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Abstract Despite recent advances in the study of animal flight, the biomechanical determinants

of maneuverability are poorly understood. It is thought that maneuverability may be influenced by

intrinsic body mass and wing morphology, and by physiological muscle capacity, but this

hypothesis has not yet been evaluated because it requires tracking a large number of free flight

maneuvers from known individuals. We used an automated tracking system to record flight

sequences from 20 Anna’s hummingbirds flying solo and in competition in a large chamber. We

found that burst muscle capacity predicted most performance metrics. Hummingbirds with higher

burst capacity flew with faster velocities, accelerations, and rotations, and they used more

demanding complex turns. In contrast, body mass did not predict variation in maneuvering

performance, and wing morphology predicted only the use of arcing turns and high centripetal

accelerations. Collectively, our results indicate that burst muscle capacity is a key predictor of

maneuverability.

DOI: 10.7554/eLife.11159.001

Introduction
The ability of an animal to change the speed and direction of movement, defined as maneuverability

(Dudley, 2002), can determine its success at avoiding predators, obtaining food, and performing

other behaviors that determine the margin between life and death (Webb, 1976; Hedenström and

Rosén, 2001; Walker et al., 2005). Most biomechanical research on birds has focused on either

brief (e.g., take off) or steady state movements (e.g., forward flight) that can be studied most readily

in the laboratory. Maneuverability is therefore one of the most important but least understood

aspects of animal locomotion. Warrick and coworkers (Warrick et al., 1988; Warrick and Dial,

1998) proposed that there are both intrinsic and facultative influences on maneuvering performance.

For animals that perform powered flight, intrinsic maneuverability is defined by the physical limita-

tions imposed by morphology (Norberg and Rayner, 1987), but excess muscle capacity should

allow them to facultatively overcome the costs of suboptimal morphology, achieving higher levels of

performance by sacrificing efficiency. Although compelling, this hypothesis has never been tested

explicitly.

Wing morphology is defined using measures of size (e.g., area or length) and non-dimensional

measures of shape (e.g., aspect ratio). Wing area and aspect ratio have significant and well known

effects on the aerodynamics of flight in animals (Pennycuick, 1975; Kruyt et al., 2014; 2015), and

should affect maneuvering performance. Wing morphology influences flight efficiency
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(Feinsinger and Chaplin, 1975), ecological roles (Feinsinger, 1976; Feinsinger and Colwell, 1978;

Warrick, 1998) and competitive ability (Feinsinger and Chaplin, 1975; Feinsinger and Colwell,

1978; Feinsinger et al., 1979; Altshuler, 2006). Because these previous studies focused on species

and gender comparisons, less is known about how individual variation in wing morphology influences

performance, especially with respect to maneuverability. One complication is that different wing

sizes and shapes can be favored depending on the specific maneuver performed, e.g., yaw versus

banked turns. Given the diversity of flight behaviors, it is unclear if the requirements for maneuvering

exert strong selection on wing morphology.

Muscle capacity affects the maximum aerodynamic force a flying animal can produce. Aerody-

namic force can be directed for performing maneuvers that require greater output than the mini-

mum requirements for flight. Excess muscle capacity can also be used to compensate for anatomical

or spatial constraints on wing movement (Warrick, 1998). Muscle output of hummingbirds has been

quantified in several ways including oxygen consumption to determine metabolic input, wingbeat

kinematics to estimate mechanical power output, and electromyography (EMG) to measure myoelec-

tric input. Considering hovering flight as the point of comparison, forward flight at the fastest

speeds recorded in a wind tunnel requires about 20% more metabolic (Clark and Dudley, 2010)

and myoelectric input (Tobalske et al., 2010). Maximum sustained hovering performance has been

studied by experimentally lowering air density to the lowest values in which birds are still able to

hover. These experiments revealed that hovering in hypodense air requires ~40% higher mechanical

power output (Chai and Dudley, 1995) and ~60% higher spatial recruitment of muscle fibers, as

measured by the spike amplitude of the electromyogram recordings (Altshuler et al., 2010b), in

comparison to hovering in normal air. By far the most expensive flight behavior studied to date in

hummingbirds is maximum load lifting, which requires 200–400% more mechanical power output

(Chai et al., 1997; Chai and Millard, 1997; Altshuler et al., 2010a), about 200% more spatial

recruitment (EMG spike amplitude), and 150% more temporal recruitment (EMG spike frequency)

(Altshuler et al., 2010b) compared to hovering.

Maximum load lifting is a transient behavior that uses the bird’s natural escape response to mea-

sure burst power output. Thus, it is not surprising that this assay provides the maximum muscle

capacity that has been measured in hummingbirds. It is particularly useful for quantifying variation

among and within species in burst muscle capacity. Studies using the load lifting assay have revealed

that maximum burst muscle capacity is related to hummingbird evolutionary ecology. Altshuler and

coworkers (Altshuler et al., 2004b; Altshuler, 2006) demonstrated that ecological role is more

strongly related to load lifting ability than morphological parameters such as wing loading. Load

eLife digest The ability of an animal to maneuver can determine its success at avoiding

predators, catching prey, and outperforming its competitors. However, little is known about the

characteristics that determine maneuverability. Why are some individuals more maneuverable than

others?

To investigate this question, Segre et al. used an automated video tracking system to track male

Anna’s hummingbirds as they flew around a large chamber. These tracks were then compared with

the physical characteristics of the birds to see which, if any, affect the birds’ maneuverability. This

revealed that body size did not affect how well the birds could maneuver. Instead, the muscle

capacity of the birds – their ability to generate force rapidly – determined how well the birds

performed most types of movement. Birds with higher muscle capacity flew faster, had faster

accelerations and decelerations, could rotate their bodies more quickly, and performed more

demanding and complex turns.

Segre et al. also found that wing shape is important for a type of maneuver called an arcing turn.

Hummingbirds with a more slender wing shape were able to execute more demanding arcing turns

involving higher accelerations, and they used arcing turns more often than birds with wider wings.

Future research will aim to determine whether these relationships are also found in other species of

birds.

DOI: 10.7554/eLife.11159.002
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lifting ability is also associated with species- and

gender-specific competitive ability at different

elevations. Altshuler (Altshuler, 2006) suggested

that the relationship between maximum muscle

capacity and competitive ability may be mediated

through maneuvering performance.

Unconstrained maneuvering performance of

birds, including hummingbirds, has recently been

quantified in the field without individual identifi-

cation (Shelton et al., 2014; Sholtis et al.,

2015). Although field studies are valuable for

quantifying average species performance, individ-

ual identification and large sample sizes are

required to examine sources of within-species

variation. Here, we studied the free-flight maneu-

vering performance of Anna’s hummingbirds

(Calypte anna) in a large flight chamber (Video 1).

Flight maneuvers in a chamber are not expected

to be the same as outdoors, and may have lower

velocities and accelerations. The benefit of this

approach is that a large number of measure-

ments from the same individuals can be com-

bined with other data to examine how variation

in the observed maneuvers is influenced by indi-

vidual morphology and muscle capacity.

We used a high-throughput computational

approach to record the flight performance of 20

individuals alone and in the presence of a competitor. Flight trajectories were parsed into a set of

performance metrics based on body position and orientation. The first goal of our study was to

determine if voluntary maneuvering performance is repeatable within individuals. Repeatability of

maneuvering performance can arise either through a strong influence of fixed traits such as morphol-

ogy and anatomy, or through other consistent influences, such as motivation. We expect that repeat-

able measurements will be most useful for our second goal, determining how variation in

maneuverability among individuals is influenced by natural variation in morphology and muscle

capacity. This also required measuring morphological traits and maximum burst performance for

each individual. Our third goal was to determine how motivation state induced by the presence of a

competitor influenced maneuvering performance. To address this question we compared flight trials

with and without competitors.

Results

Maneuvering performance metrics
The first stage of analysis was estimating instantaneous velocities, accelerations, and headings from

the raw tracking data (Figure 1—figure supplement 1). Translational velocity and acceleration were

calculated by taking the first and second derivatives of an interpolation spline fit to the body posi-

tion data (splev and splrep functions, Scientific Python). The velocities and accelerations were split

into vertical and horizontal components. The body orientation vector was represented in spherical

coordinates as azimuth and pitch angles. We took the first derivatives to obtain azimuth and pitch

velocities. Because the video tracking system did not allow a measurement of body roll, we decided

to use a global coordinate system instead of a body axis-centered coordinate system. In our frame

of reference, pitch is a global measure defined relative to the horizontal plane. Heading was calcu-

lated as the instantaneous direction of the horizontal translation velocity, and the heading velocity

was calculated as the derivative of heading.

