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Tissue-Specific Analysis of Pharmacological Pathways
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Understanding the downstream consequences of pharmacologically targeted proteins is essential to drug design. Current
approaches investigate molecular effects under tissue-na€ıve assumptions. Many target proteins, however, have tissue-
specific expression. A systematic study connecting drugs to target pathways in in vivo human tissues is needed. We
introduced a data-driven method that integrates drug-target relationships with gene expression, protein-protein interaction,
and pathway annotation data. We applied our method to four independent genomewide expression datasets and built 467,396
connections between 1,034 drugs and 954 pathways in 259 human tissues or cell lines. We validated our results using data
from L1000 and Pharmacogenomics Knowledgebase (PharmGKB), and observed high precision and recall. We predicted and
tested anticoagulant effects of 22 compounds experimentally that were previously unknown, and used clinical data to validate
these effects retrospectively. Our systematic study provides a better understanding of the cellular response to drugs and can
be applied to many research topics in systems pharmacology.
CPT Pharmacometrics Syst. Pharmacol. (2018) ; doi:10.1002/psp4.12305; published online on 19 Jun 2018.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?
� Understanding downstream functional consequences
of pharmacologically targeted proteins is essential to
drug design. Current approaches investigate molecular
effects under tissue-na€ıve assumptions using data
derived from a single cell line.
WHAT QUESTION DID THIS STUDY ADDRESS?
� Many target proteins have tissue-specific expression
limiting the usefulness of current methods. We present
a systematic study connecting drugs to specific target
pathways in human tissues.

WHAT DOES THIS STUDY ADD TO OUR
KNOWLEDGE?
� We introduced a data-driven method that integrates
drug-target relationships with gene expression, protein-
protein interaction, and pathway annotation data. We
applied our method to four independent genomewide
expression datasets and built 467,396 connections
between 1,034 drugs and 954 pathways in 259 human
tissues or cell lines. The connections enabled us to pre-
dict and experimentally test anticoagulant effects of 22
compounds that were previously unknown.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� Our systematic study provides a better understand-
ing of the cellular response to drugs and can be applied
to many research topics in systems pharmacology,
such as side effects prediction, drug repurpose, etc.

A central goal of systems pharmacology is to understand how

biological systems respond to bioactive molecules. Most

drugs achieve their therapeutic effect by interacting selec-

tively with target proteins, which can be classified into major

classes based on molecular function: enzymes, G-protein

coupled receptors (GPCRs), ion channels (voltage-gated and

ligand-gated), nuclear hormone receptors, catalytic recep-

tors, and transporters.1 The binding of a ligand contributes to

the conformation change of the target protein, which then

affects the biochemical and physiological function linked to

the target.2 The target also interacts with other molecules to

affect cellular activity at the pathway level. Most drug targets

can directly participate in cellular activity except GPCRs. The

signal of ligand binding is passed from GPCRs to two types of

transducer molecules: G-protein and b-arrestin, which then

affect cellular activity by G-protein dependent and indepen-

dent signaling, respectively.3,4

Current efforts to systematically study pathways in

response to drugs can be classified into two categories. Stud-

ies in the first category5–8 analyze gene expression datasets

derived from in vitro drug-induced experiments to identify dif-

ferentially expressed genes, and then use enrichment analy-

sis methods, such as gene set enrichment analysis9 to find

significantly enriched pathways. Such methods are facilitated

by publicly available datasets like Connectivity Map,10

L1000,11 which contain collections of gene-expression pro-

files from cultured human cells treated with thousands of bio-

active small molecules. However, a major drawback of this

method is that due to the dominating noise inherent to micro-

array technology, many unrelated pathways will be drawn into
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the results.12 In most cases, hundreds of pathways are identi-
fied as significant, which will not provide much useful informa-
tion for pharmacologists studying the drug. In addition, these
drug-induced experiments are usually conducted on in vitro
cancer cell lines, in which the expression of many genes is
quite different from in vivo human tissues.13 Studies in the
second category collect experimentally validated evidence
from published articles and manually curate pathways to
describe the pharmacological process of drugs, such as Phar-
macogenomics Knowledgebase (PharmGKB),14 Kyoto Ency-
clopedia of Genes and Genomes (KEGG),15 etc. However,
the pathways are usually limited to a small number of well-
described pharmacokinetic or pharmacodynamic pathways
and exclude many basic cellular processes involved in signal-
ing and metabolism.

Cell-type plays an important part in the selectivity of
drugs. Many drug target proteins are found to have tissue-
specific expression.16–18 The tissue-specificity of target pro-
teins can help us design drugs with specific sites of
action.19,20 Even the same target protein can trigger distinct
downstream effect in various cell types. For example,
despite ubiquitous expression across the heart, calcium
channels play a more important role in the action potential
of cardiac pacemaker cells, which causes these cells to be
more sensitive to calcium channel blocking agents than
other cardiac cells.2,21 Understanding the mode of action of
drugs from a tissue and cell type-specific perspective is
crucial to drug discovery and development.

