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Co-expression analysis of pancreatic cancer proteome reveals biology
and prognostic biomarkers
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Abstract
Purpose Despite extensive biological and clinical studies, including comprehensive genomic and transcriptomic profiling efforts,
pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease, with a poor survival and limited therapeutic options.
The goal of this study was to assess co-expressed PDAC proteins and their associations with biological pathways and clinical
parameters.
Methods Correlation network analysis is emerging as a powerful approach to infer tumor biology from omics data and to
prioritize candidate genes as biomarkers or drug targets. In this study, we applied a weighted gene co-expression network analysis
(WGCNA) to the proteome of 20 surgically resected PDAC specimens (PXD015744) and confirmed its clinical value in 82
independent primary cases.
Results Using WGCNA, we obtained twelve co-expressed clusters with a distinct biology. Notably, we found that one module
enriched for metabolic processes and epithelial-mesenchymal-transition (EMT) was significantly associated with overall survival
(p = 0.01) and disease-free survival (p = 0.03). The prognostic value of three proteins (SPTBN1, KHSRP and PYGL) belonging
to this module was confirmed using immunohistochemistry in a cohort of 82 independent resected patients. Risk score evaluation
of the prognostic signature confirmed its association with overall survival in multivariate analyses. Finally, immunofluorescence
analysis confirmed co-expression of SPTBN1 and KHSRP in Hs766t PDAC cells.
Conclusions OurWGCNA analysis revealed a PDACmodule enriched for metabolic and EMT-associated processes. In addition,
we found that three of the proteins involved were associated with PDAC survival.

Keywords Pancreaticcancer .Proteinco-expression .Systems
biology . Proteomics .WGCNA . Prognostic biomarkers

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most com-
mon tumor type of the pancreas with a five-year survival rate
not exceeding 8% [1]. A lack of reliable markers for early
diagnosis, as well as its aggressive metastatic spread are the
main causes of this extremely poor survival rate [2, 3]. The
development of next-generation sequencing (NGS) has enabled
detailed analyses of genomic aberrations and dysregulated gene
expression patterns that underlie tumor development and pro-
gression, with KRAS, TP53, CDKN2A and SMAD4 as major
oncogenic drivers of this disease. As yet, a comprehensive pro-
teomic analysis of clinical PDAC samples is missing.

In recent years, multiple statistical methods and freely
available bioinformatics tools have been developed that can
extrapolate important features from high-throughput data, e.g.
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pinpointing genes associated with clinical parameters such as
cancer status or patient survival [4]. In this context, networks
based on co-expression data [5] have extensively been used to
identify densely interconnected genes associated with pheno-
typic traits. Most of the available algorithms have been ap-
plied to microarray- and RNAseq-based expression data [6,
7]. Using these approaches Tang et al. [8], for example, iden-
tified new prognostic markers in breast cancer. Additionally,
these approaches have been used to search for potential ther-
apeutic targets in small-cell lung carcinoma [9]. More recent-
ly, an integrative analysis of co-expression networks from
proteomics and transcriptomics data in Alzheimer’s disease
revealed protein-specific networks in both asymptomatic and
symptomatic patients [10, 11].

Weighted gene co-expression network analysis (WGCNA)
assumes that the strength of node-to-node connections is best
quantified by measures derived from their correlations. In co-
expression networks for biological data, we refer to nodes as
“genes” or “proteins”. A glossary of network-related terms is
reported in Table 1. Constructing co-expression networks is an
effective way to characterize correlation patterns among
nodes and to infer new biological functions of densely inter-
connected nodes called “modules”. Modules can be related to
external sample traits such as patient survival, recurrence and
disease/health state, in order to discover biomarkers or

therapeutic targets. Such modules are indicated by the Module
Eigenprotein (ME; with a size of 1 × 20 in the current cohort,
this is the most representative vector of values for that module)
that can be related to external sample traits. In summary, the
goals of a WGCNA analysis are: (i) establishment of real asso-
ciations between proteins (instead of associations based on pre-
vious findings), (ii) identification of pathways specific for the
dataset under analysis, (iii) association of modules to external
information that provide biologically meaningful modules and
(iv) identification of key drivers in relevant modules that may
serve as candidate biomarkers and/or therapeutic targets.

Cancer proteomics aims to uncover the molecular basis of
this devastating disease and to elucidate associated pathway
features that cannot be detected by transcriptomics analyses.
In this study, we report a PDAC proteomics analysis based on
mass spectrometry (MS) data coupled to WGCNA to define
networks of highly correlated proteins with specific functions
associated with patient prognosis. We show that one module
strongly features metabolic pathways and mesenchymal
(EMT) signatures. This co-expression module was found to
be significantly associated with disease-free survival (DFS)
and overall survival (OS). The prognostic value of three key
proteins in this module was validated in an independent cohort
of 82 patients. These three proteins individually or in combi-
nation were able to predict patient survival.

Table 1 Glossary of network-related terms

Term Definition Reference

scale-free topology Description of a cellular network structure in a graph theory concept [20]

co-expression network The edges are determined by the pairwise correlations between two protein expression profiles. [6]

module Module is a cluster of highly interconnected proteins. [6]

connectivity In co-expression networks, the connectivity measures how correlated a protein is with all
other network proteins.

[6]

static tree cut The branches of the hierachical clustering are cut at the same height. This is the most simple
procedure for module identification.