We then used the velocity, acceleration, and orientation data to search for a series of ten stereo-

typed maneuvers that were independent of time and distance scales (Figure 1b). Five of the

Video 1. The multi-camera, automated tracking system

filming two hummingbirds in the flight arena at 200

frames per second. Continuously tracked sequences

are assigned an object number (from 0 to 4 over this

sequence). Body position and orientation are

calculated and reprojected onto the video of four

cameras. The videos are saved using a compression

algorithm that only records the sections of the image

that are moving (Straw et al. 2011). Thus, birds

disappear from the video when they land and stop

moving. The trajectory shown in Figure 1 is taken from

the bird labeled #2 and begins at 5.1 seconds and

ends at 8.05 seconds.

DOI: 10.7554/eLife.11159.003
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maneuvers were sequences defined by changes in translational velocity: 1) 3D accelerations, 2) hori-

zontal accelerations, 3) horizontal decelerations, 4) vertical upward accelerations, and 5) vertical

downward accelerations. Three maneuvers were sequences defined by changes in rotation: 6) pitch-

up rotations, 7) pitch-down rotations, and 8) yaw turns. Two of the maneuvers were defined as turns

with translational components: 9) arcing turns and 10) pitch-roll turns. These ten maneuvers are not

meant to be mutually exclusive, exhaustive, or to divide the entire filming session into a set of dis-

crete behaviors, but are instead intended to extract simple measurements that can be used as an

assay for maneuvering performance. The search criteria for the maneuvers are given in Table 1.

Because we assume that a new maneuver must involve a change in velocity, the first search

Figure 1. A multi-camera, automated tracking system extracted hummingbird body position (blue circle) and orientation (red line) from solo and

competitive flights. The trajectory shown for one bird (a) is also shown in Video 1 (see Figure 1—figure supplement 1 for time series of position,

velocity, and acceleration values). Stereotyped maneuvers were classified in each trajectory (b) and between one and five performance metrics were

calculated from each maneuver. Maneuvers within a trajectory may be overlapping (e.g. #4,5,6). The trajectory presented in b is a top down (x-y

projection) view of the trajectory shown in a. Body position and orientation were smoothed with an extended Kalman filter (c,d). The effects of four

different sets of smoothing parameters are presented for an arcing turn (maneuver #9 in b) and an upward acceleration (maneuver #1 in b). Shown here

are the unsmoothed position and orientation (black trace and text), the chosen levels of smoothing (blue), a lower level of smoothing (green; 0.1 x Rpos;

0.1 x Rori), and a higher level of smoothing (red; 10 x Rpos; 10 x Rori). The chosen smoothing parameters for body position were determined by tracking

multiple dropped objects and calibrating the Z-axis acceleration to gravity. The chosen smoothing parameters for body orientation were determined by

re-projecting the body axis vector onto the video. The higher and lower levels of smoothing for body position presented in this figure were both

deemed too extreme, when re-projected onto the video. However, the level of smoothing for body orientation had minimal effect on the average yaw

velocity.

DOI: 10.7554/eLife.11159.004

The following figure supplement is available for figure 1:

Figure supplement 1. The representative trajectory from Figure 1 and Video 1 displayed through time.

DOI: 10.7554/eLife.11159.005
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parameter was to find sequences bounded by velocity maxima and minima, or vice versa. We next

describe the additional search parameters and the performance metrics used to quantify each

maneuver.

The five translational maneuvers were defined using velocity minima and maxima, and only

sequences with at least 25 cm of travel were analyzed. The 3D acceleration maneuvers started from

a velocity minimum and ended with a velocity maximum. The performance metric calculated for

these maneuvers was the maximum translational velocity (Velmax). The horizontal acceleration

maneuvers were bounded by horizontal velocity minima and maxima, and were constrained to no

more than 10 cm of vertical distance traveled. The performance metric calculated for these maneu-

vers was the maximum horizontal acceleration (AccHormax). The horizontal deceleration maneuvers

and the corresponding performance metric, maximum horizontal deceleration (DecHormax), were

Table 1. Search parameters for the ten maneuvers analyzed in the study. The definitions, units, and symbols for the 14 related

performance metrics are also provided.

Maneuver Search parameters Performance metric Units Symbol

3D acceleration Start: velocity xyz minimum
End: velocity xyz maximum
Distance xyz > 25 cm

Maximum velocity m/s Velmax

Horizontal acceleration Start: velocity xy minimum
End: velocity xy maximum
Distance xy > 25 cm
Distance z < 10 cm

Maximum acceleration xy m/s2 AccHormax

Horizontal deceleration Start: velocity xy maximum
End: velocity xy minimum
Distance xy > 25 cm
Distance z < 10 cm

Maximum deceleration xy m/s2 AccDecmax

Vertical upwards acceleration Start: velocity z minimum
End: velocity z maximum
Distance z > 25 cm

Maximum acceleration z m/s2 AccVUmax

Vertical downwards acceleration Start: velocity z maximum
End: velocity z minimum
Distance z > 25 cm

Maximum acceleration z m/s2 AccVDmax

Pitch-up rotation Start: pitch minimum
End: pitch maximum
Degrees rotated > 45 deg
Distance xyz < 10 cm

Average pitch velocity rev/s PitchUvel,avg

Pitch-down rotation Start: pitch maximum
End: pitch minimum
Degrees rotated > 45 deg
Distance xyz < 10 cm

Average pitch velocity rev/s PitchDvel,avg

Yaw turn Start: velocity yaw = 0 deg/s
End: velocity yaw = 0 deg/s
Degrees rotated > 90 deg
Pitch maximum < 75 deg
Distance xyz < 10 cm

Average yaw velocity rev/s Yawvel,avg

Arcing turn Start: D heading velocity > 0.25 rev/s
End D heading velocity < 0.25 rev/s
Velocity xy min > 50 cm/s
Distance xy > 25 cm
Distance z < 10 cm

Average xy velocity*
radius*
Centripetal acceleration*

m/s
m
m/s2

Arcvel, avg
Arcrad
Arccent, max

Pitch roll turn Start: velocity maximum
End: velocity maximum
Pitch maximum > 75 deg
Distance xy before velocity
Min > 12.5 cm
Distance xy after velocity
Min < 12.5 cm
Distance z < 10 cm

time†

degrees turned†
s
deg

PRTtime

PRTdeg

*for a 25 cm segment centered at the sharpest point of the turn
†for a 25 cm segment centered at the minimum velocity xyz

DOI: 10.7554/eLife.11159.006
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bounded by horizontal velocity maxima and minima. The vertical upward acceleration and vertical

downward acceleration maneuvers were bounded by vertical velocity minima and maxima. The per-

formance metrics calculated from these maneuvers were, respectively, maximum upward (AccVUmax)

and maximum downward (AccVDmax) accelerations. All translational accelerations and decelerations

were expressed as positive values, so that higher values represent a higher level of performance.

We defined three rotational maneuvers: pitch-up rotations, pitch-down rotations, and yaw turns.

These sequences were bounded by the zero-crossings of the azimuthal and pitch velocities. In con-

trast to translational maneuvers, which were defined by the maxima and the minima of the velocities,

the rotational maneuvers begin and end with changes in rotational velocity direction. Thus, the per-

formance metrics calculated from these rotational maneuvers were the average rotational velocities

over the whole maneuver instead of maximum accelerations or decelerations. An additional con-

straint common to all three rotational maneuvers is that the linear distance traveled was less than 10

cm. We chose 10 cm as a general cutoff here and elsewhere because this value is close to the body

length of a bird and the wing span at mid-downstroke, thus providing a good threshold for distin-

guishing translational motion.