In this article, we developed a data-driven method to con-
nect Drugs to target pAthways by the Tissue Expression
(DATE). Our main hypothesis is that, for a drug to affect
the function of a pathway in a tissue, the target protein
must be associated with the pathway, and both the target
and the pathway must be highly expressed in the target tis-
sue. We validated our method against independent stand-
ards, tested the robustness of our results, and then applied
DATE to drug safety prediction and drug-repositioning. We
investigated a wide range of physiological drug effects,
including anticoagulation activity, where we predicted 132
drugs with potential anticoagulation activity and selected 22
newly predicted compounds to validate experimentally. Our
results provide evidence that targeting ADRB2, a GPCR
that regulates the activation of major platelet integrin and
levels of cytosolic calcium, may contribute to anticoagula-
tion in whole blood. In addition, we integrated experimental
results with clinical side effects of compounds to show that
predicted compounds are more likely to have significant
anticoagulation activity. Our results can be accessed at
http://tatonettilab.org/resources.html.

MATERIALS AND METHODS
Connecting drugs to target tissues
Four tissue-specific gene expression datasets were ana-
lyzed in this study. We refer to them as U133A22 (microar-
ray), NCI6023 (microarray), HPM_PRT24 (MS), and GTEx25

(RNA-seq). The data were preprocessed as detailed in
Supplementary Methods. There were 5,016 connections
between drugs and target proteins that were obtained from
Drugbank version 3.0.26 A drug was connected to a target

tissue if the target protein is both highly and specifically
expressed in the tissue, as detailed in Supplementary
Methods.

Identifying the target pathways of drugs
We used Reactome27 pathways with sizes between 5 and 500
as the data source for pathways. The class information of tar-
get proteins were integrated from three resources: GtoPdb,28

ENZYME,29 and Uniprot30 (Supplementary Methods). Tar-
get proteins that are GPCRs were connected to downstream
pathways using our previously published method predicting
GPCR downstream signaling pathways using the tissue
expression (GOTE).31 Non-GPCR target proteins were con-
nected to the annotated pathways that are highly expressed in
the target tissue. We further filtered the parent pathway from
results if it was connected to a drug in the same tissue
together with its descendant pathway.

Calculating the target, chemical, and indication
similarity of drugs
The similarity of target protein (or pathway) between two
drugs was defined as the Jaccard similarity between two
sets of target proteins (or pathway-tissue connections). The
chemical similarity of two drugs was defined as the Tani-
moto coefficient between the simplified molecular-input line-
entry systems (SMILES) of two drugs. The indication simi-
larity of two drugs was defined as the Jaccard similarity
between two sets of indications from an ensemble resource
linking medications to their indications named MEDI32

(Supplementary Methods).

Predicting adverse events of drugs with target
pathways of drugs
A reference standard33 between 4 adverse events and a total
of 149 drugs were used (Supplementary Methods). We
scored the filtered pathways of each drug by the number of
target proteins in the pathway and used scores as features to
predict the adverse event of drugs. For each adverse event,
we trained a binary random forest classifier with 500 trees.
The out-of-bag probability of each drug was used to evaluate
the performance of the classifier. To account for the stochastic
nature of random forests, we ran the analysis for 100 times
and used the average as the final results.

Validation of drug-tissue-pathway connections using
the L1000 dataset
The expression dataset of 653,394 compound treatment
experiments were downloaded from lincscloud.org.34 A ref-
erence standard containing positive controls (pathways with
significant change in expression) and negative controls
(pathways without significant change in expression) was
created for each connection between a drug and a cell line
(Supplementary Methods).

Predicting drugs with potential effect on coagulation
activity
Twenty Reactome pathways that describe cellular activities
in the coagulation process were manually selected from the
44 hemostasis pathways. Two additional PharmGKB path-
ways were added (Supplementary Table S1). We identi-
fied 132 drugs that are connected to the 22 pathways in
three types of tissues: platelets, whole blood, and liver
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(many coagulation factors as well as red blood cells are

synthesized by the liver35) are defined as predicted drugs

with effect on coagulation activity. As a reference set, 22

known anticoagulants were found through the Anatomical

Therapeutic Chemical (ATC) code with the first four digits

of “B01A.”

Coagulation experiment and data process
We conducted an in vitro assay to measure coagulation

activity of compounds, as described previously.36 A series

of thrombin activity was measured 0–300 minutes after the

treatment of each compound. The outliers of positive or

negative controls on each plate were filtered out using the

Median Absolute Deviation method (MAD>2).37 “Maximum

ratio” of a compound was calculated by dividing the maxi-

mum activity to the average maximum activity of negative

controls located on the same plate as the compound, then

normalized to a score between 0 and 1.