[21]

dynamic tree cut The module are defined by a non-constant cut off on the hierarchical clustering branches.
This approach starts from a static tree cut and iteratively combine or remove proteins
from one module to the other one. The iteration stops only when the modules reach stability.

[21]

adjacency matrix Matrix containing pairwise correlations raised to the power β of all proteins. [6]

weighted co-expression network The edges of a network are described by weights. In the study, the weight is the correlation
between two proteins raisd to the power β. This is essential to enhance strong correlations
and avoid random noise.

[6]

unweighted co-expression network Network that solely inform you if two proteins are connected or not [6]

signed co-expression network The edges of the network provide the sign of correlation (positive or negative) [6]

unsigned co-expression network The edges of the network do not provide the sign of correlation [6]

direct network The edges of this network described the action of one protein to another one (e.g. protein
A is a kinase that phosphorylates protein B). It gives the direction of the action.

[6]

undirect network The direction of the action is unknown. [6]

module eigenprotein The module eigenprotein ME is a vector with the most representative values of the given
module and corresponds to the first principal component of that module.

[6]

hub gene This term is used as an abbreviation of “highly connected gene” or specifically in this
study, highly connected protein.

[6]

Explanatory table of the main network-related terms including references
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2 Material and methods

2.1 Patient samples

Approval from the Local Medical Ethical committee at the
VU University Medical Center was received (#14038). All
patients provided informed consent for tissue sampling,
clinical data analysis, and molecular analysis. Snap-
frozen tumor samples from 39 patients included between
January 2014 until November 2015 were evaluated by the
Department of Pathology (Amsterdam UMC, Amsterdam).
After pathological revision, 20 samples were eligible for
further analysis. A minimum of 5–10% tumor surface was
needed for further processing in this study. Clinical param-
eters were collected prospectively, OS and DFS data were
obtained from electronic patient records. One patient was
censored for OS analysis, since this patient succumbed to
complications after surgery, defined as mortality within
60 days after surgery.

2.2 Protein isolation from bulk tumor tissue and
sample preparation for mass spectrometry

Protein isolation was performed as previously described [12].
Briefly, protein lysates were separated on pre-cast 4%–12%
gradient gels using the NuPAGE SDS-PAGE system
(Invitrogen, Carlsbad, CA, USA). Gels were fixed in 50%
ethanol/3% phosphoric acid solution, stained with
Coomassie brilliant blue G-250 and then washed and
dehydrated in 50 mM ammonium bicarbonate (ABC) once
and 50 mM ABC/50% acetonitrile (ACN) twice. Gel lanes
were cut into five bands, with each band sliced further into
approximately 1 mm3 cubes. The gel cubes were washed and
dehydrated once in 50 mM ABC and twice in 50 mM ABC/
50% ACN. Subsequently, the gel cubes were reduced in
10 mM DTT/50 mM ABC at 56 °C for 1 h, after which the
supernatants were removed and the gel cubes were alkylated
in 50 mM iodoacetamide/50 mM ABC for 45 min at room
temperature in the dark. Next, the gel cubes were washed with
50 mM ABC/50% ACN, dried in a vacuum centrifuge at
50 °C for 10 min and covered with trypsin solution
(Promega, 6.25 ng/ml in 50 mM ABC). Following rehydra-
tion with trypsin solution and removal of excess trypsin, the
gel cubes were covered with 50 mM ABC and incubated
overnight at 25 °C. Peptides were extracted from the gel cubes
with 1% formic acid (FA) (once) and 5% FA/50% ACN
(twice). All extracts were pooled and stored at −20 °C until
use. Prior to liquid chromatography-mass spectrometry (LC-
MS), the extracts were concentrated in a vacuum centrifuge at
60 °C, after which volumes were adjusted to 50μl with 0.05%
FA and filtered through a 0.45 μm spin filter into LC
autosampler vials [13].