The pitch-up and pitch-down maneuvers were defined as having continuous pitch velocity in the

upward or downward direction, respectively. Only maneuvers with a total pitch rotation greater than

45˚ were analyzed. From these maneuvers we calculated either the average pitch-up (PitchUvel, avg)

or pitch-down (PitchDvel, avg) velocity as performance metrics. Defining yaw turns is challenging

because hummingbirds fly with an upright body posture. When the body posture is near vertical, azi-

muthal rotation is implemented by rolling about the body axis, but when the body posture is near

horizontal, azimuthal rotation is implemented by yawing the body axis. We therefore define yaw

turns as azimuthal changes in direction when the body pitch angle is below 75˚. An additional con-

straint specific to yaw turns was a requirement for at least 90˚ change in azimuth. From these trajec-

tories we measured the average yaw velocity (Yawvel, avg) as the performance metric.

In addition to five translational and three rotational maneuvers, we also considered two maneu-

vers that are complex turns with translational components. Arcing turn maneuvers were defined as

sequences with a heading velocity > 90˚/sec, a minimum total translational velocity > 0.5 m/s, a total

distance traveled > 25 cm, and a vertical distance traveled < 10 cm. These search parameters reli-

ably extract arcing turns that occur in the horizontal plane. To compare arcing turns of different

shapes and scales we clipped the trajectories to a length of 25 cm centered at the sharpest point of

the turn. From the clipped trajectory we analyzed three performance metrics, average velocity (Arc-

vel, avg), radius (Arcrad), and the maximum centripetal acceleration (Arccent, max). The latter two were

calculated using the following equations:

Arcrad ¼
Arcdistance traveled

DHeadingrad

Arccent;max ¼
Arcvel;avg

2

Arcrad

Pitch-roll turn maneuvers have been described in hummingbirds and are characterized by the fol-

lowing sequence: a) deceleration, b) increase in pitch to near vertical, c) azimuthal rotation by rolling

the body, and d) acceleration in a new direction (Clark, 2011). These maneuvers were identified by

searching for sequences of deceleration followed by acceleration with a maximum pitch > 75˚. Just
as we did for the yaw turns, we assume that above a pitch angle of 75˚, the rotation is primarily dom-

inated by a body axis roll, even if there may be a slight yawing component. For this reason, we main-

tain the established ’pitch-roll’ terminology to describe these types of turns. These sequences were

clipped to a linear distance of 25 cm centered on the point of the lowest translational velocity. Only

clipped sequences in which the total vertical displacement was less than 10 cm were analyzed. The

performance metrics for pitch-roll turns were the time taken (PRTtime) and the degrees turned

(PRTdeg).

Arcing turns and pitch-roll turns are two different mechanisms for generating a change in heading

with no overlap in our data set by definition (Table 1). We analyzed how morphology, burst capacity,

and competitor presence influenced the relative use of these two turns. The pitch-roll percent (PRT
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%) was defined as the number of pitch-roll turns divided by total the number of arcing and pitch-roll

turns extracted from each trial.

Descriptive statistics
Descriptive statistics for morphology and load lifting are provided in Table 2. A large sample of val-

ues was obtained for each maneuvering performance metric (Table 3). Figure 2 shows the distribu-

tions of trial means for all performance metrics.

Repeatability of performance
All performance metrics based on total and horizontal linear accelerations and complex turns were

highly repeatable, with >80% of the variation in these metrics attributable to differences among indi-

viduals (Figure 3). The rotational performance metrics and the percent of turns that were pitch-roll

turns were moderately repeatable, with 40–70% of the variation in these metrics attributable to

Table 2. Wing morphology and load lifting performance of male Anna’s hummingbirds (n = 20

individuals).

Trait Mean Range

Wing length 50.97 mm [45.76, 55.45]

Wing area 1355 mm2 [1051, 1653]

Wing aspect ratio 7.73 [7.13, 8.46]

Body mass 4.64 g [4.09, 5.61]

Mass of weights lifted 5.93 g [4.00, 7.24]

DOI: 10.7554/eLife.11159.007

Table 3. Descriptive statistics and sample sizes for maneuvering performance. Grand mean values

were calculated by first taking the mean of each bird’s trial averages (i.e., the bird means), and then

taking the mean of the bird means (n = 20 birds in 20 solo trials and 16 paired competition trials).

Maneuverability Performance metric # Trajectories Grand mean [Range of means]

Linear accelerations Velmax 71,007 2.22 m/s [1.20, 2.94]

AccHormax 47,287 6.30 m/s2 [2.96, 8.83]

DecHormax 51,245 6.67 m/s2 [9.03, 3.45]

AccVUmax 6,935 3.78 m/s2 [2.98, 4.67]

AccVDmax 9,284 3.58 m/s2 [4.69, 2.68]

Rotational velocities PitchUvel, avg 6,085 1.13 rev/s [0.91, 1.34]

PitchDvel, avg 14,807 1.00 rev/s [1.19, 0.78]

Yawvel, avg 12,660 1.52 rev/s [1.32, 1.75]

Complex turns

Pitch-roll PRTdeg 17,133 133.3 º [34.9, 162.7]

PRTtime 17,133 0.47 s [0.38, 0.60]

Arcing Arcrad 6.945 0.48 m [0.14, 0.70]

Arcvel, avg 6,945 1.57 m/s [0.80, 2.26]

Arccent, max 6,945 6.59 m/s2 [3.42, 10.80]

Use of turns PRT% 24,078 0.69 [0.39, 0.87]

DOI: 10.7554/eLife.11159.008
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http://dx.doi.org/10.7554/eLife.11159.008Table%203.Descriptive%20statistics%20and%20sample%20sizes%20for%20maneuvering%20performance.&x00A0;Grand%20mean%20values%20were%20calculated%20by%20first%20taking%20the%20mean%20of%20each%20bird&x2019;s%20trial%20averages%20(i.e.,%20the%20bird%20means),%20and%20then%20taking%20the%20mean%20of%20the%20bird%20means%20(n%20=%2020%20birds%20in%2020%20solo%20trials%20and%2016%20paired%20competition%20trials).%2010.7554/eLife.11159.008ManeuverabilityPerformance%20metric#%20TrajectoriesGrand%20mean[Range%20of%20means]Linear%20accelerationsVelmax71,0072.22%20m/s[1.20,%202.94]AccHormax47,2876.30%20m/s2[2.96,%208.83]DecHormax51,2456.67%20m/s2[9.03,%203.45]AccVUmax6,9353.78%20m/s2[2.98,%204.67]AccVDmax9,2843.58%20m/s2[4.69,%202.68]Rotational%20velocitiesPitchUvel,%20avg6,0851.13%20rev/s[0.91,%201.34]PitchDvel,%20avg14,8071.00%20rev/s[1.19,%200.78]Yawvel,%20avg12,6601.52%20rev/s[1.32,%201.75]Complex%20turnsPitch-rollPRTdeg17,133133.3%20&x00BA;[34.9,%20162.7]PRTtime17,1330.47%20s[0.38,%200.60]ArcingArcrad6.9450.48%20m[0.14,%200.70]Arcvel,%20avg6,9451.57%20m/s[0.80,%202.26]Arccent,%20max6,9456.59%20m/s2[3.42,%2010.80]Use%20of%20turnsPRT%24,0780.69[0.39,%200.87]
http://dx.doi.org/10.7554/eLife.11159


among-individual differences. The vertical accelerations were not repeatable, as the 95% confidence

intervals for repeatability of these metrics overlapped zero.

Maneuvering in relation to burst muscle capacity
The best-supported models for each maneuvering performance metric are given in Table 4. Burst

muscle capacity was an important predictor for most of the maneuvering performance metrics. Birds

that lifted more weight (accounting for their wing morphology) tended to accelerate and decelerate

faster, and they tended to perform maneuvers with higher velocity (Figure 4). However, burst mus-

cle capacity was not an important determinant of vertical acceleration and deceleration, as candidate

models including burst performance as a predictor were not supported. Birds that lifted more

weight also executed pitch-up and pitch-down maneuvers with higher rotational velocities. Burst

capacity was not a strong determinant of yaw performance. Although yaw velocity was somewhat

Figure 2. Distributions of mean performance metric values for n = 52 bird-trial combinations. Only PRTdeg has statistically significant outliers. See

Figure 2—figure supplement 1 for distributions of residuals from the best-fit model in each case. Note that two statistical outliers were omitted from

the analysis of PRTdeg.

DOI: 10.7554/eLife.11159.009

The following figure supplement is available for figure 2:

Figure supplement 1. Distributions of residuals from the best-fit model for each performance metric.

DOI: 10.7554/eLife.11159.010
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positively related to burst capacity (Figure 4), candidate models of yaw velocity that included burst

as a predictor were not well supported.