Defining a threshold of anticoagulation activity

combining measured score and clinical side effect
We extracted 695 drugs with the side effect of bleeding

(UMLS CUI: C0019080), 417 from side effect resource

(SIDER)38 and 396 from the OFFSIDES database.39

Among those, 188 screened drugs were included. Of all

388 screened drugs, 337 were annotated with at least one

side effect from two databases. We ranked them by

maximum ratio from lowest to highest. Cutoff values from

5th to 95th percentile were used to divide all drugs into two

groups. Odds ratios (ORs) of drugs with a bleeding side

effect were calculated for each cutoff value (Supplemen-

tary Figure S1). As the percentile varies from 5th to 95th,

the OR first rapidly increases to a maximum of 1.97 at the

17th percentile, then gradually declines close to 1. Thus,

the 17th percentile cutoff, with corresponding maximum

ratio of 0.775 was defined as the threshold of significant

anticoagulation activity.

RESULTS
Drug target proteins have tissue-specific expression
We classified all 5,016 target proteins into eight major clas-

ses (Figure 1a, Supplementary Table S2). The two larg-

est groups are enzymes (29.7%) and GPCRs (25.5%). The

13.4% target proteins which cannot be classified into eight

major classes were labeled as “other proteins.” Most of

these proteins are located in bacteria and are target of anti-

biotics (Supplementary Table S1).
We measured the tissue-specificity of drug target pro-

teins in four expression datasets by calculating the propor-

tion of tissues in which each drug target is highly

expressed using median (Figure 1b–e) or 75th percentile

(Supplementary Figure S2). By median, a drug target is

A: 29.7%

B: 25.5%

C: 15.1%

D: 13.4%

E: 5.6%

F: 5.5%

G: 4%
H: 1.1%
I: 0.1%

A: enzyme
B: gpcr(G−protein coupled receptor)
C: lgic(ligand−gated ion channel)
D: other_protein
E: vgic(voltage−gated ion channel)
F: transporter
G: nhr(nuclear hormone receptor)
H: catalytic_receptor
I: other_ic(other ion channel)
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Figure 1 Tissue-specificity of distinct target classes in four datasets. (a) Pie chart showing the proportion of 8 protein classes among
all 5,016 drug � target proteins pairs from DrugBank. (b–e) Boxplot showing the tissue-specificity of distinct target classes in four data-
sets. The tissue-specificity of a target protein is defined as the proportion of tissues in which the target is highly expressed when com-
pared to the median of all the genes. To account for the variation in the absolute expression of different genes, the expression of each
gene is normalized by the baseline level. Each box on the Y-axis represents one target class. The X-axis shows the tissue-specificity
of proteins belonging to the target class. “All_drug_targets” represents the combination of all the target classes. “All_genes” represents
all the genes in the human genome.
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specifically expressed in 31% of all tissues in U133A, 5.6%
in NCI60, 20% in HPM_PRT and 32% in GTEx, significantly
less than a median around 50% for all the genes (P< 2.2e-
16). Distinct classes of target proteins show different levels

of tissue-specificity. The G-protein coupled receptor, ion
channel, and nuclear hormone receptor are highly tissue-
specific, whereas enzyme, catalytic receptor, and trans-
porter are less tissue-specific.
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Figure 2 Workflow of Drugs to target pAthways by the Tissue Expression (DATE). A drug is first mapped to its target proteins using
DrugBank. Then, tissue expression data are used to find the target protein that is highly expressed in each tissue. Next, two different
processes were followed depending on whether the target protein is a G-protein coupled receptor (GPCR) or not (GPCRs do not par-
ticipate in the cellular activities directly, they pass the signals down to transducers). GPCRs are connected to downstream pathways
using our previously developed method predicting GPCR downstream signaling pathways using the tissue expression (GOTE). In
GOTE, the target GPCR is first mapped to the highly expressed transducers (G-proteins or b-arrestins) in the tissue. Then, for each
transducer (G-protein or b-arrestin), a list of tissue-specific binding proteins is obtained by combining BioGRID protein-protein interac-
tion data with the tissue expression of binding proteins. Pathway enrichment analysis is then performed based on the tissue-specific
binding proteins of each transducer using Fisher’s exact test. For each pathway, the Z-scores of all G-proteins (or b-arrestins) are com-
bined into a single Z-score using Stouffer’s Method. Eventually, pathways with significant Z-scores are connected to the drug in the tis-
sue as G-protein dependent pathways (GDPs; those that are associated with G-proteins) or G-protein independent pathways (GIPs;
those that are associated with b-arrestins). Non-GPCRs are first connected to the annotated pathways. Then an expression Z-score
will be calculated for each annotated pathway to determine whether the pathway is highly expressed in the tissue, and the pathways
with significant Z-scores are connected to the drug in the tissue as non-GPCR target pathways (NGPs).
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Using tissue-specific expression of target proteins to

