 
right manual and automatic segmentation.

The mean segmentation time for all structures (right artery, 
right vein, left artery and left vein) was as follows: 147 seconds 
(left artery), 137 seconds (right artery), 142 seconds (left vein) 
and 139 seconds (right vein).

Figure 2: Overlap of automated segmentation of the left pulmonary artery (red) and the left pulmonary vein (blue) in axial view (A), coronal view (B) and sagittal 
view (C) on top of the CT scan. Full 3D visualization of the segmentation (D). Missing parts in the automatic segmentation for the left pulmonary artery (E) and left 
pulmonary vein (F) are highlighted with the red circles
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Technical validation

The performance scores for the evaluation metrics are presented 
in Fig. 4.

A mean DSC of 0.91 is observed for the left artery (95% CI: 
0.90–0.93), right artery (95% CI: 0.89–0.93) and right vein (95% 
CI: 0.90–0.93), while the left vein showed an mean DSC of 0.92 
(95% CI: 0.90–0.93). The mean sensitivity and specificity are re-
spectively: left artery: 0.86 and 0.99, right artery: 0.84 and 0.99, 
left vein: 0.85 and 0.99, right vein: 0.85 and 0.99.

Statistical testing

The results of the significance level (alpha) calculation for the 
DSCs demonstrated statistically significant differences for all ves-
sel categories, with alpha values below the threshold of 0.01. 
The calculated P-values for the DSCs were as follows: artery left: 
0.0014, artery right: 0.0096, vein left: 0.00048 and vein 
right: 0.000105.

Clinical applicability

As illustrated in Figs 5 (pulmonary artery) and 6 (pulmonary 
vein), the intraoperative vasculature of five RATS segmentectomy 
patients was visualized using the automatic segmentations. By 
using intraoperative recordings in combination with the dy-
namic 3D model, realistic situations of the procedure can be 
simulated after manually deforming the 3D model by a surgeon 

to match the corresponding anatomical orientation in 
the patient.

DISCUSSION

In this study, we developed and evaluated four nnU-Net models 
for fast and accurate 3D segmentation of pulmonary arteries 
and veins using a dataset of 100 manually annotated CT images. 
The nnU-Net models achieved fully automatic pulmonary vessel 
segmentation within 5 minutes, offering a significant improve-
ment in efficiency compared to traditional semi-automatic 
methods, which are time-consuming and labor-intensive.

Various studies have demonstrated that the segmentation of 
the pulmonary artery, pulmonary vein and bronchi improves 
preoperative planning through 3D visualization [23]. Previously, 
our group has demonstrated the added value of (virtual reality- 
based) 3D visualization in the planning of segmentectomy pro-
cedures [7, 11]. In these studies, a significant ±50% change of 
original surgical plan (which was based on 2D-CT) was observed 
when 3D-based planning was additionally applied. Even though 
in these studies the intersegmental borders were automatically 
segmented using Thirona’s (Nijmegen, The Netherlands) LungQ 
AI-based software [24], the visualization of the pulmonary ves-
sels and bronchi was created through semi-automatic (partly 
manual) segmentation. In order to decrease the segmentation 
workload and increase the accuracy of 3D planning, we have 
successfully trained nnU-Net models for automatic segmenta-
tion of the pulmonary vessels.

The performance of a DL algorithm can be affected by the 
quality and quantity of the data. Therefore, for further research, 
more CT scans from different institutes must be included to ob-
tain a generalizable and robust DL model [25]. Cui et al. achieved 
a DSC of 0.93 for pulmonary vessel segmentation using a dataset 
of 300 CT scans [26]. Not only is the size of size of the dataset 
important to train a DL-model, but the variety of the data also 
influences the DL model performance. AI models need to be ro-
bust and perform well across a variety of data [27]. This study 
only includes data from our institution, so the performance of 
the model on external datasets has not been evaluated [27].

The low P-values indicate that the differences in DSCs be-
tween the predicted and manual segmentations are not due to 
chance, confirming the robustness of the segmentation model in 
all vessel categories. These findings underscore the reliability 
and statistical significance of the DL model in accurately seg-
menting the pulmonary arteries and veins, which is crucial for 
applications such as surgical planning and clinical decision- 
making. Despite these challenges, the statistical significance of 
the results suggests that our DL-based segmentation model is 
robust and capable of achieving reliable performance in the au-
tomatic segmentation of pulmonary vessels, irrespective of these 
anatomical and imaging complexities. Future work could focus 
on further improving the model’s handling of these variabilities, 
especially in more difficult cases involving non-contrast CT scans 
or patients with anatomical anomalies.