2.3 NanoLC-MS/MS proteomic analysis and database
searching

NanoLC-MS/MS analysis was performed as previously de-
scribed [14]. In brief, peptides were separated using an
Ultimate 3000 nanoLC system (Dionex LC-Packings,
Amsterdam, The Netherlands) equipped with a 40 cm ×
75 μm internal diameter (ID) fused silica column custom
packed with 1.9 μm 120 Å ReproSil Pur C18 aqua (Dr
Maisch GMBH, Ammerbuch-Entringen, Germany). The sam-
ples were injected by gel band, starting with gel band 1 at the
top of the gel for all samples, followed by gel band 2, until the
final gel band 5. The experiment was considered as one con-
tinuous injection series with a blank injection at the start of the
experiment. After injection, peptides were trapped at 6 μl/min
on a 1 cm × 100 μm ID trap column packed with 5 μm 120 Å
ReproSil C18 aqua at 2% buffer B (buffer A: 0.05% formic
acid in MQ; buffer B: 80% acetonitrile +0.05% formic acid in
MQ) and separated at 300 nl/min in a 10–40% buffer B gra-
dient for 75 min (100 min inject-to-inject). Eluting peptides
were ionized at a potential of +2 kVa into a Q Exactive mass
spectrometer (Thermo Fisher, Bremen, Germany). Intact
masses were measured at resolution 70.000 (at m/z 200) in
the Orbitrap using an AGC target value of 3E6 charges. The
top 10 peptide signals (charge-states 2+ and higher) were sub-
mitted to MS/MS in the HCD (higher-energy collision) cell
(1.6 amu isolation width, 25% normalized collision energy).
MS/MS spectra were acquired at resolution 17.500 (at m/z
200) in the orbitrap using anAGC target value of 1E6 charges,
a maxIT of 60 ms and an underfill ratio of 0.1%. Dynamic
exclusion was applied with a repeat count of 1 and an exclu-
sion time of 30 s. MS/MS spectra were searched against a
Swissprot reference proteome FASTA file (release January
2018, 42,258 entries, canonical and isoforms, no fragments),
using MaxQuant version 1.6.0.16 [15]. Enzyme specificity
was set to trypsin and up to two missed cleavages were
allowed. Cysteine carboxamidomethylation (Cys,
+57.021464 Da) was treated as fixed modification and methi-
onine oxidation (Met, +15.994915 Da) and N-terminal acety-
lation (N-terminal, +42.010565 Da) as variable modifications.
Peptide precursor ions were searched with a maximum mass
deviation of 4.5 ppm and fragment ions with a maximummass
deviation of 20 ppm. Peptide and protein identifications were
filtered at a false discovery rate (FDR) of 1% using the decoy
database strategy. Proteins that could not be differentiated
based on MS/MS spectra alone were grouped to protein
groups (default MaxQuant settings). A protein was considered
identified when at least 1 unique peptide was identified in one
sample at high confidence (peptide and protein FDR < 1%).
Searches were performed with the label-free quantification
option selected. Proteins detected were quantified based on
MaxQuant (version 1.6.0.16) output data. Label-free quantifi-
cation (LFQ) intensities were filtered by contaminants and
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only proteins with observations across all samples were
retained. The MS proteomics data have been deposited to
the ProteomeXchange Consortium via PRIDE [16] with ac-
cession number PXD015744.

2.4 Weighted gene correlation network analysis
(WGCNA) and functional enrichment of identified
modules

A protein co-expression network is an undirected graph,
where each node corresponds to a protein, and each edge
connects a pair of proteins that are significantly correlated
[17]. The key concept in WGCNA is “connectivity”.
Connectivity describes direct and indirect relationships be-
tween two proteins/genes in networks [18].This metric has
e.g. previously been used in breast cancer for drug prioritiza-
tion by Neidlin et al. [19].

To investigate co-expressed proteins in resected patient
PDAC samples, we used the WGCNA package [6] in R ver-
sion 3.5.0 WGCNA defines modules as a group of densely
interconnected proteins [18]. In unweighted networks the only
information given is the correlation “yes” or “no”, while for
weighted networks, users can also gain information about the
strength of a correlation. To remove random noise and en-
hance the strength of correlation, a particular threshold is re-
quired from the user. In the WGCNA package and so in this
study, the choice was made by applying the scale-free topol-
ogy criterion [20] using a soft threshold also known as “beta
power”. Different soft thresholds were tested (from 1 to 20)
and power = 10 was retained to be enough to get an adjacency
matrix very similar to a scale-free topology (correlation =
0.90) as shown in Supplementary Fig. S1. More explicitly,
the adjacency matrix is obtained by using the correlation value
between two proteins raised to the power threshold
β (Formula 1)

a ijð Þ ¼ sβijð Þ

where a(ij) is the weighted value of a protein in the adjacen-
cy matrix defined by rising the co-expression similarity s(ij) to
a power β. Finally, modules are obtained by setting a cut-tree
cut off on hierarchical clustering branches. In this study, a
dynamic cut-tree method was chosen. Briefly, the algorithm
starts by obtaining few large clusters by the static tree cut and,
next, implements an iterative process of cluster decomposition
and combination. The iteration stops only when the number of
clusters becomes stable [21]. The dynamic tree method is
essential to avoid relatively small modules. In this study, the
minimummodule size was set to 20 and the cut height was set
to 0.998 automatically by the WGCNA tool. Each module
was summarized by a vector of values (1 × 20 in this analysis,
where 20 is the number of samples) that was called Module

Eigenprotein (ME) and corresponded to the first principal
component of the given module [22]. The final network was
defined using the weighted option and threshold = 0.02 based
on the value range of the data.

The GSEA of the modules was performed by mapping the
proteins to gene names and submitting the gene list of each
module to the GSEA Broad Institute browser [23]. Gene sets
were ranked by significant p value and number of overrepre-
sented genes. We adopted GSEA to perform functional en-
richment analysis for each subnetwork based on GO biologi-
cal process (BP) terms, cellular components (CC), hallmarks
of cancer (HC) and transcription factor binding sites (TFBS).
Each gene set was ranked using the FDR score and the num-
ber of overlapping genes between the module and the gene set.
Moreover, the top 5 over-represented terms of each module
were subjected to STRING analysis, in order to find the best
descriptive biology for each specific module.

2.5 Survival analysis and meta-analysis

Clinical data of patients undergoing resection were obtained
from electronic patient records and referral hospitals. Survival
data were obtained from government registration. The ME for
each module was then correlated to DFS and OS. Assuming to
have a trait T and a Module Eigenprotein (ME), correlation or
univariate regression models can be used to measure the extent
of their association. Modules with a high trait significance may
underlie biological pathways associated with the sample trait.
Meta-analysis was carried out by applying univariate Cox re-
gression, multivariate Cox regression and log-rank tests on our
proteomics dataset and on two different transcriptomics datasets
(TCGA [24] and Moffitt et al. [25]). Prognostic marker candi-
dates were ranked based on the number of significant p values
obtained from the above-mentioned statistical tests. Kaplan-
Meier curves were plotted using “survminer” package in R.