Burst muscle capacity was also associated with some, but not all maneuvering performance met-

rics related to complex turns. Birds that lifted more weight for their wing morphology tended to exe-

cute faster, larger radius arcing turns (Figure 4). However, the centripetal acceleration of arcing

turns was not associated with burst capacity. Hummingbirds with higher load lifting capacity exe-

cuted pitch-roll turns in less time. Burst capacity was not a strong determinant of heading change

during pitch-roll turns. Lastly, birds with higher burst muscle capacity used pitch-roll turns for pro-

portionately more of their heading changes.

Maneuvering in relation to morphology
Wing morphology, specifically the aspect ratio, was an important predictor for two performance

metrics: centripetal acceleration and the percent of direction changes that were pitch-roll turns (Fig-

ure 5). Hummingbirds with long, narrow wings tended to perform arcing turns with higher centripe-

tal accelerations, relative to birds with short, wide wings. Birds with higher aspect ratio wings also

used proportionately more arcing turns than birds with low aspect ratio wings.

Body mass was included in candidate models 1–7 because we had anticipated that body mass

would have a strong influence on variation in maneuvering performance. However, for every perfor-

mance metric in Table 4, the coefficient estimate for body mass had confidence intervals that

broadly overlapped zero.

Effect of competitor on maneuvering performance
We did not detect a substantial effect of competitor presence on many of the performance metrics

(Table 4). Two metrics, horizontal acceleration and deceleration, were affected, but in the direction

opposite to what we predicted. Specifically, birds performed maneuvers with lower acceleration (–

Figure 3. Most maneuvering performance metrics are highly repeatable. Values > 70% are considered to have

high repeatability, 40–70% moderate repeatability, and < 40% low repeatability. A metric is considered not

repeatable if its 95% confidence intervals overlap zero.

DOI: 10.7554/eLife.11159.011
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0.46 m/s2 difference on average) and lower deceleration (–0.47 m/s2) in the presence of a competi-

tor, relative to solo flight (Figure 6a,b). One metric, pitch-down velocity (Figure 6c), did increase

during competition as predicted (0.06 rev/s difference on average). We had no prediction for how

competition would influence the relative use of pitch-roll and arcing turns, but found that birds used

proportionately more arcing turns in the presence of a competitor (Figure 6d). Specifically, 35% of

direction changes were arcing turns on average (and 65% pitch-roll) when a competitor was present,

whereas during solo flight, only 23% of direction changes were arcing turns (and 77% pitch-roll) on

average.

Discussion
We collected a large number of free flight measurements for each of 20 individual hummingbirds to

examine the biomechanical determinants of maneuverability. Other studies have measured elements

of maneuvering performance of hummingbirds in the field (Clark, 2009; Sholtis et al., 2015) and

documented the maximum velocities, accelerations, and rotations obtained during specific maneu-

vers. Our values for velocity and acceleration are considerably lower than either of the field studies,

likely because of cage size. However, the benefit of using a flight chamber is that it allowed us to

evaluate the relative contributions of different factors to the performance we observed. We found

that hummingbirds maneuvered with highly repeatable performance (Figure 3). Maximum weight

lifted during load lifting trials predicted most of the performance metrics that we measured, inde-

pendent of a bird’s wing size and shape, such that birds with higher burst muscle capacity flew

faster, had higher horizontal accelerations, faster rotations, and higher performance during complex

turns (Figure 4). Aspect ratio predicted only two performance metrics, such that birds with higher

aspect ratio wings performed turns with higher centripetal acceleration and a greater percentage of

Figure 4. Burst muscle capacity was associated with most maneuvering performance metrics. Each panel shows partial residuals for a performance

metric (y-axis) in relation to burst muscle capacity (x-axis) for the most supported candidate model with burst capacity as a predictor. Partial residual

values (y-axis) account for the other fixed effects in that model. Lines show model predictions assuming the median value of continuous predictors, and

averaging across experiments and levels of competitor presence. Prediction lines are dashed for metrics where burst performance was not present in

any of the supported models. Color is used to denote data points from the same bird (online version only).

DOI: 10.7554/eLife.11159.013
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Table 4. Maneuvering performance in relation to burst performance, wing morphology, and competitor presence (n = 20 birds in 20

solo trials and 16 paired competition trials). Standardized beta coefficients and R2
GLMM(m) values are reported for either the best-fit

model, or, if there was support for more than one model, the average of supported models. The standardized beta coefficient is a

measure of effect size that can be compared among predictors in the same model. Relative importance is a measure of the weight of

evidence in favor of a predictor on a scale from 0–1, and is reported for burst capacity and wing morphology variables as these alone

were subject to model selection. Marginal R2
GLMM(m) provides a measure of the combined explanatory power of fixed effects of

interest (competitor presence, burst muscle capacity, and wing morphology effects combined). Details of all candidate models are

provided in Supplementary file 1.

Model Support for Fixed effects Std beta coef [95% CI] Relative importance

R2
GLMM(m)

Burst
+ morphology
+ competitor

Velmax burst competitor presence
mass
burst
wing length
wing aspect ratio
experiment (CA1)
experiment (CA2)
days post-capture

–0.04 [–0.18, 0.10]
0.10 [–0.01, 0.22]
0.09 [0.00, 0.18]
–0.08 [–0.22, 0.06]
0.10 [–0.07, 0.28]
1.01 [0.59, 1.42]
1.06 [0.68, 1.43]
–0.07 [–0.24, 0.11]

–
–
1.00
0.25
0.26
–
–
–

0.28

AccHormax burst + competition competitor presence
mass
burst
experiment(CA1)
experiment(CA2)
days post-capture

–0.46 [–0.82, –0.11]
0.20 [–0.28, 0.69]
0.39 [0.00, 0.77]
4.01 [2.46, 5.56]
3.68 [2.72, 4.64]
–0.39 [–1.09, 0.32]

–
–
1.00
–
–
–

0.18

DecHormax burst + competition competitor presence
mass
burst
experiment(CA1)
experiment(CA2)
days post-capture

–0.47 [–0.78, –0.16]
0.31 [–0.13, 0.74]
0.41 [0.06, 0.76]
3.86 [2.47, 5.25]
3.64 [2.76, 4.51]
–0.24 [–0.88, 0.39]

–
–
1.00
–
–
–

0.19

AccVUmax intercept-only NA NA NA 0 (NA)

AccVDmax intercept-only NA NA NA 0 (NA)

PitchUvel, avg burst competitor presence
mass
burst
experiment(CA1)
experiment(CA2)

0.02 [–0.02, 0.06]
0.00 [–0.04, 0.04]
0.03 [–0.01, 0.07]
0.14 [0.06, 0.23]
0.13 [0.03, 0.23]

–
–
1.00
–
–

0.10

PitchDvel, avg competition
+ burst

competitor presence
mass
burst
wing length
wing aspect ratio
experiment(CA1)
experiment(CA2)

0.06 [0.01, 0.10]
0.01 [–0.04, 0.05]
0.03 [–0.01, 0.08]
0.04 [–0.03, 0.12]
–0.04 [–0.13, 0.05]
0.19 [0.03, 0.34]
0.22 [0.03, 0.41]

–
–
0.66
0.37
0.28
–
–

0.18

Yawvel, avg intercept-only NA NA NA 0 (NA)

PRTdeg intercept-only NA NA NA 0 (NA)

PRTtime burst competitor presence
mass
burst
wing length
wing aspect ratio
experiment(CA1)
experiment(CA2)

0.00 [–0.01, 0.01]
–0.01 [–0.03, 0.00]
–0.02 [–0.03, 0.00]
–0.01 [–0.03, 0.01]
0.01 [–0.01, 0.04]
–0.08 [–0.12, –0.03]
–0.11 [–0.16, –0.05]

–
–
1.00
0.21
0.23
–
–

0.29

Arcrad burst competitor presence
mass
burst
wing aspect ratio
experiment(CA1)
experiment(CA2)

–0.02 [–0.07, 0.03]
0.01 [–0.03, 0.06]
0.06 [0.01, 0.10]
–0.06 [–0.15, 0.03]
0.25 [0.12, 0.37]
0.29 [0.06, 0.52]

–
–
1.00
0.44
–
–

0.22

Table 4 continued on next page
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arcing turns (Figure 5). When flying in the presence of a competitor, hummingbirds used faster pitch

velocities, although they used slower horizontal accelerations and decelerations. During competition

trials birds also increased the proportion of arcing turns used (Figure 6). Collectively, these results

suggest that burst muscle capacity is a much more important predictor of flight maneuverability

than within-species variation in body mass, wing morphology, and competition with conspecifics.