predict target pathways of drugs
We used DATE (Figure 2) to predict target pathways of

drugs using four datasets. We found 467,396 significant

connections between 1,034 drugs and 954 pathways in 259

human tissues (Table 1). Each drug was connected to an

average of 112 pathways and 27 tissues when combining

the results of four datasets. The standard deviation is

greater than the mean in all four datasets, suggesting that

the number of connected pathways and tissues varies

greatly by drug. We identified 115,905 unique connections

between drugs and pathways. There were 41,098 (35.5%)

connections that are recurrent in at least two datasets and

3,871 (3.34%) connections that are recurrent in all four

datasets. We further filtered the results using hierarchy of

Reactome pathways to minimize redundancy. The median

size of predicted pathways was significantly reduced after

filtering (P<0.05; Supplementary Figure S3).
Many pathways were connected to more than one drug

(Supplementary Table S3). The number of drugs that

each pathway was connected to is positively correlated with

pathway size (P<2.2e-16; Supplementary Figure S4). A

drug and a pathway can be connected in multiple tissues in

which the target proteins are highly expressed. The number

of connected tissues is positively correlated with the num-

ber of target proteins in the pathway (P< 2.2e-16; Supple-

mentary Figure S5).

Distinct datasets show consistency in the predicted

target pathways of drugs
We compared the similarity of results in the three distinct

datasets derived from normal human tissues: U133A,

HPM_PRT, and GTEx. There were 7,510 connections

between drugs and pathways that are recurrent in all three

datasets (Figure 3a), and 1,032 connections between

drugs, pathways, and tissues that are recurrent in all three

datasets (Figure 3b).
For each drug, we calculated the pairwise Jaccard simi-

larity of connected pathways among different datasets. The

average pairwise Jaccard similarity is 0.46 6 0.03 (U133A

vs. HPM_PRT), 0.48 6 0.02 (U133A vs. GTEx), and

0.55 6 0.03 (HPM_PRT vs. GTEx), all significantly greater

than null distribution 0.0099 6 0.0015 (P< 2.2e-16;

Figure 3c). The same analysis was performed to compare

the pairwise Jaccard similarity of connected pathways in

the same tissue among datasets. The average pairwise

Jaccard similarity is 0.054 6 0.007 (U133A vs. HPM_PRT),

0.045 6 0.007 (U133A vs. GTEx), and 0.036 6 0.006

(HPM_PRT vs. GTEx), all significantly greater than null dis-

tribution 0.00014 6 0.00005 (P< 2.2e-16; Figure 3d).

Hormonal drugs show high tissue-specificity
We classified drugs according to their ATC class and

defined the tissue-specificity of each class as the inverse

number of tissues targeted by the class. Figure 3e and

Supplementary Figure S6 show the tissue-specificity of

each ATC class, as well as their target tissues. Hormonal

drugs have the highest tissue-specificity in all four datasets.

Ten of 84 (11.9%) tissues in U133A are targeted by hor-

monal drugs. Most of the 10 tissues belong to the endo-

crine system, such as the adrenal glands, hypothalamus,

and pituitary glands. Other ATC classes have lower tissue-

specificity, especially the alimentary tract, dermatological,

sensory, and cardiovascular, which target >90% of the tis-

sues in all four datasets.

Distinct classes of drugs show preference in different

category of pathways
Reactome pathways can be classified into 25 general cate-

gories, representing various biological processes. For every

ATC class, we showed the proportion of drug-pathway con-

nections that belong to each pathway category (Figure 3f;

Supplementary Figure S7), and identified the enriched

categories (Supplementary Methods; Supplementary

Table S4). All ATC classes are enriched with at least one

pathway category except sensory and various. Blood, hor-

monal, immunological, and nervous are all enriched with

five pathway categories, with hemostasis, gene expression,

cell cycle, and neuronal system being the most significant

category, respectively.