Some variability was observed, with outliers in the left artery 
(AL) and left vein (VL) DSCs and sensitivity, due to suboptimal 
CT images, particularly non-contrast scans. These scans posed 
challenges for the model due to reduced contrast between ves-
sels and tissues. Additionally, heart motion could have affected 
thoracic region stability, contributing to segmentation discrep-
ancies. These limitations underscore the importance of high- 

Figure 3: Automatic segmentation of the left pulmonary artery (red, A and B) 
and the left pulmonary vein (blue, C and D). The difference with the manual 
segmentation is coloured in yellow (pulmonary artery, A and B), and brown 
(pulmonary vein, C and D)
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quality imaging for optimal results. The increased variability ob-
served in the right artery (AR) model, evidenced by a lower mini-
mum DSC, can be attributed to anatomical variations in the 
right pulmonary artery. The branching patterns of the right pul-
monary artery, along with variations in where the truncus ante-
rior branches off from the main pulmonary artery, introduced 
additional complexity to the segmentation task. In manual seg-
mentation, it was often necessary to include a larger portion of 
the hilum to ensure complete connectivity, which could influ-
ence the model's performance. In particular, non-contrast CT 
scans exacerbated the problem by making it more difficult to 
distinguish between the pulmonary artery and surrounding tis-
sues. Consequently, the right artery and vein segmentations 
exhibited increased variability compared to the left side, further 
highlighting the challenges presented by anatomical complexity 
and imaging limitations.

Commonly, DL-based algorithms are evaluated using various 
technical performance metrics (such as DSC). However, technical 
evaluations do not necessarily reflect the suitability for clinical 
use. Each medical application of DL has different accuracy 
requirements which should be based on the medical tasks that it 
needs to perform [28]. For lung segmentectomy planning, spe-
cific (e.g. hilar and arterial branches) structure detection, espe-
cially at the segmental and lobar levels are of higher importance 
than other peripheral branches (for instance the second or third 
degree arterial or venous subsegmental branches). Therefore, if 
these critical structures are segmented correctly, the details in 
the segmented sub branches are not of utmost importance for 
performing the resection, even though they do play an impor-
tant role in defining intersegmental planes.

This study conducted a preliminary clinical usability descrip-
tion utilizing five intraoperative recordings of segmentectomy 

procedures. However, the scope of this clinical usability descrip-
tion is limited to the visual structures observed during the spe-
cific procedures. Segmentation errors may occur in segments of 
the complete vessel segmentation that are not intraoperatively 
visualized. We are currently designing a multicentre clinical vali-
dation trial to investigate the clinical usability and validity of 
the algorithm.

Vessel segmentation poses challenges due to similar voxel in-
tensities and cross sections between arteries and veins, making 
model training and prediction difficult. In our segmentation task, 
in some cases unconnected and missing elements in the seg-
mentation output were visible (Figs 2 and 3, Supplementary Figs 
S1 and S2). Various techniques have been proposed to address 
this issue by reconnecting these parts and filling the missing 
links. Guo et al. have detailed a method for hepatic vascular seg-
mentation and the linkage of fractured portions in the segmen-
tation [29]. Adding this postprocessing step may result in the 
segmentation of a fully connected vessel tree.

CONCLUSION

In this study, we successfully trained and validated a nnU-Net- 
based framework for the automatic segmentation of pulmonary 
arteries and veins in both left and right lungs using manually an-
notated CT scans. By integrating the automatic segmentation 
with 3D visualization software, we demonstrated the potential 
clinical utility of 3D models for planning and intraoperative 
guidance in five segmentectomy cases.

In conclusion, our method achieves fully automatic pulmo-
nary artery and vein segmentation within 5 minutes, offering a 
significant improvement in efficiency that could assist surgeons 

Figure 4: Technical validation on the evaluation set of 20 CT scans using Dice score, sensitivity and specificity. The maximum score, minimum score, mean score 
(¼X) and outliers are presented using a box and whisker plot for left artery (A), right artery (B), left vein (C) and right vein (D)
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Figure 5: Clinical applicability of the pulmonary artery using five RATS segmentectomy procedures (first column indicates the resected segment) with an overview of 
the automatic segmentation (artery ¼ blue, vein ¼ red, airways ¼ green) visualized as a 3D model utilizing PulmoSR software (second column), zoom in (third col-
umn) and intraoperative situation (fourth column). LUL: left upper lobe; RLL: right lower lobe; RUL: right upper lobe
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Figure 6: Clinical applicability of the pulmonary vein using five RATS segmentectomy procedures (first column indicates the resected segment) with an overview of 
the automatic segmentation (artery ¼ blue, vein ¼ red, airways ¼ green) visualized as a 3D model utilizing PulmoSR software (second column), zoom in (third col-
umn) and intraoperative situation (fourth column). LUL: left upper lobe; RLL: right lower lobe; RUL: right upper lobe
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in the pre- and intraoperative guidance of complex lung seg-
mentectomies. While the current results demonstrate the poten-
tial for clinical application in segmentectomy planning, further 
validation on larger datasets and in diverse clinical settings is 
needed to confirm the robustness and generalizability of the 
method. Future work will also focus on improving the model's 
performance in challenging cases, such as non-contrast CT scans 
or patients with anatomical anomalies, to further enhance the 
clinical applicability.
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