Why were body mass and wing size not associated with maneuvering performance? Wing mor-

phology has well-known physical affects on flight performance: aspect ratio predicts aerodynamic

efficiency, wing area is directly proportional to aerodynamic force, and wing length is a strong pre-

dictor of wingbeat frequency. All of these morphological traits, along with body mass, could affect

maneuverability in flight, either individually or in combination. For example, wing loading (the ratio

of body mass to wing area or to area swept by the wings) was initially thought to be a key predictor

of hummingbird flight performance and behavioral ecology (Feinsinger and Chaplin, 1975; Fein-

singer, 1976; Feinsinger and Colwell, 1978; Feinsinger et al., 1979). However, in our analysis the

hypothesis that wing size and body mass together determine maneuvering performance was not

supported for any performance metric (see Supplementary file 1). We found it especially surprising

that only wing shape (and not wing size) predicted maneuvering performance. It is possible that

other morphological traits may determine maneuvering performance, or that subtle relationships

may have gone undetected, because our analysis was limited to 20 individuals of a single species. It

would be informative to expand this analysis to other species with potentially greater within-species

variation in wing morphology, and to assess maneuverability across different hummingbird species

with divergent morphologies.

Almost all of the performance metrics were highly repeatable, which indicates a potential role for

intrinsic influences of wing morphology in determining maneuverability. However, aspect ratio was

the only morphological parameter that predicted performance, and only for a limited set of maneu-

vers. Aspect ratio is a key determinant in wing efficiency for fixed wings, such as during gliding (Pen-

nycuick, 1983), and it has recently been demonstrated that higher aspect ratio wings correspond to

higher power factors in the revolving wings of hummingbirds (Kruyt et al., 2014). We found that

aspect ratio had a strong effect on the few performance metrics that it predicted, but did not affect

most features of maneuvering performance. This suggests a limited role for aerodynamic efficiency

in many features of maneuvering.

Burst muscle capacity predicted most of the performance metrics we considered, independently

of any association with wing size or shape. Load lifting is measured as a transient escape maneuver

that is likely anaerobic and performed inefficiently. All hummingbirds reach maximum load lifting

Table 4 continued

Model Support for Fixed effects Std beta coef [95% CI] Relative importance

R2
GLMM(m)

Burst
+ morphology
+ competitor

Arcvel, avg burst competitor presence
mass
burst
experiment(CA1)
experiment(CA2)
days post-capture

–0.01 [–0.09, 0.08]
0.03 [–0.06, 0.12]
0.11 [0.04, 0.19]
0.89 [0.59, 1.19]
0.74 [0.56, 0.92]
–0.06 [–0.20, 0.08]

–
–
1.00
–
–
–

0.18

Acccent, max wing shape competitor presence
mass
wing aspect ratio
experiment(CA1)
experiment(CA2)
days post-capture

0.29 [–0.37, 0.94]
–0.20 [–0.74, 0.34]
1.09 [0.19, 1.99]
5.93 [4.02, 7.84]
0.85 [–1.59, 3.28]
–1.76 [–2.62, –0.90]

–
–
1.00
–
–
–

0.36

PRT% wing shape + competition
+ burst + wing size

competitor presence
mass
burst
wing length
wing aspect ratio
experiment(CA1)
experiment(CA2)

–0.14 [–0.19, –0.09]
0.00 [–0.04, 0.05]
0.04 [0.00, 0.09]
–0.06 [–0.13, 0.01]
–0.16 [–0.24, –0.07]
0.17 [–0.03, 0.36]
0.44 [0.19, 0.69]

–
–
1.00
0.61
1.00
–
–

0.27

DOI: 10.7554/eLife.11159.012
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http://dx.doi.org/10.7554/eLife.11159.012Table%204.Maneuvering%20performance%20in%20relation%20to%20burst%20performance,%20wing%20morphology,%20and%20competitor%20presence%20(n%20=%2020%20birds%20in%2020%20solo%20trials%20and%2016%20paired%20competition%20trials).%20Standardized%20beta%20coefficients%20and%20R2GLMM(m)%20values%20are%20reported%20for%20either%20the%20best-fit%20model,%20or,%20if%20there%20was%20support%20for%20more%20than%20one%20model,%20the%20average%20of%20supported%20models.%20The%20standardized%20beta%20coefficient%20is%20a%20measure%20of%20effect%20size%20that%20can%20be%20compared%20among%20predictors%20in%20the%20same%20model.%20Relative%20importance%20is%20a%20measure%20of%20the%20weight%20of%20evidence%20in%20favor%20of%20a%20predictor%20on%20a%20scale%20from%200&x2013;1,%20and%20is%20reported%20for%20burst%20capacity%20and%20wing%20morphology%20variables%20as%20these%20alone%20were%20subject%20to%20model%20selection.%20Marginal%20R2GLMM(m)%20provides%20a%20measure%20of%20the%20combined%20explanatory%20power%20of%20fixed%20effects%20of%20interest%20(competitor%20presence,%20burst%20muscle%20capacity,%20and%20wing%20morphology%20effects%20combined).%20Details%20of%20all%20candidate%20models%20are%20provided%20in%20Supplementary%20file%201.%2010.7554/eLife.11159.012ModelSupport%20forFixed%20effectsStd%20beta%20coef%20[95%%20CI]Relative%20importanceR2GLMM(m)Burst+%20morphology+%20competitorVelmaxburstcompetitor%20presencemassburstwing%20lengthwing%20aspect%20ratioexperiment%20(CA1)experiment%20(CA2)days%20post-capture&x2013;0.04%20[&x2013;0.18,%200.10]0.10%20[&x2013;0.01,%200.22]0.09%20[0.00,%200.18]&x2013;0.08%20[&x2013;0.22,%200.06]0.10%20[&x2013;0.07,%200.28]1.01%20[0.59,%201.42]1.06%20[0.68,%201.43]&x2013;0.07%20[&x2013;0.24,%200.11]----1.000.250.26------0.28AccHormaxburst%20+%20competitioncompetitor%20presencemassburstexperiment(CA1)experiment(CA2)days%20post-capture&x2013;0.46%20[&x2013;0.82,%20&x2013;0.11]0.20%20[&x2013;0.28,%200.69]0.39%20[0.00,%200.77]4.01%20[2.46,%205.56]3.68%20[2.72,%204.64]&x2013;0.39%20[&x2013;1.09,%200.32]----1.00------0.18DecHormaxburst%20+%20competitioncompetitor%20presencemassburstexperiment(CA1)experiment(CA2)days%20post-capture&x2013;0.47%20[&x2013;0.78,%20&x2013;0.16]0.31%20[&x2013;0.13,%200.74]0.41%20[0.06,%200.76]3.86%20[2.47,%205.25]3.64%20[2.76,%204.51]&x2013;0.24%20[&x2013;0.88,%200.39]----1.00------0.19AccVUmaxintercept-onlyNANANA0%20(NA)AccVDmaxintercept-onlyNANANA0%20(NA)PitchUvel,%20avgburstcompetitor%20presencemassburstexperiment(CA1)experiment(CA2)0.02%20[&x2013;0.02,%200.06]0.00%20[&x2013;0.04,%200.04]0.03%20[&x2013;0.01,%200.07]0.14%20[0.06,%200.23]0.13%20[0.03,%200.23]----1.00----0.10PitchDvel,%20avgcompetition+%20burstcompetitor%20presencemassburstwing%20lengthwing%20aspect%20ratioexperiment(CA1)experiment(CA2)0.06%20[0.01,%200.10]0.01%20[&x2013;0.04,%200.05]0.03%20[&x2013;0.01,%200.08]0.04%20[&x2013;0.03,%200.12]&x2013;0.04%20[&x2013;0.13,%200.05]0.19%20[0.03,%200.34]0.22%20[0.03,%200.41]----0.660.370.28----0.18Yawvel,%20avgintercept-onlyNANANA0%20(NA)PRTdegintercept-onlyNANANA0%20(NA)PRTtimeburstcompetitor%20presencemassburstwing%20lengthwing%20aspect%20ratioexperiment(CA1)experiment(CA2)0.00%20[&x2013;0.01,%200.01]&x2013;0.01%20[&x2013;0.03,%200.00]&x2013;0.02%20[&x2013;0.03,%200.00]&x2013;0.01%20[&x2013;0.03,%200.01]0.01%20[&x2013;0.01,%200.04]&x2013;0.08%20[&x2013;0.12,%20&x2013;0.03]&x2013;0.11%20[&x2013;0.16,%20&x2013;0.05]&x2013;--1.000.210.23&x2013;--0.29Arcradburstcompetitor%20presencemassburstwing%20aspect%20ratioexperiment(CA1)experiment(CA2)&x2013;0.02%20[&x2013;0.07,%200.03]0.01%20[&x2013;0.03,%200.06]0.06%20[0.01,%200.10]&x2013;0.06%20[&x2013;0.15,%200.03]0.25%20[0.12,%200.37]0.29%20[0.06,%200.52]----1.000.44&x2013;--0.22Arcvel,%20avgburstcompetitor%20presencemassburstexperiment(CA1)experiment(CA2)days%20post-capture&x2013;0.01%20[&x2013;0.09,%200.08]0.03%20[&x2013;0.06,%200.12]0.11%20[0.04,%200.19]0.89%20[0.59,%201.19]0.74%20[0.56,%200.92]&x2013;0.06%20[&x2013;0.20,%200.08]&x2013;&x2013;1.00&x2013;----0.18Acccent,%20maxwing%20shapecompetitor%20presencemasswing%20aspect%20ratioexperiment(CA1)experiment(CA2)days%20post-capture0.29%20[&x2013;0.37,%200.94]&x2013;0.20%20[&x2013;0.74,%200.34]1.09%20[0.19,%201.99]5.93%20[4.02,%207.84]0.85%20[&x2013;1.59,%203.28]&x2013;1.76%20[&x2013;2.62,%20&x2013;0.90]----1.00------0.36PRT%wing%20shape%20+%20competition+%20burst%20+%20wing%20sizecompetitor%20presencemassburstwing%20lengthwing%20aspect%20ratioexperiment(CA1)experiment(CA2)&x2013;0.14%20[&x2013;0.19,%20&x2013;0.09]0.00%20[&x2013;0.04,%200.05]0.04%20[0.00,%200.09]&x2013;0.06%20[&x2013;0.13,%200.01]&x2013;0.16%20[&x2013;0.24,%20&x2013;0.07]0.17%20[&x2013;0.03,%200.36]0.44%20[0.19,%200.69]----1.000.611.00----0.27
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performance at a geometric limit set by the amplitude of the wings: wing stroke amplitude cannot