Table 1 Statistics of prediction results in four expression datasets

U133A NCI60 HPM_PRT GTEx Combined

Recurrent

�2

Recurrent

�3

Recurrent

5 4

Drugs 696 580 753 930 1,034 864 591 355

Pathways 781 678 666 623 954 787 536 270

Tissues 84 108 30 53 259 – – –

Full results

Connections (D-P-T) 137,199 76,191 37,719 217,401 467,396 – – –

Connections (D-P) 47,341 38,666 22,384 67,305 115,905 41,098 14,822 3,871

P per D (SD) 68 (102) 67 (91) 30 (49) 72 (100) 112 (162) 48 (76) 25 (37) 11 (17)

T per D (SD) 9 (8) 12 (11) 5 (3) 12 (9) 27 (23) – – –

Results after filtering

parent pathways

Connections (D-P-T) 53,857 31,824 16,067 84,816 186,022 – – –

Connections (D-P) 20,186 15,863 9,878 29,675 54,932 15,623 4,145 902

P per D (SD) 29 (41) 27 (37) 13 (19) 32 (43) 53 (77) 18 (28) 7 (9) 3 (2)

T per D (SD) 9 (8) 12 (11) 5 (3) 12 (9) 27 (23) – – –

D, drug; P, pathway; T, tissue; SD, standard deviation.
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We also classified drugs by the class of target proteins
(Figure 3g; Supplementary Figure S7; Supplementary
Table S4). All target classes are enriched with at least two
pathway categories except nuclear hormone receptor,
which is uniquely enriched with gene expression. GPCR
and enzyme are each enriched with seven and six pathway
categories with no overlaps between them. Both ligand-
gated ion channel and voltage-gated ion channel are
enriched with the neuronal system. In addition, voltage-
gated ion channel is also enriched with developmental biol-
ogy. Other ion channel (second messenger-regulated) is
most significantly enriched with membrane trafficking.
Transporter is most significantly enriched with transmem-
brane transport of small molecules.

Drugs with similar chemical structure or indications
target similar pathways
We tested whether drugs with similar chemical structure or
medical indication will target similar pathways in the same
tissue. We found that the similarity of target pathways
increases exponentially with chemical similarity of drugs
and remains consistently higher than the similarity of target

proteins (Figure 4a–d). By contrast, the similarity of target

pathways increases linearly with indication similarity (Fig-

ure 4e–h).

Using target pathways improves the performance of

drug safety predictions
We hypothesized that the target pathways would better

explain the adverse events of drugs than simply the

target alone. To validate the hypothesis, we used target

pathways or proteins as features and trained binary random

forest classifiers to predict four adverse events of drugs.

The performance of each classifier was shown by the

receiver operating characteristic (ROC) curve in Figure 4i–

l. Except for myocardial infarction, target pathways are bet-

ter predictors than target proteins. For example, using tar-

get pathways in NCI60 to predict kidney failure can achieve

an area under the curve (AUC) of 0.975, which improves

the performance of target proteins by 15%. Similarly, using

target pathways in GTEx to predict liver failure can achieve

an AUC of 0.829, which improves the performance by

33.7%.
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Figure 3 Visualization of drug-pathway-tissue connections built from expression datasets derived from normal human tissues. (a–d)
Consistency of results in the three datasets derived from normal human tissues: U133A (microarray), HPM_PRT (mass spectrometry),
and GTEx (sequencing). In a and b, the Venn diagrams show the number of drug-pathway a or drug-pathway-tissue b connections
overlapped among three datasets. In c and d, pairwise comparison was performed among three datasets. The bar plot shows the aver-
age Jaccard similarity (X-axis) of pathways c or pathway-tissues d connected to each drug. “Random” represents null distribution gen-
erated by randomly assigning pathways c or pathway-tissues d to each drug. The error bar indicates 95% confidence interval of
average calculated by bootstrap. (e) Heatmap showing the tissue-specificity of distinct Anatomical Therapeutic Chemical (ATC) classifi-
cation system drug classes (in U133A dataset). Each column represents an ATC drug class, whereas each row represents a tissue.
Each cell is colored in purple or white depending on whether drugs in the ATC class are connected to this tissue or not. The scale of
purple is proportional to the tissue-specificity score. (f,g) Heatmap showing the enrichment of pathway categories by drug class, either
defined by ATC code f or the class of target proteins g. Each column represents a drug class, whereas each row represents a Reac-
tome pathway category. Each cell is colored from white to purple, which is proportional to the percentage of drug-pathway connections
(in the HPM_PRT dataset) that belong to the corresponding drug class and pathway category. An asterisk “*” in a cell indicates the
pathway category is significantly enriched in the drug class by Fisher’s exact test (false discovery rate <0.01).
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The number of features used in the classifier varies by

the adverse events and by the datasets used for prediction

(Supplementary Table S5). After filtering the features by

importance score, we found that the number of features

with importance >0 varies from 57 to 162. No correlation

between the number of features and the AUC of classifier

was found. “Synthesis of 15-eicosatetraenoic acid deriva-

tives,” “synthesis of prostaglandins and thromboxanes,” and

“arachidonic acid metabolism” are important pathway

predictors for gastrointestinal bleeding, kidney failure and

myocardial infarction. In addition, “metabolism of angioten-

sinogen to angiotensin” is important in predicting kidney

failure. “Trafficking of GluR2-containing AMPA receptors”

and “peptide hormone metabolism” are important in predict-

ing liver failure.