2.6 Immunohistochemical validation of prognostic
markers in an independent cohort

Immunohistochemistry (IHC) of tissue microarrays (TMAs)
was evaluated as previously described [26]. In brief, FFPE
tissues from resected patients were selected and combined in
TMAs, including four representative cores from 4 different
tumor areas for each patient. IHC staining of KHSRP,
SPTBN1 and PYGL was performed according to the manu-
facturer’s protocols. Anti-KHSRP monoclonal antibody
(1:200, anti-KHSRP rabbit ab150393 Abcam), anti-SPTBN1
monoclonal antibody (1:500, anti-SPTBN1mouseMA3–062,
Invitrogen) and anti-PYGL polyclonal antibody (1:150, anti-
PYGL rabbit ab198268) were used. Visualization was obtain-
ed using a BenchMark Special Stain Automation system
(Ventana Medical Systems, Export, USA). Protein staining
was evaluated by a molecular pathologist, assessing the
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amount of tumor and tissue loss, background and overall in-
terpretability. Cytoplasmic immunostaining intensity was clas-
sified into four grades: 0 (absent), 1 (weak), 2 (moderate) and 3
(strong), for both STPBN1 and PYGL. To reduce the scoring
complexity, samples were defined as “with high expression”,
when the staining score was >2 in at least 50% of the tumor
cells. The nuclear immunostaining intensity of KHSRP was
classified into two grades: 0 (absent) and 1 (present). All pa-
tients provided written informed consent for the storage and
analysis of their tumor material and survival data, respective-
ly. This study was approved by the Local Ethics Committee
of the University of Pisa (Ethics approval #3909, July 3rd,
2013).

Univariate and multivariate analyses were performed using
a Cox regression model. Proteins with HR (Hazard Ratio) < 1
were considered protective and those with HR > 1 were de-
fined as non-protective. Meanwhile, proteins with p values <
0.05 were considered statistically significant. A risk score
method was used to assess the association of the three prog-
nostic markers with OS in a multivariate analysis. The risk
score was evaluated by combining the TMA scores of prog-
nostic proteins weighted by their regression coefficients from
univariate Cox regression (Formula 2).

Risk score ¼ ∑
n

i¼1
TMAscore*βi:

where n is the number of prognostic proteins, TMAscore is
the score of TMA for protein i, and βi the regression coeffi-
cient of protein i in the univariate Cox regression analysis.

Group comparisons were evaluated using the unpaired
nonparametric Mann-Whitney U test or unpaired Student’s t
test. Fishers exact test was used for categorical analysis.
Correlations with clinicopathological characteristics, includ-
ing DFS and OS, were tested using Kaplan-Meier curves
and the log-rank test, as described above.

2.7 Cell culture

Hs766t cells (ATCC, Manassas, USA) were grown in DMEM
(Lonza, Verviers, Belgium) supplemented with 10% heat-
inactivated fetal bovine serum and 1% penicillin-streptomycin
(10,000 U/ml, Gibco, Gaithersburg, MD, USA). Cells were
kept at 37 °C in an atmosphere of 5% CO2 in 75 cm2 tissue
culture flasks (Greiner Bio-One GmbH, Frickenhausen,
Germany) and, for all the experimental procedures, harvested
using trypsin-EDTA (Sigma, Zwijndrecht, The Netherlands) in
their exponentially growing phase. Cells were tested within the
last 3 months by microscopic morphology check and growth
curve analysis according to the Cell Line Verification Test
Recommendations (ATCC-Technical Bulletin No. 8, 2008).
Periodic assays were carried out to detect mycoplasma

contamination, and the identity of the cells was confirmed by
PCR profiling using short tandem repeats (STR).

2.8 Immunofluorescence assay

Immunofluorescence analysis was performed according to
a previously established protocol [27]. Briefly, cells were
seeded in a Chamber-Slides System (Lab-Tek, Thermo
Fisher Scientific, Waltham, USA) at a density of 5000
cells/well and allowed to attach overnight. Next, co-
expression of KHSRP and SPTBN1 was evaluated in
Hs766t PDAC cells, stained simultaneously with an anti-
KHSRP monoclonal antibody (1:400, anti-KHSRP rabbit
ab150393 Abcam) followed by an Alexa Flour 535 anti-
rabbit antibody (Red; 1:70), and an anti-SPTBN1 mono-
clonal antibody (1:100, anti-SPTBN1 mouse MA3–062,
Invitrogen) followed by an Alexa Flour 488 anti-mouse
antibody (Green; 1:70). Nuclear DNA was stained with 4′,
6-diamidino-2-phenylindole (DAPI). Images were cap-
tured using a Zeiss Laser Scanning Microscope, processed
and merged using Axiovision 4.1 software (Zeiss
Microimaging, Thornwood, USA). In vitro experiments
were performed with a minimum of three biological rep-
licates, evaluating at least 100 cells.