extend much past 180˚ without the two wings interfering with each other physically and aerodynami-

cally (Chai and Dudley, 1995; Chai et al., 1997; Chai and Millard, 1997; Altshuler and Dudley,

2003). Maximum load lifting also elicits a substantial increase in wingbeat frequency as a constant

fraction of baseline wingbeat frequency (Altshuler and Dudley, 2003). Thus, maximum load lifting

performance involves brief increases in muscle strain and muscle velocity to physically imposed lim-

its. The capacity to increase muscle strain and velocity has previously been shown to influence forag-

ing behavior and competitive ability (Altshuler, 2006). The results of the current study demonstrate

that it also underlies multiple features of maneuvering performance.

The two performance metrics that were not repeatable are vertical accelerations and decelera-

tions, which were expected to be important based on previous observations of hummingbird com-

petitive interactions (Altshuler, 2006) and mating displays (Clark, 2009). Moreover, vertical

performance was not well predicted by morphology, burst capacity, or competitor presence in this

study. The dimensions of our experimental chamber likely influenced our observations of vertical

performance. Hummingbirds in captivity tend to fly near the top of their cages, and the vertical

dimension of the chamber (1.5 m) may have limited vertical movement.

Male hummingbirds are extremely aggressive towards conspecifics (Kodric-Brown and Brown,

1978; Carpenter et al., 1983) and other species of hummingbirds (Stiles and Wolf, 1970;

Wolf et al., 1976). The most territorial species will vigorously defend territories (Carpenter et al.,

1983) and lekking sites (Rico-Guevara and Araya-Salas, 2015). In staged competition studies,

paired hummingbirds will also establish and defend territories (Tiebout, 1993). We originally

intended to use competition to elicit high levels of flight activity and maneuvering performance in

territorial male Anna’s hummingbirds (Stiles, 1982). However, we found that competitor presence

affected only a small number of the maneuvering performance metrics that we measured. Pitch-

down velocity increased with competition whereas horizontal acceleration and deceleration actually

decreased. We do not know why these three metrics (in addition to PRT%; see below) were strongly

affected by competition or why they were affected in the directions observed. However, there are

several possible causes for why competitor presence did not affect the other metrics: 1) we were

unable to elicit a high level of competition or territoriality; 2) the birds may have worked out domi-

nance without the aggressive interactions normally seen outdoors; and/or 3) the interactions

required to establish dominance may have been very brief (Maynard Smith, 1974) such that they

comprised only a minuscule sample of the maneuvers we analyzed. This experiment was not

designed to study the effects of maneuvering performance on competitive success, although this

represents an important topic for future investigation. Laboratory performance tests do not always

reflect field behavior (Irschick, 2003) and outdoor studies of maneuvering performance will be

Figure 5. Aspect ratio was associated with two maneuvering performance metrics. Each panel shows partial

residual performance (y-axis) in relation to wing aspect ratio (x-axis) from a best-fit model that identified aspect

ratio as an important predictor. Note that the partial residuals for PRT% in (b) go above 1 because PRT% was

modeled as a normally-distributed (Gaussian) variable. All other features as in Figure 4.

DOI: 10.7554/eLife.11159.014
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important for understanding the role of maneuverability in competitive interactions. Recent advan-

ces in video tracking (Theriault et al., 2014; Shelton et al., 2014) should make it possible to track

individuals for multiple measurements.

The most substantial result of competitor presence was the increase in the use of arcing over

pitch-roll turns. These two types of turns represent different strategies for changing direction that

differ in duration and amount of heading change. Arcing turns require less time but are used for

smaller heading changes, whereas pitch-roll turns are longer but can be used to change heading by

180˚ (Figure 7). Given that hummingbird agonistic interactions can involve direct contact and stab-

bing with bills (Tiebout, 1993; Clark and Russell, 2012; Rico-Guevara and Araya-Salas, 2015),

slow turns in place could make a bird more vulnerable during competition.

The relative use of arcing and pitch-roll turns was the only metric in our study that was influenced

by all of morphology, burst muscle capacity, and competitor presence. The minimum radius of an

arcing turn is limited by the maximum centripetal acceleration that a bird can generate while main-

taining lift. The speed of a pitch-roll turn is limited by the ability to decelerate and then accelerate.

Birds with higher wing aspect ratio may have preferred arcing turns because they were able to gen-

erate higher centripetal accelerations. Birds with higher burst muscle capacity may have favored

pitch-roll turns because they had higher accelerating and decelerating performance. These observa-

tions suggest the hypothesis that high aspect ratio and high burst capacity enhance maneuverability.

This hypothesis could be evaluated by comparing hummingbird species that differ in wing shape,

foraging strategy, and burst capacity (Altshuler et al., 2004b; 2010a; Altshuler, 2006; Kruyt et al.,

2014).

By constraining hummingbirds to fly in a large chamber we were able to track and measure a

large sample of maneuvers attributed to individuals with known morphological traits and burst per-

formance. A major contribution of our study is the development of an assay of free flight maneuver-

ing performance based on large numbers of stereotyped movements. Using this method, we

identify several performance metrics that were highly repeatable across trials for individual hum-

mingbirds, strongly correlated with individual morphological and physiological characteristics, and

largely uninfluenced by the added motivation of a conspecific competitor. This approach to measur-

ing maneuverability will be useful for future studies comparing maneuvering performance across

Figure 6. Competitor presence was associated with four maneuvering performance metrics. Each panel shows

residual performance (y-axis) in relation to competitor presence from a best-fit model where competitor presence

had a detected effect. All other features as in Figure 4.