Predicted pathways go through expression change

after drug treatment in L1000 experiments
We hypothesized that the expression of target pathways

will change after the treatment of drug in the predicted

tissue. We validated this using a reference standard

among the drug, pathway, and cell line built from the

L1000 dataset. Of all 76,191 connections, 281 connec-

tions (4%) between 92 drugs and 16 cell lines can be

evaluated using the standard. Precision and recall were

calculated using the reference standard (Figure 5a,b).

The precision of our results is 0.38 6 0.04, significantly

outperforming null distribution 0.28 6 0.03 (P 5 6.511e-

05). The recall of our results is 0.0087 6 0.0021, which

significantly outperforms the null distribution

0.0027 6 0.0004 (P 5 6e-08).

Figure 4 Correlation between drug identities and target pathways. (a–h) Line graphs showing the similarity of target proteins (pink line)
or target pathways (green line) increases as the similarity of drug identities: chemical structure a–d or indication e–h increases. Pair-
wise similarity of chemical structure or indication was calculated among all drugs and grouped into 10 (for chemical structure) or 6 (for
indication) bins on the X-axis. The Y-axis shows the average target similarity (log conversion performed in a–d) of all the drug pairs in
each bin. The error bar indicates 95% confidence interval of average calculated by bootstrap. On the X-axis, “*” indicates that the drug
pairs in the bin have higher similarity of target pathways compared with target proteins (P< 0.05). (i–l) The receiver operating charac-
teristic (ROC) curves showing the performance of trained classifiers using target proteins or pathways as features to predict four com-
mon adverse events caused by modern drugs: gastrointestinal bleeding i, acute kidney failure j, acute liver failure k, and myocardial
infarction l. In each plot, the ROC curves of five classifiers are shown along with their area under the ROC curve (AUROC) values:
four classifiers using the target pathways of drugs derived from four datasets as features (U133A: red; NCI60: green; HPM_PRT: yel-
low; and GTEX: blue), and one classifier using the target proteins of drugs as features (gray).
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DATE recaptures the drug-pathway connections in
PharmGKB
PharmGKB14 provides a reference standard of 187 connec-
tions between 143 drugs and 92 pathways that describe
the pharmacodynamics and pharmacokinetics of the drug.
We used DATE to connect drugs to the 92 pathways and
compared our results to PharmGKB. Altogether we built
29,078 connections between 776 drugs and 88 pathways in
223 human tissues (Supplementary Table S6). Of 143
drugs from PharmGKB, 129 drugs (90%) can be evaluated.
Precision and recall were calculated using the reference
standard (Figure 5c-d). The precision of combined (com-
bining all four datasets) and recurrent (appearing in at least
two datasets) results are 0.25 6 0.06 and 0.35 6 0.08,
respectively, which significantly outperforms the null distri-
bution 0.01 6 0.01 (P<1.0e-11). The recall of combined
and recurrent results are 0.44 6 0.08 and 0.38 6 0.08,
respectively, which significantly outperforms the null distri-
bution 0.04 6 0.03 (P< 1.0e-15).

DATE accurately predicts coagulation effects in
experimental assays
We predicted 132 drugs with coagulation effects (Supple-
mentary Table S7) based on their connections to a manually
curated set of 22 coagulation-related pathways (Supplemen-
tary Table S1). Predicted drugs are enriched with known anti-
coagulants (P 5 2.09e-07; Supplementary Table S8).

We conducted one unbiased experimental screen of 388
drugs (Supplementary Table S9) to measure the coagulation
activity using a high-throughput in vitro assay developed pre-
viously.36 A “maximum ratio” score was calculated to repre-
sent coagulation activity (Supplementary Table S10).
Screened drugs were not enriched with known anticoagulants
(P 5 0.16; Supplementary Table S8). We grouped all 388
screened drugs into the following categories: (1) Reactome:
26 predicted drugs connected to Reactome pathways; (2)
PharmGKB: 41 predicted drugs connected to PharmGKB
pathways; (3) tissue-na€ıve: 50 drugs that were connected to
22 coagulation-related pathways only in tissues other than

coagulation tissues (these drugs can be predicted by tissue-
na€ıve methods, but not DATE); and (4) others: 325 drugs that
were not predicted to have anticoagulation effects. The aver-
age maximum ratio of predicted drugs using PharmGKB
(0.76 6 0.08) are lower than that of both tissue-na€ıve drugs
(0.85 6 0.02) and unpredicted drugs (0.85 6 0.01), with P
value of 0.014 and 0.013 (Figure 6a).