3 Results

3.1 PDAC tissue proteomics and co-expression
analysis

To obtain proteome level insight into PDAC cells, we used in-
depth proteomics based on label-free nanoLC-MS/MS of gel-
fractionated proteins to generate proteomic profiles of a cohort
of 20 patients. The clinical characteristics of the selected pa-
tients are listed in Supplementary Table S1. We ensured equal
protein loading of the samples to obtain optimal results
(Supplementary Fig. S2). The obtained dataset consisted of
5667 proteins (contaminants removed) encoded by 5494
genes. Unsupervised clustering using all proteins did not re-
veal any specific grouping of the samples (Supplementary Fig.
S3). The proteome dataset was subsequently used to establish
a PDAC protein network. To obtain robust co-expression net-
works, we restricted the analysis to 993 proteins identified in
all samples (Supplementary Table S2). Subsequent co-
expression analysis yielded 12 consensus modules (Fig. 1),
that were subsequently analyzed by GSEA to characterize the
associated biology. Each module was annotated with gene sets
and clinically relevant information. A complete list of genes
associated with the modules is presented in Supplementary
Table S3.

The modules covered a wide range of biological terms,
and the most frequently occurring terms were those
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implicated in metabolic processes in context of the mito-
chondrial compartment (black, green, magenta, turquoise
and yellow modules). Furthermore, five modules (blue,
green, green yellow, grey and yellow) consisted predom-
inantly of immune system and defense response, probably
regulated by STAT3 and ETS2 transcription factors
(shown in the TFBS column in Fig. 1), while one
module (brown) was linked to coagulation and platelet
activation. Four modules were associated with epithelial-
to-mesenchymal transition (EMT) processes (black, ma-
genta, pink and purple modules). One module was
enriched for transcription factors with STAT5A and E12
binding sites. However, these binding sites were predicted
based on the binding regions present in the targets. The
transcription factors did not show over-expression in our
PDAC cohort.

3.2 Modules as potential prognostic markers for
pancreatic cancer

The rationale behind the correlation network approach is to
use the network language, which is particularly intuitive to
biologists and allows for simple social network analogies.
This method indeed allows the detection of biologicallymean-
ingful communities in the network and the study of relation-
ships between them, helping the user to define interesting
modules associated to external traits. Since co-expressed pro-
tein modules were identified and associated with hallmarks of
cancer, we hypothesized that some modules may harbor po-
tential markers for PDAC prognosis. Indeed, the magenta
module, which presents EMT and glycolysis pathway compo-
nents, exhibited positive and significant correlations with DFS
and OS in our cohort (Fig. 1). Subsequently, we explored the

DFS OSName Color Size Biological Process Cellular compartment Hallmarks TFBS

*0.036 *0.016

*0.031

ECM, Iron uptake,
Oxidative phopshorylation

Mitochondrion 
 Extracellular space

EMT, MYC targets,
OX−PHOS, MTORC1

SF1, SP1, MAZ,
NFAT, ERR1

Innate Immune System,
Vesicle mediated transport,

Carbon metabolism

Intracellular vesicle 
 Mitochondrion

MYC targets,
 OX−PHOS,

Protein secretion, MTORC1

SP1, ELK1, MAZ,
 ERR1, SRF, YY1

Platelet degranulation,
Regulation of insulin−like

growth factor

Extracellular space,
Blood microparticle

Coagulation,Complement
Xenobiotic metabolism

KRAS signaling
HNF1, HNF3

Innate Immune system,
WNT signaling

Mitochondrion 
Ribonucleoprotein complex

MYC targets, adipogenesis SP1, NFY, MYC,
YY1, MAZ, SREBP1

Defense response,
Neutrophil degranulation,

CAMs

Extracellular space 
 Phagocytic vesicles

Estrogen late response,
Allograft rejection STAT3, ETS2

Metabolism of
 carbohydrates, 

Immune system process

Cytoskeleton 
 Anchoring junctions

Coated vesicles

MTORC1,Protein 
 secretion, Hypoxia ETS2, STAT

ECM, Metabolism Cytoskeleton 
 Nuclear periphery

EMT, Apoptosis,
 Glycolysis, Myogenesis

ROS, Fatty acid metabolism
STAT5, E12

ECM, PI3K−AKT 
 signaling pathway Extracellular matrix EMT, IL−2 STAT5 signaling E12, NFAT, AP1

Phagosome, 
 Axon guidance

Cytoskeleton 
 Actomyosin

EMT,Myogenesis SRF, NFAT, MAZ

APC cells, Spliceosome Endoplasmatic reticulum 
 Nuclear periphery

MTORC1, MYC targets,
 G2M checkpoint

SP1, MYC, YY1,
NRF1, HSF, NFY

Carbon metabolism,
Signaling by WNT,

RHO GTPase effectors

Cytoskeleton
Mitochondrion

MYC targets,
OX−PHOS,

Fatty acid metabolism,

SP1, MAZ, PAX4,
ELK1, LEF1, E2F

Innate Immune System,
 Axon guidance

Cytoskeleton
Myelin sneath

MYC targets, Glycolysis, 
 Hypoxia, Allograft rejection SP1, GABP, SRF

black

blue

brown

green

greenyellow

grey

magenta

pink

purple

red

turquoise

yellow

N = 78

N = 133

N = 109

N = 83

N = 35

N = 100

N = 49

N = 50

N = 48

N = 79

N = 135

N = 94

Cor
+1

−1

0

Fig. 1 Descriptive table of module characteristics. Module names, colors
and numbers of proteins are indicated. Enrichment of biological
processes, cellular compartments and hallmarks of cancer are described
for each module by GSEA. The last two columns show correlations and

significance levels of clinical endpoints for each module. The magenta
module shows a positive (red color) and significant correlation with DFS
(p value 0.036) and OS (p value 0.016) while the pink module shows a
positive and significant correlation with DFS (p value 0.031)
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network biology of the prognostic co-expression module and
found that this module is involved in metabolism, as can be
inferred from the presence of PYGL, SOD2, GSR, GSS,
PKM2, DDAH1 and TST, as well as EMT through ENO2,
PLOD1 and FMOD (Fig. 2). Moreover, factors exclusively
related to EMT were: COL12A1, TPM4, THBS1, FN1,
POSTN, COMP, THBS2, CALU and FBLN2 (Fig. 2).