DOI: 10.7554/eLife.11159.015
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different experimental manipulations, geographic ranges, or ecological, morphological, and phylo-

genetic groups.

Figure 7. Arcing and pitch-roll turns are two classes of complex maneuver that differ in turn magnitude and

duration. Representative examples of arcing (a) and pitch-roll (b) turns are depicted from the above perspective.

Arcing turns (Arc; orange) and pitch-roll turns (PRT; green) differed in the degrees turned (c) and elapsed time (d).

Circles represent bird-trial means (n = 52) with grand means indicated with black lines. Histograms for the pooled

dataset of all maneuvers are given on the right. The outliers for degrees turned in pitch-roll turns were included

when calculating the grand means but not in the model analyses (Table 4).

DOI: 10.7554/eLife.11159.016
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Materials and methods

Animals and experimental trials
We captured and filmed 20 adult male Anna’s hummingbirds (Calypte anna) at the University of Cali-

fornia, Riverside (eight birds in July-October 2009; four birds in January-March 2010) and the Univer-

sity of British Columbia (eight birds in December 2013-April 2014). The hummingbirds were housed

in individual cages and fed ad libitum with a solution of artificial nectar (Nektar-Plus, Nekton, Pforz-

heim, Germany) and sucrose. The flight arenas were large rectangular cages (3 x 1.5 x 1.5 m) built

with an aluminum frame and had either garden mesh (California) or clear acrylic (British Columbia)

side panels. The cages contained multiple perches and a single feeder hung from the roof of the

cage.

Before the first trial, each bird was allowed to acclimate to the flight arena and learn where the

perches and the feeder were located. The trials began once the birds were actively exploring the

cage and consistently visiting the feeder and both perches. At this point, we recorded high-speed

video of a two-hour solo trial for each bird. Following solo trials (between 0–23 days later), birds

were paired and filmed for another two hours in competition trials. One bird in each pair was

marked with a small square of retro-reflective tape placed between the shoulder blades for identifi-

cation. The birds filmed in British Columbia had one competition trial and the birds in California had

two competition trials. In the latter case, the second trial consisted of previously unknown opponents

that were chosen randomly from the remaining pool. The competition trials involved chases, dis-

placements, and aerial displays, but very little contact. Regardless, we monitored the competition

trials to ensure that no birds were harmed or excluded from the feeder.

Following each round of solo and competition trials, we performed asymptotic load lifting experi-

ments using the techniques described in Chai et al. (Chai et al., 1997), and subsequently used in

other studies estimating maximum burst power output (Chai and Millard, 1997; Altshuler et al.,

2004a; 2010b; Altshuler, 2006). Here, we use the mass of maximum number of beads lifted by

each individual as a measure of burst performance. Immediately following load lifting, we weighed

the birds and photographed both wings in an outstretched position against white paper with a refer-

ence scale (Chai and Dudley, 1995). We oriented the wing image and divided it into pixel wide

strips representing the wing chords at each value of wing radius. Values for aspect ratio, wing area,

and wing length were then calculated based on equations in Ellington (Ellington, 1984).

We considered wing area and wing length as two potential measures of wing size, but these traits

were highly correlated in our dataset (R2 = 0.85, p < 0.0001, n = 20). Because these two traits did not

vary independently in our relatively small sample of 20 hummingbirds, we could not consider them

independently. We therefore selected wing length as the more robust measure of wing size, because

unlike area, wing length is less prone to measurement error as a result of variation in feather overlap

when wings are positioned for measurements. We verified that our results were consistent when using

wing area instead of length, and thus these two traits should be considered interchangeable as meas-

ures of wing size in this study. Because both wing morphology and muscle capacity may influence burst

performance, we used burst performance controlled statistically for wing morphology as a measure of

burst muscle capacity. Further details are provided below in the Statistical analysis section.

All procedures were conducted under approval of the Institutional Animal Care and Use Committee

at the University of California, Riverside and the Animal Care Committee at the University of British

Columbia.

Tracking system
We used an automated tracking system to measure both body position and orientation of flying

birds in three dimensions (Video 1). A complete description of the tracking algorithm and hardware

components is provided in (Straw et al., 2011). The core algorithms were written in Python

(Python Software Foundation, 2012), and are available via github (PyMVG: https://github.com/

strawlab/pymvg; adskalman: https://github.com/astraw/adskalman; MultiCamSelfCal: https://github.

com/strawlab/MultiCamSelfCal/). We adapted this system for recording hummingbird solo and com-

petitive flight trajectories with four or five digital cameras (GE680, Allied Vision Technologies, Bur-

naby, Canada). The cameras were mounted on the ceiling and recorded at 640 x 480 pixel

resolution at 200 frames per second (Figure 1a). We calibrated the filming volume by moving a
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single light-emitting diode throughout the arena to acquire data for an automated self calibration

algorithm (Svoboda et al., 2005). This algorithm provides a relative calibration (non-linear warping

distortion parameters and 3x4 camera calibration matrices) across all cameras. This calibration is

brought into absolute terms (the scale, rotation, and translation are found) by matching a manually

measured 3D model of the flight arena with reconstructed image coordinates using the ‘estsimt’

function of the MultiCamSelfCal toolbox (Svoboda et al., 2005).

To minimize the effect of errors in the 3D tracking, we used a forward/reverse non-causal Kalman

filter (Rauch–Tung–Striebel smoother) applied to the online state estimate of position and velocity

from the realtime Kalman filter. The smoothing parameters were chosen so that seven traces of a

tracked, falling object yielded an average peak acceleration of 9.8 m/s2. The process covariance

matrix we used is:

Qpos ¼ s
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where s

2 is 0.01 and T is the interval between frames (0.005 s). The observation covariance matrix

we used is:

Rpos ¼

0:000144 0 0

0 0:000144 0

0 0 0:000144

2

6

4

3

7

5

Figure 1c and d show examples of two trajectories with plots of the unsmoothed data, the data

smoothed with Qpos and Rpos, and the effects of two different smoothing parameters (Rpos x 10,

Rposx 0.1).

Following establishment of the 3D trajectories, the tracking system assigned 3D body orientation

vectors to each bird in each frame based on 2D estimates of the long axis of the body. Body orienta-

tion was estimated using an algorithm that fit orientations to the body axis in each 2D image. Each

sequence of five consecutive images cropped around the bird was aligned at the optical center of

intensity. Averaging these images effectively eliminated the wings and emphasized the body. Orien-

tation was estimated by calculating the covariance matrix of the image luminance and then comput-

ing the eigensystem of this covariance matrix. The eigenvector associated with the largest

eigenvalue was taken as the orientation. Orientation vector assignments were also smoothed with a

Kalman filter using more restrictive smoothing parameters than were used to smooth body position.

To determine appropriate smoothing parameters we replotted the smoothed body orientation vec-

tors onto a sample of videos, and visually chose the ones that provided the best fit. The process

covariance matrix used for body orientation (Qori) is the same as the process covariance matrix used

for body position (Qpos) and the observation covariance matrix used is:
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Rori ¼

0:00000144 0 0

0 0:00000144 0

0 0 0:00000144
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5

Once the body orientations were calculated we used a dynamic programming algorithm to

decide which end of the vector was the head and which end was the tail. The direction of the head

was chosen based on the direction of the previous orientation, the direction of travel, and the verti-

cal up direction. For each frame (n), the ’cost’ associated with the two possible orientations ( ~Ori, -

~Ori) were calculated:

CostOri ¼ Speed
~Orin� ~Velmod

~Orin ~Velmod

 !

þð1�SpeedÞ
~Orin� ~Up

~Orin ~Up

 !

þð1�SpeedÞ
~Orin� ~Orin�1

~Orin ~Orin�1

 !

Cost�Ori ¼ Speed
� ~Orin� ~Velmod

~Orin ~Velmod

 !

þð1�SpeedÞ
� ~Orin� ~Up

~Orin ~Up

 !

þð1�SpeedÞ
� ~Orin� ~Orin�1

~Orin ~Orin�1

 !

where ~Ori is the body vector, ~Velmod is the modified velocity vector tipped up 15º towards the verti-

cal direction. ~Up is the vertical direction vector, ~Orin�1 is the orientation during the previous frame,

and if the magnitude of the velocity is greater than 0.5m/s:

Speed¼ ~Vel

otherwise:

Speed¼ 0:5

This approach accounted for the tendency of hummingbirds to fly forwards and with an upright

posture, but allowed for exceptions in the case of backwards flight, inversions, and dives, particularly

if these occurred at low speeds.