Meanwhile, we combined the measured coagulation
activity of drugs with clinical side effects concerning drug-
induced bleeding. A maximum ratio of 0.775 was defined
as the threshold of significant anticoagulation activity, which
maximizes the OR of drugs with bleeding side effects
(OR 5 1.97; P 5 0.018; Supplementary Figure S1). We
found 34% of Reactome and 19% of PharmGKB predicted
drugs below this threshold (Figure 6a), both of which are
greater than unpredicted drugs (15%). Among the five
Reactome or PharmGKB predicted drugs with the lowest
maximum ratio, four of them have the side effect of bleed-
ing (Figure 6c).

Targeting ADRB2 may cause anticoagulation effect in
whole blood
Sixty-nine predicted drugs were not included in the initial
screen. These unpredicted drugs were enriched with seven
known anticoagulants (P 5 6.44e-06; Supplementary
Table S8). We selected 22 compounds from the other 62
drugs that have not been validated on the coagulation activ-
ity (Supplementary Methods; Supplementary Table S11)
and performed a prospective validation of these predictions.
The average maximum ratio of 22 compounds is
0.81 6 0.14 (Figure 6b), which is significantly lower than
that of negative controls 1.00 6 0.09 (P 5 0.018). Ten com-
pounds (45%) have significant anticoagulation activity
according to the defined threshold. The five drugs with the
lowest maximum ratio are labetalol, norepinephrine, proca-
terol, alprenolol and sulcralfate (Figure 6c), which are
primarily used to treat cardiovascular diseases, such as
hypertension and chest pain. Labetalol, norepinephrine,
and sulcralfate were reported to have the side effect of
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Random

(a)

Recall
0 0.006

NCI60
Random

(b)

0.012
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Combined
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0.0 0.3 0.6
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GTEx

Combined
Recurrent
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(d)

Figure 5 Validation of drug-pathway-tissue connections built by Drugs to target pAthways by the Tissue Expression (DATE). (a,b) Vali-
dation of drug-pathway-tissue connections (NCI60) using a reference standard created from L1000 drug-induced expression data. A
positive standard of drug-pathway-tissue connection was defined as a significant change in pathway expression after drug treatment in
the tissue. The Bar plot shows the average precision a and recall b of validated drugs. Precision 5 TP/(TP1FP), Recall 5 TP/(TP1FN).
“Random” represents null distribution generated by randomly assigning pathway-tissue to each drug. The error bar indicates 95% confi-
dence interval of average calculated by bootstrap. (c,d) Validation of drug-pathway connections using a reference standard from Phar-
macogenomics Knowledgebase (PharmGKB), which provides mapping between drugs and pharmacodynamic and pharmacokinetic
pathways. The barplot shows the average precision c and recall d of validated drugs. “Combined” represents all drug-pathway connec-
tions from four datasets. “Recurrent” represents drug-pathway connections that appear in at least two datasets. “Random” represents
null distribution generated by randomly assigning pathway-tissue to each drug. The error bar indicates 95% confidence interval of aver-
age calculated by bootstrap.
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bleeding. Labetalol, norepinephrine, procaterol, and alpre-

nolol mutually target ADRB2, a beta-2-adrenergic receptor.

Procaterol is a selective agent of ADRB2, whereas the

other four drugs are nonselective agents with other adre-

noreceptor targets (e.g., ADRA1A, ADRA1B, and ADRB1).

Using DATE, we connected ADRB2 to three hemostasis

pathways in whole blood: “integrin alphaIIb beta3 signaling,”

“reduction of cytosolic Ca11 levels,” and “factors involved

in megakaryocyte development and platelet production.”

DISCUSSION

Target proteins of a drug function as a bridge that connects

the drug to cellular activity. We found that many target pro-

teins have tissue-specific expression, indicating the impor-

tance of taking tissue-specificity into account while

identifying drug target pathways. This consideration is

absent in current systematic methods. We presented a

data-driven method, DATE, to systematically connect drugs

to target pathways in human tissues. We applied DATE to

four expression datasets and validated our results by com-

paring it to two standards: (1) a weak standard created with

the L1000 expression dataset; and (2) a stringent tissue-

na€ıve standard from PharmGKB. The first standard is less

stringent and will unavoidably bring in some false-positive

samples because co-expression sometimes does not mean

actual connection, which explains the relatively low recall

(Figure 5b). The second standard provides high-

confidence but fewer connections between drugs and

pathways, which explains a higher recall (Figure 5d) and
lower precision (Figure 5c). We also found that drugs with
similar chemical structure or medical indication are more
likely to share same target pathways rather than target pro-

teins, suggesting target pathway is a better indicator of the
drug activity.