3.3 The Magenta module comprises candidate
prognostic biomarkers for resected PDAC

For each module, we obtained the Module Eigenprotein (ME)
for further survival association analyses. Only one module was
significantly associated with DFS and OS in our proteomics
cohort. The same protein signature was tested for OS associa-
tion with transcriptomics data of the TCGA-PAAD project.
The p value for all overall tests (i.e., Likelihood, Wald and
Log Rank score) were 0.007, 0.01 and 0.01, respectively, indi-
cating that the same gene signature is significantly associated to
OS also in the transcriptomics data. Through subsequent inves-
tigation of epigenetic alterations of those genes, we found that
oxidative stress and ECM-EMT related genes were not meth-
ylated. Therefore, we conclude that epigenetic inhibition of
these genes was not prevalent. Additionally, we explored
whether it was possible to refine the prognostic signature list
by analyzing two publicly available independent transcripto-
mics datasets [24, 25]. To this end, different statistical tests
were applied to prioritize the prognostic candidates, and the
genes were ranked based on the frequency of significant obser-
vations among the tests (Supplementary Table S4). Our

analysis revealed three potential top candidate biomarkers
linked with prognosis: scaffold membrane protein spectrin beta
chain, non-erythrocytic-1 (SPTBN1), splicing regulatory pro-
tein KHSRP and glycogen phosphorylase (PYGL) (Fig. 3).
SPTBN1 is an actin-crosslinking protein that links the plasma
membrane to the actin cytoskeleton. KHSRP is a multifunc-
tional RNA-binding protein implicated in transcription, pre-
mRNA splicing and mRNA localization to control important
cellular processes such as metabolism, immune response, pro-
liferation and differentiation. PYGL is a crucial phosphorylase
that catalyzes the release of glucose molecules from glycogen,
the major carbohydrate storage source. Cells under hypoxic
conditions accelerate glycogen metabolism for an optimal glu-
cose utilization (Warburg effect). Thus, PYGL is required for
hypoxic cancer cells (as pancreatic cancer cells typically are)
for glycolysis and glycogen degradation [28]. Based on genetic
data from the TCGA consortium we found that alterations on
PYGL can discriminate patient survival (p value < 0.001) even
though the number of samples for short survival was relatively
small. Interestingly, we found that high expression of SPTBN1
was associated with good prognosis in the proteomics data, but
with poor prognosis in the transcriptomics data (Supplementary
Fig. S4). Correlations between mRNA and protein data have
been extensively studied and debated in the past years [29–31]
and includes two recent large-scale clinical cancer proteo-
genomics studies. A more recent study by Vasaikar and col-
leagues [32] showed that enzymes belonging to the tricarbox-
ylic acid (TCA) may be universally decreased at the protein
level, but not at the mRNA level. This suggests a protein-
level adaptation driving a strong Warburg effect in

Fig. 2 Network visualization of the magenta module that associates with
DFS and OS. Protein names are mapped to genes through Uniprot.
Edge’s widths represent the correlation strengths between genes (blue =

negative correlation, red = positive correlation). Gene colors represent
biological processes as indicated in the figure
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microsatellite instable (MSI) colorectal cancer. In agreement
with our study, the module where SPTBN1 belongs to is
strongly enriched for metabolic genes. More specifically, these
genes belong to glycolytic effects (PYGL, PKM, ENO2), thus
preceding the TCA cycle. Another study by Mertins and col-
leagues [33] on breast cancer showed that despite a C-terminal
truncation of GATA3, its protein expression level did not de-
crease, suggesting the occurrence of post-translational modifi-
cation. Furthermore, these researchers found that signaling
pathways such as PS1, ion channel transport and proteasome
and basic cellular mechanism pathways, including ribosome,
mRNA splicing, glycosylphosphatidylinositol biosynthesis and
RNA polymerase, were enriched for negative correlations be-
tween mRNA and protein levels when compared to copy num-
ber alterations. Overall these findings suggest that post-
translation modifications are more prone to occur in specific
pathways compared to others. Since SPTBN1 has also been
shown to carry genetic alterations in hepatocellular carcinoma
patients with a short OS [34], this may be a starting point for
future investigations on SPTBN1 mutations in PDAC patients.