The magnitudes of calculated accelerations and, to a lesser extent, velocities derived from posi-

tion data were influenced by the specific smoothing parameters. Examples of maneuvers with differ-

ent smoothing parameters and their effects on the calculated performance metrics are given in

Figure 1c and d. This influence of smoothing parameters is a well known limitation of video tracking

(Walker, 1998). Thus, although acceleration values are comparable within a study, caution must be

applied when comparing the magnitude of acceleration values among studies differing in camera

frame rate, filming volume, calibrations, and smoothing parameters (Walker, 1998). For our final

performance metrics we used instantaneous body orientation and orientation velocity, but not orien-

tation acceleration.

The automated tracking system extracted the 3D coordinates of multiple flying animals and saved

each trajectory as a separate object (Video 1). An object began when the tracking system detected

new movement and ended when either the object stopped moving, the error in the 3D reprojection

grew too large, or multiple objects came within 2 cm of each other. In our experiments tracking

hummingbird flight led to two problems in determining distinct objects. The first is that very stable

hovering can be misidentified as perching. For example, as a bird went into an extended hovering

bout, such as at a feeder, the tracking system detected the cessation of movement and ended the

trajectory. Conversely, when the bird perched at the end of a flight or in between two flights, espe-

cially if it continued to move its head or fluff its feathers, the tracking system treated the bird as

moving and continued the trajectory. Because our study focused on identifying and analyzing rela-

tively long, moving trajectories, these types of errors did not cause problems. The second challenge

concerned identification of birds during close encounters in competition trials. When two tracked

objects became close to each other, even if they did not physically touch, the tracking system could

not accurately distinguish them. We used a conservative solution and terminated the trajectories

whenever two birds came close enough that the tracked objects merged. Birds were later identified

manually by a team of digitizers who viewed the videos and assigned each object number to either

the marked or unmarked bird.
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Statistical analysis
The automated digitization produced a small number of extreme tracking errors, which we did not

want to unduly influence statistical analyses. We accordingly removed values >5 SDs more extreme

than the mean for each performance metric. The trimmed values comprised only 0–0.31% of the

original pooled sample size for each metric. We next calculated the mean of each performance met-

ric for each bird-trial combination (n= 52 means; 20 birds in 20 solo trials and 16 paired competition

trials). All statistical analyses were performed on these bird-trial means using R 3.1.1 (R

Development Core Team, 2014), and the data used for the analysis are available online

(Segre et al., 2015).

Repeatability, or the intra-class correlation coefficient (ICC), is defined as the proportion of varia-

tion that is attributable to differences among individuals (Nakagawa and Schielzeth, 2010). We esti-

mated repeatability for each performance metric from an intercept-only mixed effects model that

included estimates of the population intercept (i.e., the grand mean) as well as an individual intercept

for each bird (Nakagawa and Schielzeth, 2010). Such a model has two variance components, the vari-

ance of the random intercept values (variance among individuals) and a residual variance associated

with the error term. Repeatability is the variance among individuals divided by the total variance

(Nakagawa and Schielzeth, 2010). We used parametric bootstrapping with 5000 iterations to obtain

confidence intervals for these repeatability estimates via the bootMer function in the lme4 (v1.1.7)

package.

Because our second question involved evaluating several possible scenarios for the influence of

morphology and burst performance on maneuverability, we used an information-theoretic approach

to multi-model inference (Burnham and Anderson, 2010). Unlike dichotomous null hypothesis test-

ing, this approach quantifies support for multiple hypotheses, and it avoids the problem of eliminat-

ing potentially important predictors when two or more alternative models are equally well

supported. The output for interpretation includes the effect size and relative importance of each pre-

dictor, and there are no null hypotheses or P values associated with this approach. As a measure of

effect size we report the standardized partial regression coefficient, std b, for each predictor, which

can be used to compare their independent associations with a given response variable. Unstandard-

ized regression coefficients corresponding to units of the predictor variables are provided in

Supplementary file 1.

We also examined associations between burst performance, wing size, and wing shape because

our load lifting assay may have incorporated effects of wing morphology as well as muscle capacity.

The mass of weights lifted during load lifting was not significantly associated with wing length in our

sample of 20 individuals (p = 0.87), however, it was negatively associated with wing aspect ratio (p =

0.04) controlling for site. Thus in our model analyses we used residual burst performance controlling

for wing aspect ratio and site as a measure of burst muscle capacity independent of a bird’s wing

morphology.

We considered eight candidate mixed-effects models that could plausibly explain variation in

each maneuvering performance metric (Table 5). All candidate models included an individual inter-

cept for each bird (the random intercept term) and were fit using the nlme (v 3.1–117) package

(Zuur et al., 2009). The intercept-only model included an estimate of the population intercept

(grand mean) and random intercept terms, but no fixed effects. Other candidate models are listed in

Table 5. All models except the intercept-only model included the fixed effects of competitor pres-

ence, body mass, and experiment to account for potential effects of these factors. Experiment had

three levels, one for each round of trials (California 2009, 2010, British Columbia 2014) to account

for differences such as location, time of year, and filming conditions.

Two issues arose in the preliminary examination of data. The first issue was that five of the perfor-

mance metrics were significantly influenced by the number of days a bird had been in captivity. We

therefore included an additional fixed effect of the number of days since capture when analyzing

these five metrics (Table 5). The second issue was that one of the metrics, the heading change in

pitch-roll turns (PRTdeg), had three values that were significant outliers (Grubb’s test, all G > 3.09, all

p<0.03; Figure 7). We determined that these three statistical outliers were not errors in the tracking

system but were instead derived from one individual that used pitch-roll turns to make small heading

changes, unlike the other birds. We omitted these outliers from the analysis of heading change in

pitch-roll turns to ensure that all fitted Gaussian models met the required assumptions, with no other
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outliers or problems of skew or heteroskedasticity. The best-fit model for heading change in pitch-

roll turns was the intercept-only model regardless of whether the outliers were included.

To quantify the variance explained by the fixed effects of interest in each model, we calculated

the marginal R2
GLMM(m) using the r.squaredGLMM function in the MuMIn (v1.10.5) package

(Nakagawa and Schielzeth, 2013). This measure does not have all the properties of a traditional

coefficient of determination, but like R2 it ranges from 0 to 1, and it is an appropriate estimate of

the variance explained by the fixed effects in a mixed model. We removed the effect of experiment

and the number of days post-capture when calculating R2
GLMM(m), because these were not effects of

interest. Thus, R2
GLMM(m) provides a measure of the variance explained by the other supported fixed

effect variables.

We evaluated the support for different models using the Akaike information criterion (AICc)

adjusted for small sample sizes. This was calculated using the MuMIn (v 1.10.5) package with maxi-

mum likelihood estimation. We defined the group of supported models as those with a difference in

AICc < 2 from the best-fit model for each performance metric. If no other models came within 2

AICc units of the best-fit model, we present effect size measures, their confidence intervals, and

R2
GLMM(m) for only that model. Otherwise, we present averages of all supported models. Details of

all candidate models are provided in Supplementary file 1.

Our third question concerned the influence of competitor presence on the performance metrics.

If the confidence interval for the coefficient estimate of competitor presence excluded zero, we

examined the magnitude and direction of that effect. Positive coefficient estimates indicate that per-

formance was higher during competitive flights, whereas negative coefficients indicate that perfor-

mance was lower in the presence of a competitor.
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Model Fixed effects Description

1. Solo/comp + experiment + body mass + wing length Wing size

2. Solo/comp + experiment + body mass + wing aspect ratio Wing shape

3. Solo/comp + experiment + body mass + wing length + wing aspect ratio Wing size & shape

4. Solo/comp + experiment + body mass + weight lifted Burst power

5. Solo/comp + experiment + body mass + weight lifted + wing length Burst power & wing size

6. Solo/comp + experiment + body mass + weight lifted + wing aspect ratio Burst power & wing shape

7. Solo/comp + experiment + body mass + weight lifted + wing length + wing aspect ratio Burst power, wing size & shape

8. Intercept-only

*Candidate models 1-7 also include a fixed effect of days post-capture for the following metrics: Velmax, AccHormax, DecHormax, Arcvel, avg, and Arccent,

max
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