As a data-driven method, one limitation of DATE is the
dependency on the expression dataset used. Therefore, we

tested the robustness of DATE among three datasets, each
one using a different technology. Overall, both drug-
pathway and drug-pathway-tissue connections significantly
outperform the null distribution, which suggests DATE is

robust against the systematic error across platforms. The
drop in the consistency of drug-pathway-tissue connections
compared to drug-pathway connections were caused by a
major obstacle that the three datasets did not use the

same tissue-naming standard. This may lead to a situation
in which the same name in different datasets can refer to
different types of cells. Another limitation of DATE is that it

requires prior knowledge of the target protein. With most
current knowledge only concerning the on-target protein of
drugs, the connections we built are limited to cellular path-
ways that account for the on-target effect of drugs.

The drug-pathway-tissue connections we built can be

applied to address many important research topics in
molecular systems pharmacology. For example, we used
the connected pathways as features to predict four com-

mon adverse events, and saw an improvement of perfor-
mance when compared to using the target proteins as
features in three of the four adverse events tested. In

Figure 6 Experimental validation of drugs predicted with anticoagulation activity. (a) Boxplot with jitter showing the coagulation activity
of 6 groups: (1) positive control: argatroban; (2) Reactome: 26 predicted drugs connected to Reactome pathways; (3) Pharmacogeno-
mics Knowledgebase (PharmGKB): 41 predicted drugs connected to PharmGKB pathways; (4) tissue-na€ıve: 50 drugs that can be pre-
dicted by tissue-na€ıve methods, but not DATE; (5) others: the other unpredicted 325 drugs; and (6) Negative control: DMSO. The
Y-axis shows the coagulation activity of drugs represented by “maximum ratio” score. A red dashed line was drawn at 0.775 on Y-axis,
representing the threshold of significant anticoagulation activity. The proportion of compounds with significant anticoagulation activity
(maximum ratio <0.775) in each group was shown in red numbers on X-axis. (b) Boxplot with jitter showing the coagulation activity of
three groups: (1) positive control: argatroban; (2) 22 newly predicted compounds that have not been screened on the coagulation activ-
ity in a; and (3) negative control: DMSO. (c) A table of predicted drugs with significant anticoagulation activity in a and b. Only the top
five drugs in each group (PharmGKB, Reactome, and 22 compounds) were shown here. Full results can be found in Supplementary
Table S10. P, P value; RR, reporting ratio; NA, compound was not studied in SIDER or OFFSIDES. Because only OFFSIDES provides
a P value for each pair of drug and side effect, whereas SIDER only provides the mapping between them, some compounds will have
blank profiles in the last two column if they were only reported in SIDER.
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myocardial infarction, the molecular mechanism can be well

explained by target proteins with high importance score,
which lead to the better performance of target proteins. For

instance, PTGS2 that shows the highest importance score
in predicting myocardial infarction, is a cardioprotective pro-
tein that alleviates ischemia/reperfusion injury and mediates

late phase preconditioning.40–42 We also predicted 132
drugs to have an effect on the coagulation process. An

unbiased experimental screen showed that the predicted
drugs are more likely to have anticoagulation activity com-

pared with those drugs only predicted by tissue-na€ıve meth-
ods or other unpredicted drugs. This is because our

tissue-specific analysis can connect drugs to their target
tissues or potential sites of action and provide more com-

prehensive knowledge about the mechanism of action.
Three predicted drugs with lowest coagulation activity are
known anticoagulants and several others can act as a

vitamin-K antagonist, which reduces blood-clotting. We per-
formed prospective validation on 22 predicted compounds

that have not been used as anticoagulants, and found that
their coagulation activity is significantly lower than the neg-

ative controls. Among the 22 compounds, several have
been reported to affect coagulation in previous research,

such as labetalol43,44 and alprenolol.45,46 Four newly pre-
dicted compounds with lowest coagulation activity share a

mutual target protein, ADRB2. This suggests that targeting
ADRB2 may cause an anticoagulation effect in whole blood,
opening potential new avenues for drug discovery research.

In addition, we integrated experimental screen results with
clinical data and defined the 17th percentile of the maxi-

mum ratio as the threshold of significant anticoagulation
activity. Drugs with a maximum ratio below the threshold

are nearly two times more likely to cause bleeding. We
found that predicted drugs exhibit a higher probability of

significant anticoagulation activity when compared to unpre-
dicted drugs, which further validates our predictions. Shown

in Figure 6c, many predicted drugs have already been
reported with the bleeding side effect in OFFSIDES or
SIDER, such misoprostol and norepinephrine, etc. Mean-

while, several other drugs, such as sulfasalazine, menadi-
one, procaterol, or alprenolol have not been reported with

the bleeding side effect yet. Our analysis provided evidence
that such drugs may have significant anticoagulation activ-

ity, thus, the patient should be monitored for potential
bleeding risk.
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