3.4 Validation of KHSRP, SPTBN1 and PYGL as
prognostic candidates for resected PDAC

We used WGCNA with unsigned networks. This means that
the proteins in our modules can show both positive or negative
correlations and that poor or good prognostic markers can fall
in the same module because they are associated with the same
biology. The top 3 prognostic markers, SPTBN1, KHSRP and
PYGL, were chosen for subsequent IHC validation in an in-
dependent cohort of 82 resected PDAC patients (Fig. 4).
Representative IHC images of tumor cores from two selected
patients with highly divergent survival times and their
SPTBN1, KHSRP and PYGL expression patterns are shown
in Fig. 4a. In line with the proteome data, we found that
SPTBN1 and KHSRP correlated with each other and were
overexpressed in patients with good prognosis while PYGL,
that anti-correlates with KHSRP and SPTBN1, correlated
with poor prognosis. All three proteins had a significant

prognostic value for OS (Fig. 4b) and PFS (Supplementary
Fig. S5). Moreover, the signature of the three proteins taken
together successfully predicted patient prognosis with
p = 0.0025 (Supplementary Fig. S6). Co-expression of
SPTBN1 and KHSRP was further confirmed by immunoflu-
orescence in Hs766t cells. KHSRP (nuclear protein) and
SPTBN1 (cytoplasmic protein) were clearly co-expressed
(Fig. 4d) in the nucleus and in the cytoplasmatic compartment,
respectively.

Finally, univariate and multivariate Cox regression models
were used to assess the association of the three prognostic
markers to OS. We found that SPTBN1, KHSRP and PYGL
maintained significance in univariate and multivariate analy-
ses when correcting for external factors. To assess whether all
the three proteins were significantly associated with OS in a
multivariate analysis, a risk score was evaluated showing that
the prognostic signature of these three proteins was highly
associated with OS in this independent cohort (Table 2).

4 Discussion

In the present study, we generated a comprehensive proteome
dataset of 20 resected PDAC specimens and applied a weight-
ed gene co-expression network analysis (WGCNA) to the
data. WGCNA is a user-friendly and comprehensive software
tool that has already been applied to several clinical features
including brain cancer [35], diabetes [36] and chronic fatigue
[37]. We focused on co-expression network analysis to infer
biological functions and novel prognostic PDAC biomarkers.
We reported a proteome dataset of 5667 proteins comprising
993 proteins identified in all samples giving rise to twelve
modules in total. Protein co-expression modules were linked
to well-known PDAC hallmarks of cancer such as axon-guid-
ance, EMT, oxidative phosphorylation, MYC targets and
KRAS signalling, as well as potential new relationships to
biological processes. Importantly, one module was found to
be significantly associated with survival. This module, called
“magenta”, was functionally enriched for glycolysis, EMT,

Fig. 3 Candidate biomarkers deduced from PDAC proteomics data. Kaplan-Meier curves of KHSRP, SPTBN1, KHSRP and PYGL proteomics data
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apoptosis and reactive oxidative stress, highlighting a possible
interplay between these biological processes.

Despite considerable experimental and computational
modeling efforts, the role of EMT in cancer is still not fully
understood [38]. In particular, the connection of EMT to var-
ious properties of cancer cells such as stemness, drug resis-
tance, metabolism and metastasis is heavily discussed [39,
40]. In our current study, four modules showed overrepresen-
tation of different sets of EMT genes (black, magenta, pink,
purple), correlating with metabolic pathways, suggesting that
cell metabolism can influence the EMT state or vice versa.
Previously, tumor metabolism has been found to be associated
with EMT [40, 41], illustrating the complexity of the interplay
between EMT and metabolic reprogramming. Interestingly,
these four modules were regulated by different transcription
factors. In the magenta module transcription factors binding
sites (TFBS) for STAT5 and E12 were noted. STAT5 has
been shown to be overexpressed during EMT and aberrant
activity of this transcription factor has been found to induce

mitochondrial dysfunction and reactive oxygen species (ROS)
formation, leading to DNA damage [42]. In addition, E12 has
been found to be associated with repression of E-cadherin
(and thus EMT) in mouse models [43].

Of note, all modules with SP1 as transcription factor
binding site (yellow, turquoise, red, green, blue, black)
where found to be associated with MYC targets as pre-
viously described [44, 45]. SP1 has been shown to reg-
ulate the expression of thousands of genes implicated in
the control of a diverse array of cellular processes, such
as growth [44], differentiation [46], apoptosis [44], an-
giogenesis [47] and immune response [48]. These cellu-
lar processes are all linked to the proteomic modules of
our cohort that present SP1 as putative transcription
factor.

The magenta module comprised three prognostic
markers: SPTBN1, KHSRP and PYGL that were subse-
quently validated in an independent cohort of 82 patients.
These markers may be used in the future to evaluate and

a

b

c

Fig. 4 SPTBN1, KHSRP and
PYGL as prognostic markers for
resected pancreatic cancer patients.
a. Immunohistochemistry
validation of SPTBN1, KHSRP
and PYGL on TMAs of 82
patients. b. Kaplan-Meier curves
for SPTBN1, KHSRP and PYGL
with p values 0.0034, 0.0059 and
0.016, respectively.
c. Immunofluorescence of KHSRP
(red) and SPTBN1 (green) in
Hs766t cells

1155Co-expression analysis of pancreatic cancer proteome reveals biology and prognostic biomarkers



predict clinical responses of PDAC resected patients.
SPTBN1 is a dynamic intracellular non-pleckstrin homol-
ogy-domain protein, which plays important roles in cellu-
lar shape formation, protection of membranes against
stress, positioning of transmembrane proteins, and molec-
ular trafficking. Spectrin is made up of four subunits.
Among these, the beta subunits are responsible for most
of the binding activity and its role as a transforming
growth factor-β signal transducing adapter protein that is
necessary to form Smad3/Smad4 complexes [49]. KHSRP
(KH-Type Splicing Regulatory Protein) controls important
cellular processes such as proliferation, differentiation and
metabolism. KHSRP (also known as FBP2) is a factor
interacting with an enhancer element upstream of the c-
MYC oncogene promoter [50]. In the past twenty years
additional roles of KHSRP in post-transcriptional control
of gene expression have been discovered with implica-
tions for pre-mRNA splicing [51], mRNA decay [52]
and microRNA biogenesis [53]. PYGL catalyzes the deg-
radation of glycogen [54] and is responsible for maintain-
ing blood glucose homeostasis by regulating the release of
glucose 1-phosphate from liver glycogen stores [55].

Importantly, transcriptomics data of all three biomarkers
revealed significant associations with survival. Interestingly,
SPTBN1 could be defined as a good prognostic marker based
on the proteomics as well as the protein-based IHC data, while
it was associated with poor prognosis based on the transcripto-
mics data (Supplementary Fig. S4A). Systematic studies have
revealed multiple processes beyond the “non-correlation” of
mRNA expression and protein concentration levels [56].
These include (i) specific translation rates of e.g. upstream
open reading frames (uORFs) [57] or internal ribosome entry
sites (IRES), (ii) translation rate modulation due to the binding
of regulatory proteins or binding of micro-RNAs [58], (iii)
modulation of a protein half-life involving the complex
ubiquitin-proteasome pathway [59], or autophagy, which
may influence protein concentrations independent of tran-
script levels.

Although we captured three new prognostic biomarkers
and the biology associated with these, there are some limita-
tions to our study that need to be noted. Due to the high
heterogeneity of PDAC and the limited number of samples,
we were not able to delineate proteomics-based PDAC sub-
types. Exploring correspondence or correlation with known

Table 2 Univariate and multivariate analysis of prognostic markers for resected PDAC

Overall survival 82 22 (23.97 - 19.60)

Age <= 65 36 21.5 (25.87 - 19.62) 1.0 (ref) 1 NS*
> 65 46 22 (24.17 - 17.90) 1.13 (0.7 - 1.7) 0.57

Gender Female 44 21 (24.58 - 17.86) 1.0 (ref) 1 NS*
Male 38 23 (25.29 - 19.60) 0.97 (0.6 - 1.5) 0.9

Grading g1-g2 45 23 (26.95 - 20.78) 1.0 (ref) 1 1.0 (ref) 4
g3 37 21 (22.24 - 16.29) 1.73 (1.1 - 2.7) 0.016 * 1.44 (0.9 - 2.3) 0.125

LN status no 12 25.5 (30.26 - 20.57) 1.0 (ref) 1 NS*
yes 70 21.5 (23.60 - 18.74) 1.36 (0.7 - 2.5) 0.32

resection margin no 50 22.5 (26.43 - 21.56) 1.0 (ref) 1 1.0 (ref) 4
yes 32 20 (22.25 - 14.43) 1.56 (0.9 - 2.4) 0.052 . 1.54 (0.9 - 2.4) 0.075 .

vascular infiltration no 35 22 (27.83 - 21.36) 1.0 (ref) 1 1.0 (ref) 4
yes 47 22 (22.57 - 16.82) 1.56 (0.9 - 2.4) 0.050 . 1.26 (0.7 - 2.0) 0.331

SPTBN1 High 27 27 (22.23 - 17.14) 1.0 (ref) 1
Low 55 18 (29.79 - 22.35) 0.49 (0.3 - 0.7) 0.003 **

KHSRP High 39 25 (22.08 - 16.05) 1.0 (ref) 1 Risk score 1.0 (ref) 4
Low 43 18 (27.74 - 21.84) 0.53 (0.3 - 0.8) 0.005 ** 1.47 (1.1 - 1.9) 0.008 **

PYGL High 39 25 (27.41 - 21.19) 1.0 (ref) 1
Low 43 18 (22.49 - 16.52) 1.72 (1.1 - 2.6) 0.016 *

df P -value

OS characteristics / protein expression Univariate analysis Multivariate analysis

N Median days (95% CI) Hazard ratio (95% CI) df P -value Hazard ratio (95% CI)

Validation cohort characteristics with univariate and multivariate analyses for factors associated with OS. SPTBN1, KHSRP and PYGL remain
significantly associated with OS together with grading stage, resection margin and vascular infiltration (significant p value in bold). In the multivariate
analysis, significant covariates from univariate analysis are included and SPTBN1, KHSRP and PYGL are combined under the risk score
*NS: not significant in univariate cox regression; CI: Confidence of interval; df: degree of freedom
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PDAC subtypes is challenging due to the lack of PDAC sub-
types based on proteomics data. Furthermore, because of the
limited number of samples, this study should be considered as
a first exploratory analysis and its prognostic relevance needs
to be validated in additional clinical studies.

Taking together, our data indicate that an EMT-metabolic
module is associated with the prognosis after surgical resec-
tion of PDAC patients and that the module’s proteins
SPTBN1, KHSRP and PYGLmay serve as potential prognos-
tic biomarkers. Our results also show that co-expression net-
works are able to extrapolate tumor-specific biology as well as
biological mechanisms empowering prognostic marker dis-
covery, even with a limited number of samples.
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